机器学习-决策树 -ppt

机器学习-决策树 -ppt
机器学习-决策树 -ppt

基于D-H模型的机器人运动学参数标定方法

基于D-H模型的机器人运动学参数标定方法 摘要:通用机器人视觉检测站中的机器人是整个测量系统中产生误差的最主要环节,而机器人的连杆参数误差又是影响其绝对定位精度的最主要因素。借助高精度且可以实现绝对坐标测量的先进测量设备——激光跟踪仪,及其功能强大的CAM2 Measure 4.0配套软件,并利用串联六自由度机器人运动的约束条件,重新构建起D-H模型坐标系,进而对运动学参数进行修正,获得关节变量与末端法兰盘中心位置在基坐标系下的准确映射关系,以提高机器人的绝对定位精度,最后通过进一步验证,证明取得了较为理想的标定结果。 关键词:视觉检测站;工业机器人;绝对定位精度;激光跟踪仪;D-H模型; Robot kinematic parameters calibration based on D-H model Wang Yi (State key laboratory of precision measuring technology and instruments, Tianjin University, 300072,China) Abstract:Robot for universal robot visual measurement station is the most primary part causing errors in the entire system and link parameter errors of industrial robot have a great influence on accuracy. Employing laser tracker, which can offer highly accurate measurement and implement ADM (absolute distance measurement), as well as relevant software, making use of movement constrain of series-wound six-degree robot, D-H model coordinates were rebuilt. Accordingly, kinematic parameters were modified, and precise mapping from joint variables to the center of the end-effector in base coordinate was obtained and accuracy got improved. At last, result is proved acceptable by validation. Keywords: visual measurement station; industrial robot; accuracy; laser tracker; D-H model; 引言:随着立体视觉技术的不断完善与发展,利用机器人的柔性特点,发展基于立体视觉的通用测量机器人三维测试技术逐渐成为各大机器人生产厂家非常重视的市场领域。机器人的运动精度对于工业机器人在生产中的应用可靠性起着至关重要的作用。机器人各连杆的几何参数误差是造成机器人系统误差的主要环节,它主要是由于制造和安装过程中产生的连杆实际几何参数与理论参数值之间的偏差造成的。通常,机器人以示教再现的方式工作,轨迹设定好之后,只在某些固定点之间运动,这种需求使得机器人的重复性精度被设计得很高,可以达到0.1毫米以下,但是绝对定位精度很差,可以到2、3毫米,甚至更大[1]。常见的标定方法可分为三类:一、建立微分运动学模型,然后借助标定工具测量一定数目的机器人姿态,最后用反向求解的方法得到真实值与名义值之间的偏差[2]。二、使用标定工具获得一系列姿态的数据,然后对数据用线性或非线性迭代求解的方法得到机器人几何参数的修正值[3],[4]。 三、建立机器人运动学模型,用直接测量的方法修正模型参数[5],[6],[7],[8]。最近,世界著名工业机器人生厂商ABB公司运用了莱卡激光跟踪仪以保证其产品的精度。使用激光跟踪仪标定机器人不再需要其它的测量工具,从而也就省去了标定测量工具的繁琐工作;同时,这一方法是对机器人的各个运动学几何参数进行修正,结果会使机器人在整个工作空间内的位姿得到校准,而不会像用迭代求解的方法那样,只是对某些测量姿态进行优化拟合,可能会造成在非测量点处残留比较大的误差;再者,随着机器人的机械磨损,机器人的运动学参数需要重新标定,而激光跟踪仪测量系统配置起来简单,特别适合于工业现场标定。正是鉴于以

机器人学得一个正运动学的例子

PUMA 560 运动分析(表示) 1 正解 PUMA 560是属于关节式机器人,6个关节都是转动关节。前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。 各连杆坐标系如图1所示。相应的连杆参数列于表1。 图1机器人模型 PUMA560每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机器人机体绕0z 轴的回转(角1θ),它由固定底座和回转工作台组成。安装在轴中心的驱动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角2θ) 。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3θ),以及小臂的回转(4θ)。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现

腕部摆动(5θ)和转动(6θ)。 下图为简化模型: 图2机器人简化模型 表1 机械手的末端装置即为连杆6的坐标系,它与连杆坐标系的关系可由16i T -表示: 1 616i i i T A A A -+= (1) 可得连杆变换通式为: 111111111100001i i i i i i i i i i i i i i i i i i i c s a s c c c s d s T s s c s c d c θθθαθαααθαθααα-----------????--? ?=???? ?? (2) 据连杆变换通式式(2)和表1所示连杆参数,可求得各连杆变换矩阵如下: 1 616 i i i T A A A -+=

【发那科FANUC机器人】机器人学得一个正运动学的例子

1 PUMA 560 运动分析(表示) 1 正解 PUMA 560是属于关节式机器人,6个关节都是转动关节。前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。 各连杆坐标系如图1所示。相应的连杆参数列于表1。 图 1 机器人模型 PUMA560每个关节均有角度零位与正负方向限位开关,机器人的回转机体实现机器人机体绕0z 轴的回转(角1 ),它由固定底座和回转工作台组成。安装在轴中心的驱动电机经传动装置,可以实现工作台的回转。大臂、小臂的平衡由机器人中的平衡装置控制,在机器人的回转工作台上安装有大臂台座,将大臂下端关节支承在台座上,大臂

2 的上端关节用于支承小臂。大臂臂体的下端安有直流伺服电机,可控制大臂上下摆动(角 2θ)。小臂支承于大臂臂体的上关节处,其驱动电机可带动小臂做上下俯仰(角3θ),以及小臂的回转(4θ)。机器人的腕部位于小臂臂体前端,通过伺服电动机传动,可实现腕部摆动(5θ)和转动(6θ)。 下图为简化模型: 图 2 机器人简化模型 表1 机械手的末端装置即为连杆6的坐标系,它与连杆坐标系的关系可由16i T -表示: 1 616i i i T A A A -+= (1) 1 616 i i i T A A A -+=

3 可得连杆变换通式为 : 1 1 1111 111100 00 1i i i i i i i i i i i i i i i i i i i c s a s c c c s d s T s s c s c d c θθθαθαααθαθααα-----------?? ??--??=?? ? ??? (2) 据连杆变换通式式(2)和表1所示连杆参数,可求得各连杆变换矩阵如下: 11221 120 1 12223324433 342 3 3444554 555000 000001001000000100010000001001000000100010 00010000 c s c s s c d T T s c c s a c s a s c d T T s c c s T s c θθθθθθθθθθθθθθθθθθθθ--??????????? ?==?? ?? --?? ??????--?? ????????? ?==?? ?? --????????--=665 66600001000010 01c s T s c θθθθ-????????? ?? ?=?? ?? --???????? 各连杆变换矩阵相乘,得PUMA 560的机械手变换的T 矩阵: 0123456112233445566()()()()()()T T T T T T T θθθθθθ= (3) 即为关节变量1236θθθθ,,,,的函数。 该矩阵描述了末端连杆坐标系{6}相对 基坐标系{0}的位姿。 于是,可求得机械手的T 变换矩阵: 016160 1x x x x y y y y z z z z n o a p n o a p T T T n o a p ??????==?????? (4)

相关文档
最新文档