北邮模电—实验三、共射放大电路测试仿真(模板)

北邮模电—实验三、共射放大电路测试仿真(模板)
北邮模电—实验三、共射放大电路测试仿真(模板)

实验三共射放大电路计算、仿真、测试分析报告

(请在本文件中录入结果并进行各类分析,实验结束后,提交电子文档报告)

实验目的:

掌握共射电路静态工作点的计算、仿真、测试方法;掌握电路主要参数的计算、中频时输入、输出波形的相位关系、失真的类型及产生的原因;掌握获得波特图的测试、仿真方法;掌握负反馈对增益、上下限截频的影响,了解输入输出间的电容对上限截频的影响等。

实验设备及器件:

笔记本电脑(预装所需软件环境)

AD2口袋仪器

电容:100pF、0.01μF、10μF、100μF

电阻:51Ω*2、300Ω、1kΩ、2kΩ、10kΩ*2、24kΩ

面包板、晶体管、2N5551、连接线等

实验内容:

电路如图3-1所示(搭建电路时应注意电容的极性)。

图3-1实验电路

1.静态工作点

(1)用万用表的β测试功能,获取晶体管的β值,并设晶体管的V BEQ=0.64V,r bb’=10Ω(源于Multisim模型中的参数)。准确计算晶体管的静态工作点(I BQ、I EQ、V CEQ,并填入表3-1)(静态工作点的仿真及测量工作在C4为100pF完成);

主要计算公式及结果:V BB=V cc R2

R1+R2=5?10

24+10

≈1.47V R B=R1?R2

R1+k2

=24?10

24+10

≈7.06kΩ

I BQ=V BB?V BQ

R B+(1+β)(R3+R4)= 1.47?0,64

7.06+176?0.351

mA≈12.058μA I cQ=βI BQ=2.110mA I EQ=

(1+β)I BQ=2.122mA V CEQ=V

cc

?βI BQ R5?I EQ(R3+R4)≈2.145V

晶体管为2N5551C,用万用表测试放大倍数β(不同的晶体管放大倍数不同,计算时使用实测数据,并调用和修改Multisim中2N5551模型相关参数,计算静态工作点时,V BEQ=0.64V)。静态工作点计算:

(2)通过Multisim仿真获取静态工作点(依据获取的β值,修改仿真元件中晶体管模型的参数,修改方法见附录。使用修改后的模型参数仿真I BQ、I EQ、V CEQ,并填入表3-1);

(3)搭建电路测试获取工作点(测试发射极对地电源之差获得I EQ,测试集电极与发射极电压差获取V CEQ,通过β计算I BQ,并填入表3-1);

主要测试数据:V EQ=770.2mV v CEQ=2.883V

I EQ=

V EQ

R3+R4

=

770.2

351

mA≈2.194mA

I BQ=I EQ

1+β

≈12.433μA I cQ=βI BQ=2.178mA

表3-1静态工作点的计算、仿真、测试结果(C4为100pF)

分析:可以发现,这三组数据基本吻合,测试值均高于计算值和仿真值,而仿真值比较接近计算值。产生误差得原因可能是实测中在数据的读取时出现读数误差。

2.波形及增益

(1)计算电路的交流电压增益,若输入1kHz 50mV(峰值)正弦信号,计算正负半周的峰值并填入表3-2中(低频电路的仿真及测量工作在C4为100pF完成);

主要计算公式和结果:r be=r b′b+(1+β)V T

I EQ =10+176?26

2.194

kΩ≈2.095kΩA v=

v0 v i =?

175(

R5

R6

)

r be+(1+β)R3

≈?175 ? 0.909

2.095+8.976

≈?14.37Av≈23.14

输入峰值为50mV的正弦交流信号时,输出电压峰值为:

v op+=14.37?50=718.5mV v

op

=14.37?50=718.5mV

(2)Multisim仿真:输入1kHz 50mV(峰值)正弦信号,观察输入、输出波形(波形屏幕拷贝贴于下方,标出输出正负半周的峰值,将输出的峰值填入表3-2中);

(3)实际电路测试:输入1kHz 50mV(峰值)正弦信号,观察输入、输出波形(波形屏幕拷贝贴于下方,标出输出正负半周的峰值,将输出的峰值填入表3-2)。(信号源输出小信号时,由于基础噪声的原因,其信噪比比较小,导致信号波形不好,可让信号源输出一个较大幅值的信号,通过电阻分压得到所需50mV峰值的信号建议使用51Ω和2kΩ分压)

表3-2 波形数据(C4为100pF)

输入输出正半

周峰值输出负半

周峰值

输出正半周峰值

与输入峰值比

输出负半周峰值

与输入峰值比

计算50mV 718.5mV -718.5mV 14.37 -14.37 仿真50mV 694.7mV -714.8mV 13.894 -12.296 测试50mV 675.3mV -711.8mV 13.506 -14.236

(a)仿真与测试的波形有无明显饱和、截止失真;

答:有失真,但是不是很明显,负半周相对失真严重些。

(b)仿真与测试波形正负半周峰值有差异的原因;

答:因为存在非线性失真。

(c)输出与输入的相位关系:

答:反相;

(d)计算、仿真、测试的电压增益误差及原因;

答:主要还是读数的处理上存在误差,也有可能是元器件在实际插电路时存在接触电阻等引起误差(猜测)。

(e)其他……。

3.大信号波形失真

(1)Multisim仿真:输入1kHz 130mV(峰值)正弦信号,观察输入、输出波形(波形屏幕拷贝贴于下方)(低频大信号的仿真及测量工作在C4为100pF完成);

(2)实际电路测试:输入1kHz 130mV(峰值)正弦信号,观察输入、输出波形(波形屏幕拷贝贴于下方);

(3)分析对比仿真与测试的波形,判断是饱和失真还是截止失真。

分析:我的晶体管在130mV输入峰值电压时并未出现明显失真,但是负半周峰值绝对值和正半周的峰值相差增大。后来调大输入峰值,比如50V,输出的波形类似脉冲波,出现严重截止失真。

4.频率特性分析

4.1 C

为100pF时电路的频率特性分析

4

(1)Multisim仿真频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上

限截频、下限截频,并将数值填入表3-3)

(2)利用AD2的网络分析功能实际测试频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-3)

(3)对比分析仿真与测试的频率特性:

增益(dB)下限截频上限截频计算23.1

仿真23.1 31.459 Hz 1.696 MHz

测试22.816 33.761Hz 1.034MHz

对比分析:

4.2 C

为0.01μF时电路的频率特性分析

4

(1)Multisim仿真频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-4)

(2)利用AD2的网络分析功能实际测试频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-4)

(3)对比分析仿真与测试的频率特性:

表3-4 0.01μF电路频率特性

增益(dB)下限截频上限截频计算

仿真22.943 51.718Hz 13.881kHz

测试22.730 32.475Hz 30.936kHz

对比分析:

电容不同时电路的频率特性分析与比较

4.3 C

4

思考扩展:在本实验中,三极管2N5551C的基极与集电极之间存在电容C4,在实验中,C4

在电路中起着什么作用,其电容大小是否会对电路造成影响,造成了什么影响?

增益(dB)下限截频上限截频计算

仿真(100pF)23.1 31.459Hz 1.696MHz

仿真(0.01μF)22.943 51.718Hz 13.881kHz

测试(100pF)22.816 33.761Hz 1.034MHz

测试(0.01μF)22.730 32.475Hz 30.936kHz

5.深度负反馈频率特性分析

将发射极电阻R3和R4对调位置(即:改变交流负反馈深度,但静态工作点不变)。计算中频增益:

为100pF时深度负反馈电路的频率特性分析

5.1 C

4

(1)电路中C4为100pF时,Multisim仿真频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-5)

(2)利用AD2的网络分析功能实际测试频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-5)

(3)对比分析仿真与测试的频率特性(含R3和R4未对调前的数据):

表3-5 100pF电路加深反馈前、后的频率特性对比

增益(dB)下限截频上限截频计算(浅负反馈)23.1

仿真(浅负反馈)23.1 31.459Hz 1.696MHz

测试(浅负反馈)22.816 33.761Hz 1.034MHz

计算(深负反馈)9.23

仿真(深负反馈)9.232 8.018Hz 1.842MHz

测试(深负反馈)9.153 4.056Hz 1.115MHz

分析加深负反馈前后仿真与测试的指标差别,包括前后增益的变化、前后上下限截止频滤的变化等。

5.2 C

为0.01uF时深度负反馈电路的频率特性分析

4

(1)电路中C4为0.01uF时,Multisim仿真频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-6)

(2)利用AD2的网络分析功能实际测试频率特性,给出波特图(波特图屏幕拷贝贴于下方,标定中频增益、上限截频、下限截频,并将数值填入表3-6)

(3)对比分析仿真与测试的频率特性(含R3和R4未对调前的数据):

表3-6 0.

增益(dB)下限截频上限截频计算(浅负反馈)23.1

仿真(浅负反馈)22.943 51.718Hz 13.881kHz

测试(浅负反馈)22.730 32.745Hz 30.936kHz

计算(深负反馈)9.23

仿真(深负反馈)9.128 7.692Hz 18.551kHz

滤的变化等。

6.计算、仿真、测试共射放大电路过程中的体会。

体会:

1、实验中出现问题时,应该结合所学理论知识,静下来分析原因。比如

电路的搭建过程中,电路未接通,需要仔细检查每条通路。

2、学会使用AD2了,体验到熟能生巧的奇妙感觉,AD2在实验过程中用

得次数多了,慢慢就从生疏变得熟练了。

3、感觉将所学的课本知识运用到具体的实验操作过程中很好。就是还不

能很好的将理论和实际进行灵活转化,需要多进行实验以训练相应能

力。

附录:Multisim中晶体管模型参数修改表:

调用2N5551晶体管模型,修改晶体管的相关参数(见下表,除表中各项需要修改外,其他不变)

共射极基本放大电路解读

实验一共射极基本放大电路 一、实验目的 1、掌握放大器静态工作点的调试及其对放大性能的影响。 2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。 二、实验环境 1、Electronics Workbench5.12软件 2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器 三、实验内容 图1.1为一共射极基本放大电路,按图连接好电路 . . 图1.1 共射极基本放大电路 1、静态分析 选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。 . 图1.2 共射极基本放大器的静态工作点 2、动态分析 用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。

图1.3共射极放大电路的输入、输出波形 由上图可得: 放大器的放大倍数:Av=801.54mv/4.97mv=161.3 理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4 (其中R L′为RL与Rc的并联值,β的值约为250) 实验结果与理论值基本相符 3、频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。分析结果如图2.4所示。 图1.3 共射极基本放大电路的频率响应 由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。 1、测量放大器的输入、输出电压: (1)输入电阻的测量 在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。 (2)、输出电阻的测量 用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro 将上述测量及计算填入下表:

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

模电实验报告

模拟电子技术 实验报告 实验题目:放大电路的失真研究 学院:电子信息工程学院 专业: 姓名: 学号: 指导教师: 【2017年】

目录 一、实验目的与知识背景 (3) 1.1实验目的 (3) 1.2知识背景 (3) 二、实验内容及要求 (3) 2.1基本要求 (3) 2.2发挥部分 (4) 三、实验方案比较及论证 (5) 3.1理论分析电路的失真产生及消除 (5) 3.2具体电路设计及仿真 (8) 四、电路制作及测试 (12) 4.1正常放大、截止失真、饱和失真及双向失真 (12) 4.2交越失真 (13) 4.3非对称失真 (13) 五、失真研究思考题 (13) 六、感想与体会 (16) 6.1小组分工 (16) 6.2收获与体会 (16) 6.3对课程的建议 (17) 七、参考文献 (17)

一、实验目的与知识背景 1.1实验目的 1. 掌握失真放大电路的设计和解决电路的失真问题——针对工程问题,收集信息、查阅文献、分析现有技术的特点与局限性。提高系统地构思问题和解决问题的能力。 2. 掌握消除放大电路各种失真技术——依据解决方案,实现系统或模块,在设计实现环节上体现创造性。系统地归纳模拟电子技术中失真现象。 3. 具备通过现象分析电路结构特点——对设计系统进行功能和性能测试,进行必要的方案改进,提高改善电路的能力。 1.2知识背景 1.输出波形失真可发生在基本放大、功率放大和负反馈放大等放大电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。 2.基本放大电路的研究、乙类功率放大器、负反馈消除不对称失真以及集成运放的研究与应用。 3.射极偏置电路、乙类、甲乙类功率放大电路和负反馈电路。 二、实验内容及要求 2.1基本要求 1.输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

北邮模电实验声控报警电路

北京邮电大学 《电子电路测量与设计实验》实验报告 题目:声控报警电路 姓名:李英民 学号:2014210579 班级: 2014211120 学院: 信息与通信工程学院 2016年 4 月

一、课题名称 声控报警电路 二、摘要及关键字 (一)摘要: 当今社会,对报警系统的需求越来越大,电子报警器应用于安全防范,系统故障,交通运输,医疗救护等领域,和社会生产密不可分。 本实验就针对声控报警电路进行设计和电路拼搭,通过实际面包板电路和仿真电路对报警电路的局部电路和整体电路两方面进行电路介绍和功能分析。并分析在实验中遇见的问题,困难及解决方法,最后总结本实验结束后的心得体验。 (二)关键字: 报警器;CD4011;无源蜂鸣器;LM358 三、设计任务要求 1、基本要求:在麦克风近处击掌(模拟异常响动),电路能发出报警声,持续时间大于5 秒。声音传感器用驻极体式咪头,蜂鸣器用无源压电式蜂鸣器 2、提高要求: A、增加报警灯,使其闪烁报警。 B、增加输出功率,提高报警音量,加强威慑力。 四、设计思路及总体结构框图 (一)设计思路: 驻极体式咪头作为声音传感器,将击掌产生的声信号转化为电信号,微弱 的电信号经过反相放大器放大,放大信号进入同相比较器,比较器根据实验可以设置合理的比较电压 VREF,当放大信号高于比较电压 VREF 时,放大器输出高电平促发方波振荡器开始工作,振荡产生的方波经三极管放大即可驱动无源式蜂鸣器发出报警声音。但由于一次拍手产生的电信号只有短暂的信号,故还需要在比较器后加入延时电路,利用时间常数的特性来延长报警时间 (二)总体结构框图: 五、分块电路和总体电路的设计

模电实验单级共射放大电路

单极共射放大电路 一、实验目的 (1)掌握用Multisim 13 仿真软件分析单极放大电路主要性能指标的方法。 (2)熟悉掌握常用电子仪器的使用方法,熟悉基本电子元器件的作用。 (3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。 (4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。 (5)掌握放大器的放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (5)测量放大电路的频率特性。 二、实验原理 1.基本电路 电路在接通直流电源CC V 而未加入输入信号时(通过隔直流电容1C 将输入端接地),电路中产生的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的一个工作点,称为静态工作的Q 。三极管的静态工作点可用下式近似估算: )7.0~6.0(=BEQ V V 硅管; (0.2~0.3)V 锗管 ()e c CQ CC CEQ R R I V V +-= CC P BQ V R R R R V 2 12++= E BEQ BQ EQ CQ R V V I I -=≈ β CQ BQ I I = 2.静态工作点的选择 放大器静态工作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。 在晶体管低频放大电路中,静态工作点的选择及稳定具有举足轻重的作用,直接关系到放大电路能否正常可靠地工作。若工作点偏高(C I 放大),则放大器在加入交流信号以后易产生饱和失真,此时输出信号o u 的负半周将被削底;若工作点偏低,则易产生截止失真,即o u 的正半周被削顶(一般截止失真不如饱和

失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大电路的输入端加入一定的输入电压i u ,并检查输出电压o u 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 还应说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言。若输入信号幅度很小,则即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。若须满足较大信号幅度的要求,则静态工作点最好尽量靠近输出特性曲线上交流负载线的中点,如图Q 点,使静态CE V 大致等于电源电压的一半。这样可使交流信号输入时,工作点Q 沿着交流负载线向上或向下移动较大范围,使得输出电压的动态范围大致在2CEQ V 范围内变化,从而获得较大的输出电压幅度,且波形上下对称。 实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化。当输入电阻逐渐放大时,若要输出波形正、负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。 按照图连好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点 略微增大,两种失真同时出现;输入信号略微减小,两种失真同时消失时,可以认为此时的静态工作点正好处于交流负载线的中点。去掉输入信号,测量BEQ V ,CEQ V ,BQ I ,CQ I ,就得到了该电路的最佳静态工作点。 3.电压放大倍数的测量 电压放大倍数是指输出电压o V 和输入电压i V 之比,其值与负载L R 有关,是衡量放大电路放大能力的指标。 i o V V V A 4.输入电阻和输出电阻的测量 (1)输入电阻。输入电阻是指从放大器输入端看进去的等效电阻,它表明放大器对信号源的影响程度。一般采用间接法进行测量。 当被测电路的输入电阻不太高时(与毫伏级电压表内阻相比),采用如图的电路进行测量。在信号源与被测放大器的输入端之间串入一已知电阻R ,在放大器正常工作的情况下(保证输出电压不失真),用交流毫伏表测出s V

北邮数字电路综合实验报告

数字电路综合实验报告 简易智能密码锁 一、实验课题及任务要求 设计并实现一个数字密码锁,密码锁有四位数字密码和一个确认开锁按键,密码输入正确,密码锁打开,密码输入错误进行警示。 基本要求: 1、密码设置:通过键盘进行4 位数字密码设定输入,在数码管上显示所输入数字。通过密码设置确定键(BTN 键)进行锁定。 2、开锁:在闭锁状态下,可以输入密码开锁,且每输入一位密码,在数码管上显示“-”,提示已输入密码的位数。输入四位核对密码后,按“开锁”键,若密码正确则系统开锁,若密码错误系统仍然处于闭锁状态,并用蜂鸣器或led 闪烁报警。 3、在开锁状态下,可以通过密码复位键(BTN 键)来清除密码,恢复初始密码“0000”。闭锁状态下不能清除密码。 4、用点阵显示开锁和闭锁状态。 提高要求: 1、输入密码数字由右向左依次显示,即:每输入一数字显示在最右边的数码管上,同时将先前输入的所有数字向左移动一位。 2、密码锁的密码位数(4~6 位)可调。

3、自拟其它功能。 二、系统设计 2.1系统总体框图 2.2逻辑流程图

2.3MDS图 2.4分块说明 程序主要分为6个模块:键盘模块,数码管模块,点阵模块,报警模块,防抖模块,控制模块。以下进行详细介绍。 1.键盘模块 本模块主要完成是4×4键盘扫描,然后获取其键值,并对其进行编码,从而进行按键的识别,并将相应的按键值进行显示。 键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出高电平,在读入输出的行值时,通常高电平会被低电平拉低,当当前位置为高电平“1”时,没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。由此可确定按键位置。

三极管共射极放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 专业: 姓名: 学号: 日期: 地点: 学生序号6

北邮通电实验报告

实验3 集成乘法器幅度调制电路 信息与通信工程学院 2016211112班 苏晓玥杨宇宁 2016210349 2016210350

一.实验目的 1.通过实验了解振幅调制的工作原理。 2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。3.掌握用示波器测量调幅系数的方法。 二.实验准备 1.本实验时应具备的知识点 (1)幅度调制 (2)用模拟乘法器实现幅度调制 (3)MC1496四象限模拟相乘器 2.本实验时所用到的仪器 (1)③号实验板《调幅与功率放大器电路》 (2)示波器 (3)万用表 (4)直流稳压电源 (5)高频信号源 三.实验内容 1.模拟相乘调幅器的输入失调电压调节。 2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。 3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。 四.实验波形记录、说明 1.DSB信号波形观察

2.DSB信号反相点观察 3.DSB信号波形与载波波形的相位比较 结论:在调制信号正半周期间,两者同相;负半周期间,两者反相。

4.AM正常波形观测 5.过调制时的AM波形观察(1)调制度为100%

(2)调制度大于100% (3)调制度为30% A=260.0mv B=140.0mv

五.实验结论 我们通过实验了解振幅调制的工作原理是:调幅调制就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。 DSB信号波形与载波波形的相位关系是:在调制信号正半周期间,两者同相;负半周期间,两者反相。 通过实验了解到了调制度的计算方法 六.课程心得体会 通过本次实验,我们了解了振幅调制的工作原理并掌握了实现AM和DSB的方法,学会计算调制度,具体见实验结论。我们对集成乘法器幅度调制电路有了更好的了解,对他有了更深入的认识,提高了对通信电子电路的兴趣。 和模电实验的单独进行,通电实验增强了团队配合的能力,两个人的有效分工提高了实验的效率,减少了一个人的独自苦恼。

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

北邮模电简易晶体管图示仪实验报告

模拟综合实验 实 验 报 告 课题名称:简易晶体管图示仪 学院:信息与通信工程学院 专业: 班级: : 学号: 指导老师:王丹志

2016.04.15 摘要 本报告主要介绍了简易晶体管图示仪的设计原理、部结构、设计框图及仿真电路图;并且给出了各个分块电路和总体电路的设计原理、功能说明、电路图等;同时展示了实验中示波器上的波形和其他重要数据;最后分析了实际操作中遇到的问题并提出了解决办法,还有对本次实验的结论与总结。 关键词:阶梯波、三角波、晶体管、输出特性曲线

一.设计任务要求: 1.基本要求: 1)设计一个阶梯波发生器,f≥500Hz,Uopp≥3V,阶数 N=6; 2)设计一个三角波发生器,三角波Vopp≥2V; 3)设计保护电路,实现对三极管输出特性的测试。 2.提高要求: 1)可以识别NPN,PNP管,并正确测试不同性质三极管; 2)设计阶数可调的阶梯波发生器。 二.设计思路及总体结构框图: 1.设计思路: 本实验要求用示波器稳定显示晶体管的输出特性曲线,因此可用阶梯波和三角波对晶体管进行周期性扫描,并将结果以图示的方式显示在示波器上。 具体思路如下: 1)首先利用NE555时基振荡器产生符合条件的方波; 2)将方波输入到双运算放大器LF353中,其中一个运放作 为积分器产生锯齿波,另一个运放构成反相放大电路得 到合适幅值的三角波; 3)将方波作为时钟信号输入到四位同步二进制计数器 74LS169中,取其低三位输出作为地址输入到CD4051

的地址端,通过分压在CD4051的数据输入端输入等间 隔的电位值,CD4051作为数据选择器,根据输入的地 址对数据进行选择性输出,从而获得阶梯波; 4)将三角波输入到三极管的集电极,阶梯波作为基极电位 输入到三极管的基极作为扫描电压。通过示波器两通道 分别接集电极和射极,以X-Y模式显示晶体管的输入输 出特性曲线。 2.总体结构框图: 三.分块电路和总体电路设计: 1.方波电路: 1)原理:

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

仿真实验四 共射极放大电路分析

仿真实验四 共射极放大电路分析 一、实验目的: (1)认真理解和掌握含三极管的非线性电路的特点 (2)使用Multisim 验证三极管的等效小信号模型 二、实验原理及实例 小信号分析法是分析非线性电阻电路的主要方法之一。在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。 具体步骤如下: (1)画放大电路的小信号等效电路。 (2)估算be r 。为此,还要求得静态电流eq I (3)求电压增益V A 。 (4)计算输入、输出电阻o ,R R i 三、仿真实验设计 如下图所示求该电路的电压增益。 (1)当电路中只有直流电流作用时,求出静态工作点

2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I V ββ-= =Ω ====-= (2)画出该电路的小信号等效电路

计算相关参数: 26200(180)7730.0454 3.63 be r =++=Ω+ ()155.24770.63b C E V b BE i b be o C i R R A i R R R r R R k β=-=-=≈Ω ≈=Ω 对其仿真得: 由仿真结果可得67.56m 154.03435.23u O V i V V A V V = == 验证输入与输出的波形关系 :

可得到输入波形与输出波形为反向,所以-154.03V A = 测量输入、输出电阻的阻值: i 435771.30.435263.552824.40.0225i i O o V V R I mA V V R Io mA = ==Ω===Ω

实验一单级共射放大电路SB

实验一 单级共射放大电路 电子信息工程 2011117105 徐博 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 信号发生器、数字万用表、交流毫伏表、直流稳压源。 三、预习要求 1.复习基本共射放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 1.电路参数变化对静态工作点的影响 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过三极管的直流电流IBQ 、ICQ 及管子C 、E 极之间的直流电压UCEQ 和B 、E 极的直流电压UBE 中的射极电阻R6、R7是用来稳定放大器的静态工作点。其工作原理如下。 ① 利用RB 和RB2的分压作用固定基极电压UB 。 由图可知,当RB 、RB2选择适当,满足I2远大于IB 时,则有 b2b=*2 R U Vcc Rb Rb + 式中,RB 、RB2和VCC 都是固定不随温度变化的,所以基极电位基本上为一定值。 ② 通过IE 的负反馈作用,限制IC 的改变,使工作点保持稳定。具体稳定过程如下: T Ic Ie Ue Ube Ib Ic ↑→↑→↑→↑→↓→↓→↓ 2.静态工作点的理论计算 电路的静态工作点可由以下几个关系式确定 b2b=*2R U Vcc Rb Rb + Re Ub Ube Ic -=

模电实验报告答案1

(此文档为word格式,下载后您可任意编辑修改!) 简要说明:本实验所有内容是经过十一年的使用并完善后的定稿;已经出版的较为成熟的内容,希望同学们主要参考本实验内容进行实验。 实验一常用电子仪器使用 为了正确地观察电子技术实验现象、测量实验数据,实验人员就必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。在电子技术实验中,所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。学习上述仪器的使用方法是本实验的主要内容,其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。 一、实验目的 1.学习双踪示波器、函数信号发生器、直流稳压电源的正

确使用方法。 2.学习数字万用表的使用方法及用数字万用表测量元器 件、辩别二极管和三极管的管脚、类型。 3.熟悉实验装置,学会识别装置上各种类型的元件。 二、实验内容 (一)、示波器的使用 1.示波器的认识 示波器是一种测量、观察、记录电压信号的仪器,广泛应用于电子技术等领域。随着电子技术及数字处理技术的发展,示波器测量技术日趋完善。示波器主要可分为模拟示波器和数字存贮示波器两大种类。 模拟示波器又可分为:通用示波器、取样示波器、光电存储示波器、电视示波器、特种示波器等。数字存贮示波器也可按功能分类。 即便如此,它们各有各的优点。模拟示波器的优点是: ◆可方便的观察未知波形,特别是周期性电压波形; ◆显示速度快;

◆无混叠效应; ◆投资价格较低廉。 数字示波器的优点是: ◆捕捉单次信号的能力强; ◆具有很强的存储被测信号的功能。 示波器的主要技术指标: ①. 带宽:带宽是衡量示波器垂直系统的幅频特性,它指的是输入信号的幅值不变而频率变化,使其显示波形的幅度下降到3dB时对应的频率值。 ②. 输入信号范围: ③. 输入阻抗: ④. 误差: ⑤. 垂直灵敏度:指垂直输入系统的每格所显示的电压值,通常为2mV-5VDIV。 ⑥. 扫描时间:指水平系统的时间测量范围,通常低限为0.5SDIV,高限与带宽有关。 2. SS-7804(8702)型示波器的面板及其各键钮的功能 SS-7804型示波器是双踪示波器,它可以同时观察两个信

共发射极放大电路理论分析与计算

共发射极放大电路理论分析与计算 理论计算与分析是实现电子电路的非常好的设计手段,这方面是职业学校同学们的弱点,适当地学习一些计算与分析的方法,更能使你的动手能力如虎添翼,节约时间与成本. 1.共发射极放大电路 电路组成 + + + + - + - +U CC R b1 R c R b2 R e R L + - C 1 C 2 u i u o U B C e (a ) C e : 射极旁路电容,使发射极交流接地 静态工作点的估算 R U U I U R R R U E BE BQ EQ CC b b b BQ -= +≈2 12 ) (R R I U U I I I I e c CQ CC CEQ CQ BQ EQ CQ +-≈=≈β 动态分析 1)画出H 参数微变等效电路如下:

r be R b +- u i u o r i r o β i b R c R L + - i b i c b c (a ) 2)共发射放大电路基本动态参数的估算 (1)电压放大倍数 ' -='-=R i R i u L b L c o β r i u R R R be b i L C L ==' // r R r i R i A be L be b L b u ' - ='- =ββ (2)输入电阻r i r R I u r be b i i i //== )//(21R R R b B b = (3)输出电阻r 0 R r C o = (4)源电压放大倍数 r r R u u A be s L s o us +' -==β

下面是对图示共发射极放大电路的计算分析,可以和仿真分析进行对比; 设晶体管的 =100,'bb r =100Ω。(1)求电路的Q 点、u A 、R i 和R o ;(2)若电容C e 开路,则将引起电路的哪些动态参数发生变化如何变化 解:(1)静态分析: V 7.5)( A μ 101mA 1 V 2e f c EQ CEQ EQ BQ e f BEQ BQ EQ CC b2b1b1 BQ =++-≈≈+=≈+-==?+≈R R R I V U I I R R U U I V R R R U CC β 动态分析: Ω ==Ω≈++=-≈++-=Ω≈++=k 5k 7.3])1([7.7)1()(k 73.2mV 26) 1(c o f be b2b1i f be L c EQ bb'be R R R r R R R R r R R A I r r u ββββ∥∥∥ (2)R i 增大,R i ≈Ω;u A 减小,e f ' L R R R A u +-≈ ≈-。

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

北邮模电综合实验-简易电子琴的设计与实现.

电子测量与电子电路实验课程设计 题目: 简易电子琴的设计和制作 姓名孙尚威学院电子工程学院 专业电子信息科学与技术 班级学号班内序号指导教师陈凌霄 2015年 4 月 目录 一、设计任务与要求 (3) 1.1 设计任务与要求 (3) 1.2 选题目的与意义 (3) 二、系统设计分析 (3) 2.1系统总体设计 (3) 2.2 系统单元电路设计 (4) 2.2.1 音频信号产生模块 (4) 2.2.2 功率放大电路 (7) 2.2.3 开关键入端(琴键) (8) 三、理论值计算 (9) 3.1 音阶频率对应表 (9) 3.2 键入电路电阻计算 (9) 四、电路设计与仿真 (10) 4.1 电路设计 (10) 4.2 Multisim仿真 (11) 五、实际电路焊接 (11) 六、系统调试 (13)

6.1 系统测试方案 (13) 6.2 运行结果分析 (14) 七、设计体会与实验总结 (15) 一、设计任务与要求 1.1 设计任务与要求 了解由555定时器构成简易电子琴的电路及原理。设计并利用NE555集成运算电路以及外加电阻,电容在第一级产生不同频率的音乐,再利用LM386功率放大电路对音乐信号进行放大,最后通过扬声器产生21个音符。 1.2 选题目的与意义 (1)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程问题的能力。 (2)学习较复杂的电子系统设计的一般方法,了解和掌握模拟,数字电路等知识解决电子信息方面常见实际问题的能力。 (3)学习调试电子电路的方法,提高实际动手能力。了解由555定时器构成简易电子琴的电路及原理。 二、系统设计分析 2.1系统总体设计 由555电路组成的多谐振荡器,它的振荡频率可以通过改变振荡电路中的RC元件的数值进行改变。根据这一原理,通过设定一些不同的RC数值并通过控制电路,按照一定的规律依次将不同值的RC组件接 入振荡电路,就可以使振荡电路按照设定的需求,有节奏的发出已设定的音频信号,再利用LM386功率放大电路对音乐信号进行放大,最后通过扬声器产生音符。 图1:系统组成框图 2.2 系统单元电路设计 2.2.1 音频信号产生模块 利用NE555集成运算电路以及外加电阻,电容在第一级产生不同频率的音乐。555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。只要在外部配上几个适当的阻容元件,就可以构成史密特触发器、单稳态触发器及自激多谐振荡器等脉冲信号产生与变换电路。它在波形的产生与变换、测量与控制、定时电路、家用电器、电子玩具、电子乐器等方面有广泛的应用。

相关文档
最新文档