3 (特性曲线)大流量电液比例插装阀液压测试试验台的设计要点

3 (特性曲线)大流量电液比例插装阀液压测试试验台的设计要点
3 (特性曲线)大流量电液比例插装阀液压测试试验台的设计要点

HydraulicsPneumatics&Seals/No.9.2010

大流量电液比例插装阀液压测试试验台的设计

于良振1

2.浙江大学

王明琳1方锦辉2

(1.山东泰丰液压设备有限公司,山东济宁

272000;

机械电子工程控制研究所,浙江杭州310027)

要:电液比例插装阀可以实现对高压大流量液流的比例控制,广泛应用于锻压机、注塑机等重型机械液压系统的调速回路,其性能

直接影响到系统的响应速度和控制精度,电液比例插装阀的测试和调节是确保压机安全可靠运行的必要手段。本文根据压机应用工艺对电液比例插装阀的性能要求,设计了液压测试试验台,对其压力—流量特性和阶跃响应特性进行测试,能够准确的测试该阀的主要性能。

关键词:大流量;电液比例插装阀;测试试验台;压力-流量特性;阶跃响应特性中图分类号:TH137

文献标识码:A

文章编号:1008-0813(2010)09-0037-03

DesignofaHydraulicTest-bedfortheLargeFlowDoubleProportionalCartridgeValves

YU

Liang-zhen1

WANG

Ming-lin1

FANG

Jin-hui2

(1.ShandongTaifengHydraulicEquipmentC.,Ltd.Jining272000,China;

2.ZhejiangUniversity,Hangzhou310027,China)

Abstract:Electro-HydraulicProportionalcartridgevalvesmakeproportionalcontrolofhighpressurelargevolu meflow,andusedinspeedcontrolcircuitofheavymachineryhydraulicsystem.Itsperformance sdirectlyinfluencesystemresponsespeedandcontrolprecision.Testandredressalisnecessary measureandmeansforsafetyandtrustinessofmachinery.Inthispaper,test-bedisdesignedbyrequestresults

ofmachinerytechnics.Pressure-flowcharacteristicsanddynamicresponsecharacteristicsaretestedinthistest-

bed,andtheshow:thetest-bedmeetthetestrequirementsforstaticanddynamiccharacteristics. KeyWords:largeflow;electro-

hydraulicproportionalcartridgevalves;proportionalthrottlevalve;test-bed;pressure-flowcharacteristics;stepresponsecharacteristics

前言

随着我国重型机械现代化水平的提高,对电液比

测试项目

(1)流量—压差特性:是电液比例插装阀在实际应

1.1稳态控制特性测试

用中最受关注的性能之一。反映了电液比例插装阀的通流能力。

(2)滞环特性:该特性由滞环指标Hx表示,是指元件内存在的磁滞、静摩擦、弹性滞环等因素对元件稳态控制特性的影响程度,反映了电液比例插装阀的控制精度。

例技术的要求日益提高,电液比例插装阀具有流量大、响应快、耐高压、寿命长等特点,在锻造压机、注塑机、压铸机等大型压机中得到广泛应用,满足快速、平稳、高精度的技术要求。因此,电液比例插装阀作为关键液压元件,其性能的好坏直接影响到整个系统的可靠性,研发高品质的电液比例插装阀并进行全面、准确的试验测试,并将其推广到市场,对我国液压技术,甚至整个工业技术的发展具有重要意义。

为了全面测试山东泰丰液压设备有限公司研发的电液比例插装阀的各项性能指标,在已有试验台的基础上,根据浙江大学机械电子工程控制研究所的建议,进一步设计并搭建了瞬态高压大流量试验台部分。

1.2动态控制特性测试

(1)流量突变时的抗干扰能力:该项目是在输入信

号一定(即被试阀的开口一定)的情况下,测试在输入流量阶跃变化时,被试阀主阀芯位移的稳定性。

(2)阶跃响应特性:该特性反映了其快速响应能力。在本文设计的试验台中,对被试阀在低压情况和高压情况下的阶跃特性均做了准确的测试。

收稿日期:2010-05-04

作者简介:于良振(1977-)男,山东济宁人,工程师,主要从事二通插装阀和电液比例阀产品的研发工作。

2

液压试验台的设计

为了更有针对性地完成上述测试项目,电液比例

37

液压气动与密封/2010年第9期

插装阀的液压测试试验台分为低压大流量系统和高压试验系统,其中高压系统包括高压小流量和瞬态高压大流量二部分。

2.1低压大流量试验系统

该试验系统主要可以进行流量—压差特性的试

验,液压系统原理图如图1所示。该液压系统由主回路、循环过滤回路和控制回路组成。主回路由6台双轴电动机驱动12台定量齿轮泵提供油源,在工作压力为

2MPa的情况下,能够提供3600L/min的流量。控制回路

为先导阀提供压力油。被试阀前和阀后均设置了压力表和压力传感器,用以检测压力。

1-齿轮泵

2-电动机3-压力表4-流量计

5-压力传感器

6-被试阀

图1

低压大流量试验系统原理简图

在进行流量—压差特性测试时,给定被测阀一定的输入信号,即令其主阀开口固定不变,改变泵的输入流量,由于设置了12台泵,所以能够保证12组不同的流量输入,记录在不同流量情况下被试阀前后压差,这样便可以得到12组数据,从而可以得到被试阀在全开情况下的流量—压差的特性曲线。

除了流量—压差特性的测试,该试验系统还能对被试阀的静态滞环特性、抗流量干扰能力和低压时的动态响应特性进行测试。

2.2高压试验系统

该试验系统主要进行被试阀的阶跃响应试验,液

压系统原理如图2所示。该液压系统主要由主回路、蓄能器组和控制回路组成。高压小流量系统主回路由2台PVG-10比例变量泵提供油源,最大稳态流量为300L/min,最大压力为31.5MPa。瞬态高压大流量由4

个容积为100L的气囊式蓄能器串联而成,能提供瞬态的高压大流量,功耗低,又能验证被试阀的动态性能。控制回路为先导阀提供压力油。

38

1-电动机

2-比例变量泵3-过滤器4-流量计5-蓄能器组

6-压力传感器7-压力表8-被试阀9-背压阀

图2

高压瞬态大流量试验系统原理简图

在进行阶跃响应特性测试时,首先对阀输入信号为关闭,比例变量泵开启向蓄能器充液,当蓄能器充满液,压力达到设定值后,给被试阀以阶跃信号,这时蓄能器和比例变量泵一起向被试阀供液。数据采集系统记录被试阀前后压力变化和阀芯位移情况,可以得到主阀芯的阶跃响应曲线。

在不使用蓄能器组的情况下,该试验系统还可以进行高压小流量情况下的动态响应特性测试,并且可

以对小流量范围内的流量—压差特性进行补充试验。

2.3测试系统

该试验系统的测试系统框图如图3所示,主要由

测试试验台、传感器、控制放大板、数据采集与显示四个部分组成。传感器包括两个位移传感器和两个压力传感器,控制放大板是测试系统的控制单元,主要对输入信号进行处理放大,最终控制被测元件主阀芯的位移。数据采集卡采用研华4711A,

是一块12位多功能

USB数据采集卡,可进行数字信号和模拟信号的输入输出,采样速率高达

150kS/s。利用虚拟仪器软件LabVIEW实现数据记录和图像输出。

图3

测试系统的组成

3

测试结果

(1)被试阀具有良好的通油能力。当被试阀主阀全开,

阀前后压差0.35MPa的情况下

流量能达到

3000L/min,测试曲线如图4所示。HydraulicsPneumatics&Seals/No.9.2010

(4)在系统压力15MPa左右,输入阶跃信号值为0.3~9.5V情况下,阶跃响应曲线见图7所示。

图4流量—压差特性曲线

(2)静态滞环测试曲线如图5所示,可以看到在阀芯开启和关闭时的反馈信号与输入信号的曲线基本重

合,最终计算滞环指标Hx仅为0.13%。图7阶跃响应曲线

从图中可以看看出,阶跃上升时间和下降时间以

10%~90%计算,响应时间在30~40ms之间。

4结论

根据电液比例插装阀的测试要求,本文设计了低

压和高压两个试验系统进行测试,解决了大通径电液

比例插装阀试验中常见的大流量稳态测试和高压大流

量瞬态测试的问题,全面考查了电液比例插装阀的性

图5静态滞环测试曲线能,说明此阀通流能力强、响应速度快,具有良好的品质。

[1]

[2]

[3]

[4]

[5](3)被试阀抗干扰能力见图6所示。当输入流量由1200L/min到3600L/min 阶跃变化时,被试阀进口压力也阶跃变化,但其位移基本不受影响,有较强的抗干扰能力。考文献翟京.大流量液压系统CAT实验台[J].煤矿开采,2005(12).吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].浙江:浙江大学出版社,2006.胡军科,何国华,吴时飞.一种高压大流量电液比例阀的性能测试实验台设计[J].机床与液压.2006(1).杜巧莲,赖振宇,魏建华.压铸机比例节流阀性能测试实验台的设计[J].检测,2008(7).吴杰.多功能液压元件综合实验台的设计[J].机械工

,

2008(4).

图6抗流量干扰测试...................................................................................勘误启事

由于排版和编辑的失误,本刊2010年第5期的企业之声《中国CY泵的研发体会和经验教训》一文

中,在67页第12行“A2F由250角改进为400角”有误,应是“A2F由25°角改为40°角”。在此,本刊编

辑部向该文作者及广大读者致歉!.........................................................

39

工程机械电液比例阀特点

工程机械电液比例阀特点、原理及应用 工程机械电液比例阀的特点及其应用—感谢山东科技大冯开林教授 1 引言 电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。阀芯位移也可以以机械、液压或电的形式进行反馈。由于电液比例阀具有形式种类多样、容易组成使用电气及计算机控制的各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,因此应用领域日益拓宽。近年研发生产的插装式比例阀和比例多路阀充分考虑到工程机械的使用特点,具有先导控制、负载传感和压力补偿等功能。它的出现对移动式液压机械整体技术水平的提升具有重要意义。特别是在电控先导操作、无线遥控和有线遥控操作等 方面展现了其良好的应用前景。 2 工程机械电液比例阀的种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。根据工程机械液压操作的特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是通过螺纹将电磁比例插装件固定在油路集成块上的元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来在工程机械上的应用越来越广泛。常用的螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主要是比例节流阀,它常与其它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主要是比例减压阀,也是移动式机械液压系统中应用较多的比例阀,它主要是对液动操作多路阀的先导油路进行操作。利用三通式比例减压阀可以代替传统的手动减压式先导阀,它比手动的先导阀具有更多的灵活性和更高的控制精度。可以制成如图1所示的比例伺服控制手动多路阀,根据不同的输入信号,减压阀使输出活塞具有不同的压力或流量进而实现对多路阀阀芯的位移进行比例控制。四通或多通的螺旋插装式比例阀可以对工作装置实现单独的控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本的元件之一,是能实现方向与流量调节的复合阀。电液滑阀式比例多路阀是比较理想的电液转换控制元件,它不仅保留了手动多路阀的基本功能,还增加了位置电反馈的比例伺服操作和负载传感等先进的控制手段。所以它是工程机械分配阀的更新换代产品。 出于制造成本的考虑和工程机械控制精度要求不高的特点,一般比例多路阀内不配置位移感应传感器,也不具有电子检测和纠错功能。所以,阀芯位移量容易受负载变化引起的压力波动的影响,操作过程中要靠视觉观察来保证作业的完成。在电控、遥控操作时更应注

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

电液比例阀工作原理 (2)

电液比例阀就是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀与比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感与压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别就是电控先导操作、无线遥控与有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类与形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类就是螺旋插装式比例阀(screwin cartridge proportional valve),另一类就是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀就是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路与成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通与多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也就是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性与更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,就是移动式机械液压系统最基本元件之一,就是能实现方向与流量调节复合阀。电液滑阀式比例多路阀就是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作与负载传感等先进控制手段。它就是工程机械分配阀更新换代产品。 出于制造成本考虑与工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测与纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器与其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温与提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿就是一个很相似概念,都就是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲就是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统就是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿就是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入

调节阀的流量特性校正

调节阀的流量特性校正 作者:王根平 摘 要:由于在控制系统设计时一般都假定调节阀前后压差为常数,而实际上压差总会随着阀的开度变化而变化,这种误差会导致调节阀流量特性的畸变,对系统的控制性能有一定的影响。通过设计调节阀的流量特性校正装置,可以较好地克服调节阀的畸变,使调节阀的工作特性维持在比较理想的工作状态。实验证明这种校正对阀的工作特性改善非常明显。 关键字:调节阀流量特性压差校正 1. 前言 在控制系统的实现中,调节阀的选择是很重要的一个环节,阀的流量特性直接关系到系统的控制质量。 1.1 调节阀流量特性定义 调节阀流量特性是指流过阀门的相对流量(Q/Qmax)与阀心相对行程(L/Lmax)的关系,即: Q/Qmax=f(L/Lmax) 式中:Q-某一开度下的流量;Qmax-全开时的流量;L-某一开度下的阀心相对行程;Lmax-阀心全行程。

1.2 理想流量特性 一般说来,改变调节阀的调节阀与阀座间的节流面积便可以调节流量。但实际上节流面积改变的同时,还发生阀前后压差的变化,这种变化会引起流量的变化。 研究阀特性时,总是现假设阀前后压差相等,即ΔP为常数,这样可以得到调节阀的理想流量特性(图1):(a)线性流量特性;(b)等百分比流量特性;(c)快开流量特性。 1.3 实际流量特性 阀门串接在管路系统中,当管路两端的总压降固定不变时,管路内的直管沿程阻力和管件局部阻力都会随流量而变化,其结果会使调节阀的工作特性与理想特性有许多差异。

由于阀前后压差与管路总压差两者之间关系变化,在全开时阀上压降与管路系统总压降值比S越小,阀流量特性曲线畸变越严重(图2)。 从上面对调节阀流量特性分析可知,阀在不同压差情况下的畸变是很严重的,这种畸变给控制系统的设计带来了困难,也会严重影响控制系统的性能指标。 因此,考虑对调节阀在各种S情况下的畸变进行补偿和自动校正,将是非常有意义的一件工作。本文考虑采用弹片机依据阀的流量特性和实际工作特

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

电液比例阀工作原理

电液比例阀工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术

实验二-电动调节阀的流量特性测试实验

实验二 电动调节阀的流量特性测试实验 任何一个最简单的控制系统也必须由检测环节、调节单元及执行单元组成。执行单元的作用就是根据调节器的输出,直接控制被控变量所对应的某些物理量,例如液位、温度、压力和流量等参数,从而实现对被控对象的控制目的。因此,完全可以说执行单元是用来代替人的操作的,是工业自动化的“手脚”。电动调节阀是本实验装置的执行单元之一。 一. 电动调节阀工作原理 执行器按照使用能源的种类,可分为气动、液动和电动三种,本装置采用的是智能型单座调节阀。顾名思义它是由电动执行器进行操作的,它接受调节器的输出电流4~20mA 信号,并转换为相应的输出轴直线位移,去控制调节机构以实现自动调节。电动调节器的优点则是能源采用方便,信号传输速度快,传输距离远等。 执行器由执行机构和调节机构两部分组成。执行机构是执行器的推动装置,它可以按照调节器的输出信号量,产生相应的推力,以带动智能调节阀的主推动轴产生直线位移,主推动杆总位移为16mm ,控制单座调节阀0~100%的开度连续变化。而调节机构(调节阀)是执行器的调节装置,它受执行机构的操纵,可以改变调节阀阀芯与阀座间的流通面积,以达到最终调节被控介质的目的。 本执行器的结构如图1所示,电动执行器首先接受来自调节器的输出信号,以作为执行器的输入信号即执行器的动作依据;该输入信号送入信号转换单元,转换信号制式后与反馈的执行机构位置信号进行比较,其差值作为执行机构的输入,以确定执行机构的作用方向和大小;执行机构的输出结果再控制调节器的动作,以实现对被控介质的调节作用;其中执行机构的输出通过位置发生器可以产生其反馈控制所需要的位置信号。 图1 电动执行器的工作原理 从上述描述和图1可知,电动调节阀执行机构的动作构成了负反馈控制回路,这是提高执行器调节精度、保证执行器工作稳定的重要手段。为保证电动执行器输出与输入之间呈现严格的比例关系,必须采用比例负反馈构成闭环控制回路,图2为本套装置的电动执行器的工作原理示意图: 图2 电动执行器原理图 其中I i 表示输入电流,θ表示输出轴转角,两者存在如下关系: i I K ?=θ (1) K 是比例系数。图2中伺服放大器由前置磁放大器、可控硅触发电路和可控硅交流开关组成,如图3

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

电液比例阀

3.2.1直动式比例溢流阀 直动式比例溢流阀的工作原理及结构见图3-2,。这是一种带位置电反馈的双弹簧结构的直动式溢流阀。它于手调式直动溢流阀的功能完全一样。其主要区别是用比例电磁铁取代了手动弹簧力调节组件。 如图3-2a所示,它主要包括阀体6,带位置传感器1、比例电磁铁2、阀座7、阀芯5及调压弹簧4等主要零件。当电信号输入时,电磁铁产生相应的电磁力,通过弹簧座3加在调压弹簧4和阀芯上,并对弹簧预压缩。此预压缩量决定了溢流压力。而压缩量正比输入电信号,所以溢流压力也正比于输入电信号,实现对压力的比例控制。 弹簧座德实际位置由差动变压器式位移传感器1检测,实际值被反馈到输入端与输入值进行比较,当出现误差就由电控制器产生信号加以纠正。由图3-2b所示的结构框图可见,利用这种原理,可排除电磁铁摩擦的影响,从而较少迟滞和提高重复精度等因素会影响调压精度。显然这是一种属于间接检测的反馈方式。 a b 图3-2 带位置电反馈的直动式溢流阀 a)工作原理及结构b)结构框图 1—位移传感器2—比例电磁铁3—弹簧座4—调压弹簧 5—阀芯6—阀体7—阀座8—调零螺钉 普通溢流阀可以靠不同刚度的调压弹簧来改变压力等级,而比例溢流阀却不能。由于比例电磁铁的推力是一定的,所以不同的等级要靠改变阀座的孔径来获得。这就使得不同压力等级时,其允许的最大溢流量也不相同。根据压力等级不同,最大过流量为2~10L/min。阀的最大设定压力就是阀的额定工作压力,而设定最低压力与溢流量有关。这种直动式的溢流阀除在小流量场合下单独作用,作为调节元件外,更多的是作为先导式溢流阀或减压阀的先

导阀用。另外,位于阀底部德调节螺钉8,可在一定范围内,调节溢流阀的工作零位。 3.2.2先导式比例溢流阀 1.结构及工作原理 图3-3所示为一种先导式比例溢流阀的结构图。它的上部位先导级6,是一个直动式比例溢流阀。下部为主阀级11,中部带有一个手调限压阀10,用于防止系统过载。 当比例电磁铁9通有输入信号电流时,它施加一个直接作用在先导阀芯8上。先导压力油从内部先导油口(取下螺堵13)或从外部先导油口X处进入,经流道口和节流3后分成两股,一股经节流孔5作用在先导阀芯7上,另一股经节流孔4作用在阀芯撒谎女上部。只要A油口压的压力不足以使导阀打开,主阀芯的上下腔的压力就保持相等,从而主阀芯保持关闭状态。这是因为主阀芯上下有效面积相等,从而主阀芯保持关闭状态。这是因为主阀芯上下有效面积相等,而上面有一个软弹簧向下施加一个力,使阀芯关闭。 当主阀芯是锥阀,它既小又轻,要求的行程也很小,所以这种阀的响应很快。阀套上有三个径向分布的油孔,当阀开启时使油流分散流走,大大减少噪声。节流孔4起动态压力发 亏作用,提高阀芯的稳定性。 图3-3 先导式比例溢流阀 1—先导油流道2—主阀弹簧 3.、4、5—节流口6—先导阀 7—外泄口8—先导阀芯9—比例电磁铁10—安全阀 11—主阀级12—主阀芯13—内部先导油口螺堵 A—进油口B—出油口X—外部先导油口Y—外部先导卸油口 与传统的先导式溢流阀不同,比例溢流阀的压力等级的获得是靠改变先导阀的阀座孔径来实现的。这点与比例直动式溢流阀完全相同。较大的阀座孔径对应着较低的压力等级。小阀座孔径可获得较高的额定值。阀座的孔径通常由制造厂根据阀座的压力等级在制造时已经确定。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

电液比例阀性能测试实验指导书模板

电液比例阀性能测试实验指导书

电液比例阀性能测试实验指导书 实验项目 1. 电液比例方向阀性能实验 2. 电液比例溢流阀性能实验 3. 电液比例调速阀性能实验 唐山学院机电工程系

实验一电液比例溢流阀性能测试一、实验液压原理图 二、液压元件配置 1-变量叶片泵 2-先导式溢流阀 3-电磁阀 4-电液流量伺服阀2FRE6~20/10QM 5-蓄能器 6-被试阀电液比例溢流阀 DBETR-10B/80M 7、8-压力传感器 9-加载用节流截止阀 10-流量传感器 11、12-截止阀 13-压力表 三、实验内容

1、稳态压力控制特性测试 测试阀控制电流与阀输出压力之间关系,画特性曲线,计算死区、滞环、非线性度。 2、稳态负载特性(压力-流量特性) 测试控制输入电流、输出压力、负载干扰(流量)之间关系。 3、输入信号阶跃响应测试(选做) 测试阀输出压力相对一定幅值输入电信号阶跃变化的过渡过程响应特性,画特性曲线,计算滞后时间、上升时间、过渡过程时间等。 4、频率响应特性测试 测试阀对一组不同频率的等幅正弦输入信号的响应特性,画频响特性曲线(博德图),算幅频宽、相频宽。 四、实验方法 测试电回路接线操作: 1)压力传感器-把P A、P B压力传感器信号线分别扦入控制面板上的模拟信号输入口1、2口。 2)电液比例溢流阀-把比例溢流阀电磁铁A线圈扦入比例溢流阀放大器电磁铁A扦座上,位移传感器信号线扦入放大器的阀蕊反馈扦座。 比例溢流阀放大器输入测试信号、输出测试信号用四蕊测试

线分别扦入控制面板上的模拟信号输入口5、6口上,差动 信号输入信号用二蕊测试线扦入控制面板上的模拟信号输出口1口上。转换开关转入自动位置。 3)电液比例流量阀-把比例流量阀电磁铁A线圈扦入比例流量阀放大器电磁铁A扦座上,位移传感器信号线扦入放大器 的阀蕊反馈扦座。 电液比例流量阀放大器差动输入信号号用二蕊测试线分别扦入控制面板上的模拟信号输出口2口上。转换开关转入自动位置。 4)流量传感器-把大流量传感器、小流量传感器信号线分别扦入控制面板上的脉冲信号输入口1、2口上(模拟输入信号 分别9、10通道)。 软件操作 每个电液比例溢流阀性能实验之前都必须先根据流量来调节开口度,即开度设置画面。而且其信号发生器的幅度都为-10V~+10V;起止频率为0.1hz。同时流量计参数中的量程为0~5。 1、稳态压力控制特性 测试油回路各阀体操作: 1)打开截止阀9、11,关闭截止阀12、电磁阀3; 2)调节变量泵1,使输出流量为10L/min,由小流量传感器(10)观测输出流量为0L/min;

调节阀性能实验

调节阀性能实验 一、实验目的要求 1、了解调节阀的构造,掌握其操作和调节方法; 2、测定调节阀基本误差、回差、死区、始终点极限偏差与额定行程偏差 3、测定调节阀固有流量特性曲线; 二、实验基本原理 调节阀又名控制阀,通过接受调节控制单元输出的控制信号, 借助动力操作去改变流体流量。调节阀一般由执行机构和阀门组成。如果按其所配执行机构使用的动力,调节阀可以分为气动调节阀、电动调节阀、液动调节阀三种,另外,按其功能和特性分,线性特性,等百分比特性及抛物线特性三种。 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 三、实验内容 1 外观及清洁度检查 清洁度是指零件、整机的影响产品可靠性部位被杂质污染的程度。可用采集的杂质大小、数目等来展示。若特定部位杂质过多,则会沉积在管道中,堵塞流道,使实际测得的流量变小。杂质也会使造成比较大的摩擦损害,如弹簧、密封材料的损坏,严重影响阀门的使用寿命及工作的可靠性。 阀门外观应该清洁、光滑。不得有任何铁屑、污垢、粉尘、绣点及其他异物;紧固件不得有松动、损伤等。调节阀清洁度检查参考JB/T4058中6.2.8节的规定执行,壳体内壁及零部件表面清洁度要求检查结果填入表中。结果如表1所示。 从表1检查结果来看,在阀门壳体内壁、加工零部件未观察到微小颗粒、异

物、杂质,清洁度符合相关标准要求,说明阀门特定部位杂质及颗粒不会成为影响试验结果的重要因素。 1调节阀表面清洁度检查记录表 2.动作灵活性及程序控制开关功能验证试验 1、将调节阀调手动状态,检查阀门转动部件动作灵活性,看是否卡滞、转动不灵活等现象发生;记录结果于表2中。 2、接通调节阀电源,投电动状态,观察其动作灵活性,并记录阀门在升程与降程区间行程位移及时间,试验不得少于3次,记录结果于表2中。 3、结合调节阀电动灵活性试验,确定阀门在全开及全关位置行程控制开关自动闭合的动作灵活性,记录实验结果于表2中。 2动作灵活性试验结果记录表

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

基于PWM控制技术的电液比例阀特性的研究

基于PWM控制技术的电液比例阀特性的研究 李光彬,张雪梅,赵光 摘要:介绍基于PWM(Pulse Width Modulation)控制技术的电液比例阀的特点和原理。提出了通过改进PWM技术提高控制精度的一般方法。 关键词:电液比例阀;PWM技术;控制精度 中图分类号:TH137.52 文献标识码:B 电液比例阀可以采用性价比高的螺管式比例电磁铁进行控制,构成比例溢流阀、比例流量阀、比例方向阀等。在一般工程技术只需对力、位移、速度等参量进行控制,对动态性能要求不高,所以电液比例阀能满足要求,因此已被广泛采用。 电液比例控制的核心是控制电流。模拟式控制功率输出级到比例阀线圈的电流是连续的,功率器件功耗大,需加装散热装置。而PWM控制功率输出级为开关型结构,功耗小;PWM信号中包含了同频率的脉动量,无需另加颤振信号,抗干扰和抗污染能力强,滞后时间短,重复精度高;由于采用数控,与计算机连接方便,可实现程序控制。 一、电液比例阀的结构及控制器特点 比例阀的结构如图1所示,是一个三通阀。两个比例电磁铁分别控制阀芯的双向运动,两端分别有对中复位弹簧。它也可当二通阀用作阀口,并对称的分为两组,在轴线方向相对错开一定的距离,既保持了较高的分辨率,又获得了较大的控制流量输出。比例电磁铁能根据电流的大小产生相应的电磁力,从而能按比例进行控制。

电液比例阀控制器主要解决快速性、电磁滞环和摩擦滞环以及超调量较大的问题。而其控制作用的优势,直接影响到比例阀的工作性能和可靠性。 采用先进可控的PWM技术,在输出电路上产生可变的开关电压,使功率放大管只处于饱和导通和截止状态,所以功率低、不需加散热片,这样可提高功放输出开关电压U及缩短电流上升的时间,使输出响应加快,并提高抗干扰能力,另一方面,功放电压U加在比例电磁铁线圈上,由于线圈上的电感作用使其电流I变为小幅度充放电波动的叠加交流信号的直流电流,起到颤振作用,能够有效降低摩擦,减少磁滞和死区现象,提高电磁铁灵敏度。颤振作用的效果取决于电流波动的频率和幅值,频率低和幅值大时效果明显,但频率太低、幅值过大时又会引起系统不稳。通常将方波频率选取在电磁铁芯无阻尼自然频率的1.2~2倍范围。 二、电液比例阀线圈的电流模型 比例阀线圈的电压波形为周期一定、脉冲宽度可控的矩形波。由于脉冲周期远

相关文档
最新文档