钨极氩弧焊施工方案

钨极氩弧焊施工方案
钨极氩弧焊施工方案

钨极氩弧焊

随着焊接技术的发展,手工钨极氩弧焊已广泛地应用于飞机制造、原子能、石油等行业中。在小型压

力容器及承压管道的焊接中,因手工钨极氩弧焊电弧热量集中、电弧电压低、燃烧稳定,焊枪使用灵活方便,使用焊丝焊接时可随意地配合电弧控制焊缝根部的熔孔大小和形状,容易保证根部熔合及背面成型良

好的要求。同时,由于氩气的保护,根部焊道无渣、无飞溅,免去了清渣、清飞溅的工序,且使清扫管路

系统的工作强度减轻,但钨极载流能力有限,焊接速度低。因此常采用手工钨极氩弧焊打底,手弧焊填充、盖面的焊接方法。

现介绍一下手工钨极氩弧焊在胜利油田河口采油厂输油管线施工中的应用。输油管道材质为Q235-A 钢,规格为φ159×6 mm,,采用钨极氩弧焊打底,手弧焊盖面的联合焊接方法进行焊接,打底焊丝采用

H08Mn2SiA,盖面焊采用E4303焊条。

1.焊前准备

1.1现场施工分两组、分段进行对焊

每组应准备2台逆变电焊机,配备简易手工钨极氩弧焊设备。防风蓬2个,通管器2个。焊条保温筒

1个,以及角向磨光机、砂轮片、钢丝刷、砂布等打磨除锈工具。论文参考。

1.2用机加工方法制备管线坡口。

采用V型坡口,坡口面角度为30°±2.5°,钝边厚度0.5-1.5 mm。对坡口及坡口内外壁20 mm范围内及所用焊丝利用机械清理方法如角向磨光机,钢丝刷、砂布等严格清理干净,露出金属光泽,不得有油、锈等污物。

1.3氩气纯度应大于99.70%,喷嘴采用孔径为φ8-10 mm的圆柱形陶瓷喷嘴,为了便于操作和观察,

也可采用收敛形喷嘴;选用φ2.5 mm的铈钨机,端头磨削形状、尺寸(如图1),将φ3.2 mm的E4303焊

条进行150 ℃烘干,保温1 h,放入保温筒备用。

图1 钨极磨削形状、尺寸

2.组对及定位焊

将清理干净的管线组装定位,组对间隙为2.5-3 mm,错边量不大于1 mm,分别在钟表12点、4点、

8点处进行定位焊接,为防止产生裂纹及焊接过程中收缩变形量过大,每段定位焊缝的长度应大于20 mm,焊缝厚度2.5-3.5 mm,根部定位焊缝是焊缝的一部分,工艺要求与正式焊接时相同。定位焊后仔细检查

定位焊缝,如发现裂纹等缺陷,应用角向磨光机将定位焊缝清除干净,重新进行定位焊接。定位焊缝检查

合格后,用角向磨光机将焊缝两端打磨成斜坡状,以便于焊接时的接头。

3.打底焊的操作

3.1持枪动作及操作角度

焊接操作时一般左手握焊丝,右手握焊枪,食指与拇指勾住焊枪身部,其余三指触及管壁作支点进行运弧操作。电弧长度应保持在2-4 mm之间,喷嘴与焊件应尽量垂直,一般在不影响焊工视线的前提下,保持在70°- 85°之间,而焊丝与焊件的夹角一般为10°-15°,(如图2)。

3.2 起弧、收弧、接头

起弧前预送氩气3-5 s,将起焊处的空气及灰尘吹除干净,采用短路接触法引弧,钨极轻划焊接处的坡口引燃电弧,起弧动作要快,防止碰断钨极端头,使焊缝产生夹钨。起弧后将电弧拉向待焊部位,将母材加热,等形成熔孔后,立即填加焊丝。收弧时因没有电流衰减装置,应将焊接速度适当放慢,将熔池填满,并将电弧拉向坡口一边,滴一滴铁水再熄弧,避免产生弧坑和裂纹,熄弧后应继续将喷嘴对准焊熔池部位输送氩气5-8 s,待钨极和熔合区冷却后再移开焊枪,防止熔池高温金属被氧化和产生气孔等缺陷。为保证质量应尽量避免在焊接过程中停弧,减少冷接头次数。当改变焊丝握法、调整焊丝角度时,应采用不停弧的热接头方法,完成这一动作后将电弧立即恢复到原位,继续焊接。

图2:管道钨极氩弧焊时焊枪与焊丝的位置角度。(1.喷嘴 2.钨极 3.焊丝 4.溶池 5.焊缝)

3.3送丝

送丝采用连续送丝法,送丝动作要轻,不得搅动氩气保护层,防止空气侵入,注意填充焊丝与焊件表面夹角应尽可能的小,一般10°-15°为宜,且填充焊丝的送入不能直接侵入熔池,以免焊丝碰上钨极棒造成打棒以及在根部焊道背面出现焊丝短节或毛刺影响背面成型。

3.4焊接

焊接操作采用两半圈分别自下向上进行,前半圈的焊接应在钟表6点位置前方5-10 mm处开始,前半

圈焊完后,使用角向磨光机将底接头打磨成斜坡状,便于接头。然后再焊后半圈。为保证根部焊缝焊透及

背面成型良好,关键在于调整合适的焊接速度及注意摆弧与送丝配合,以控制熔池温度和熔孔大小。底部搭桥时,用电弧对两侧根部均匀加热,出现熔孔后向两侧各填充一滴熔滴,焊枪横向摆动,使熔滴与母材

完全熔合,仰焊下爬坡部位的打底焊接由于重力的作用容易使铁水下坠,使根部背面出现内凹、未熔合,

未焊透等缺陷,为防止产生缺陷,应注意运弧与送丝的配合。在上爬坡及平焊部位易出现背面焊瘤、气孔

等缺陷,此部位的操作除了注意轻微摆弧,向熔池两边续丝外,还要特别注意电弧的前进速度不能过慢,

造成金属堆积而使熔化金属过流,焊接时应仔细观察熔池的变化情况,发现熔池温度过高应将电弧稍向前带,使熔池降温,然后再将电弧拉向原处继续焊接。论文参考。焊丝不断送进时,如果熔池不向前移动,

熔池金属也不加厚,说明背面已出现过流甚至产生焊瘤,应停止焊接将过流处打磨干净后再进行焊接。与

定位焊缝接头时,要在距定位焊缝3-5 mm处,焊枪划个圈,把定位焊缝根部熔化,填充2-3滴铁水,焊

缝封闭后继续运弧,但不填充焊丝,运弧速度应稍快,避免接头温度过高使背面焊缝氧化或产生过流等缺陷。

4.盖面层的焊接

将打底焊道清理干净后进行盖面层的焊接。焊接时,采用锯齿形运条法,焊条倾角随焊接部位的变化

而变化,焊条摆动节奏要适当,两边稍作停留,防止产生咬边缺陷。论文参考。仰焊部位焊接时,两边要

多作停留,前进步伐稍大,防止产生焊瘤,咬边等缺陷,立焊部位要注意控制熔池形状呈椭圆形,防止焊

缝超高,平焊部位要注意控制熔池温度,防止根部焊道塌陷。焊缝宽度以坡口两边各熔化1-2 mm,余高

控制在0-3 mm之间。

5.注意事项

1)管线使用前必须用通管器进行预通,对预通不能通过及管口失圆严重的管件必须进行矫正,矫正

合格后才能使用。每道焊口打底焊结束后都应用通管器试通,不能通过的应割开重焊。

2)焊件、焊丝应严格清理,保证焊件坡口及其附近定位焊前不得有任何杂质、污物,定位焊后应立

即进行打底焊接。

3)注意防风,正确使用防风蓬,同时管线施工方向一端管口要用硬纸板或棉纱堵严,打底焊结束时

取出,而另一端管口应用盲板盲死,以防管内产生过堂风,产生气孔和恶化背面成型。防风效果不佳时严

禁施焊。

4)打底焊接过程中如钨极棒打棒断头或与熔池接触尖头被熔掉,应立即停止焊接,更换钨极棒并用

角向磨光机打磨防止产生夹钨缺陷。

5)打底焊结束后仔细检查焊缝有无缺陷,如有缺陷应彻底铲除后修复,不能用重复熔化的方法消除

缺陷,检验合格后应及时进行盖面焊。

6)背面焊缝余高应控制在0-1mm之间,并不得有焊瘤等缺陷,防止通球时卡球或将通球器严重划伤。

此工程焊缝外观检验合格,抽查部分焊口进行X射线探伤合格,试压30 kg,稳压30 min无渗漏,

试压一次成功。由此可见,虽然氩弧焊对焊件、焊丝清理要求严格,受环境因素的制约,但只要能遵守焊

接工艺规程,掌握正确的操作方法,就能提高焊口的合格率,提高生产时率, 使氩弧焊打底在管线施工中得到优良的应用效果。

钨极氩弧焊值得一看的基础知识

一、钨极氩弧焊 钨极氩弧焊时常被称为TIG焊,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,通常是惰性气体,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。 1 适用性 钨极氩弧焊,以人工或自动操作都适宜,且能用于持续焊接、间续焊接(有时称为…跳焊?)和点焊,因为其电极棒是非消耗性的,故可不需加入熔填金属而仅熔合母材金属做焊接,然而对于个别的接头,依其需要也许需使用熔填金属。 钨极氩弧焊是一种全姿势位置焊接方式,且特别适于薄板的焊接—经常可薄至0.005英寸。 (1)焊接的金属 钨极氩弧焊的特性使其能使用于大多数的金属和合金的焊接,可用钨极氩弧焊焊接的金属包括碳钢、合金钢、不锈钢、耐热合金、难熔金属、铝合金、镁合金、铍合金、铜合金、镍合金、钛合金和锆合金等等。 铅和锌很难用钨极氩弧焊方式焊接,这些金属的低熔点使焊接控制极端的困难,锌在1663F汽化,而此温度仍比电弧温度低很多,且由于锌的挥发而使焊道不良,表面镀铅、锡、锌、镉或铝的钢和其它在较高温度熔化的金属,可用电弧焊接,但需特殊的程序。 在镀层的金属中的焊道由于“交互合金”的结果。很可能具有低的机械性质为防止在镀层的金属焊接中产生交互合金作用,必须将要焊接的区域的表面镀层移除,焊接后在修补。 (2)母材金属厚度 钨极氩弧焊能应用于广泛厚度范围的金属焊接,此方式非常适合于焊接3mm厚以下物件,因为其电弧产生强烈的、集中热量,而产生高焊接速度,使用熔填金属能做多道焊接。 虽然6.25mm以上的厚度的母材金属,通常使用其他焊接方式。但是,需高品质的厚焊件有使用钨极氩弧焊做多层焊接。例如在8m直径的火箭发动器,15mm厚的外壳制造中,以钨极氩弧焊使用填充金属做纵向和圆周多道焊接,虽然对此厚的金属而言,此焊接方式较慢,但因为焊道的高品质要求,故而使用TIG焊接。 钨极氩弧焊可成功的焊接多种“箔厚度”的合金,薄板焊接需要精密的装置固定,对于箔厚度的金属。需使用机械或自动焊接,“高温电离子电弧焊接”经常被记为是钨极氩弧焊的一种变化,对于焊接薄板具有更多的优点。 (3)工作物形状 防止使用自动方法的复杂形状处需使用手操作焊接。手操作是使用于需要短的焊道的不规则的形状物件上焊接,或需要在难以达到的(不易接近的)区域的焊接,手操作也适合全姿势焊接。 自动设备能使用曲线的和直线的表面焊接。例如波状钛极两端对组成件的特殊正弦波焊接,对于此正弦波式的焊接,设计一机械式的导向单元跟随金属模板以引导焊枪。例如此焊接的人工操作,其控制极端的困难。 2 TIG的基础 因为在钨极氩弧焊中,其热量是在极棒和工作物之间产生,而将工作物边缘熔化且当焊道熔池凝固时必须清洁,接合在一起。

氩弧焊焊接工艺参数(精)

氩弧焊焊接工艺参数 一、电特性参数 1.焊接电流钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。 2.电弧电压钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。 3.焊接速度焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。 二、其它参数 1.喷嘴直径喷嘴直径(指内径)增大,应增加保护气体流量,此时保护区范围大,保护效果好。但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。因此,通常使用的喷嘴直径一般取8mm~20mm为宜。 2.喷嘴与焊件的距离喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。所以,喷嘴与焊件间的距离应尽可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为7mm~15mm。 3.钨极伸出长度为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。通常焊对接缝时,钨极伸出长度为5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。 4.气体保护方式及流量钨极氩弧焊除采用圆形喷嘴对焊接区进行保护外,还可以根据施焊空间将喷嘴制成扁状(如窄间隙钨极氩弧焊)或其他形状。 焊接根部焊缝时,焊件背部焊缝会受空气污染氧化,因此必须采用背部充气保护。氩气和氦气是所有材料焊接时,背部充气最安全的气体。而氮气是不锈钢和铜合金焊接时,背部充气保护最安全的气体。一般惰性气体背部充气保护的气体流量范围为0.5~42L/min。当喷嘴直径、钨极伸出长度增加时,气体流量也应相应增加。若气流量过小,保护气流软弱无力,保护效果不好,易产生气孔和焊缝被氧化等缺陷;若气流量过大,容易产生紊流,保护效果也不好,还会影响电弧的稳定燃烧。 对管件内充气时,应留适当的气体出口,防止焊接时管内气体压力过大。在根部焊道焊接结束前的25~50毫米时,要保证管内内充气体压力不能过大,以便防止焊接熔池吹出或根部内凹。当采用氩气进行管件焊接背面保护时,最好从下部进入,使空气向上排出,并且使气体出口远离焊缝。

手工钨极氩弧焊接工艺指导规程

手工钨极氩弧焊接工艺操作规程 ,保护电极和溶池不受大气有害气体的危害。 (一)手工钨极氩弧焊工艺参数 20~30A 的 、 ,也会使焊缝氧 化或产生焊透不匀等缺陷。应在保证良好视线的前提下短弧操作。通常电弧电压的选用范围是10~20V 。 4、焊丝直径和氩气流量: D=(2.5-3.5)d D---表示喷嘴直径(mm )d---表示钨针直径(mm ) 空气侵入。气体流量取决于喷嘴形状、尺寸、坡口形式、焊接电流及喷嘴与工件间

距 Q=KD Q—表示氩气流量(L/min)D---表示喷嘴直径(mm) K—表示系数K值=0.8~1.2 5、钨极伸出长度: 5~10 颜色观察法以鉴别气体保护效 ;铝焊缝表面呈银白本色。 2.电源种类和极性的选择: 金属 类别 碳钢 3.坡口形式和尺寸: 常用坡口形式有V形、U形、双面V形和V-U组合形等。

(三)焊前清理及预热: 1、焊前清理:施焊前必须严格清理焊接区及填充焊丝,去除氧化膜、油脂及水分。工件表面未形成氧化膜时,可用丙酮进行脱脂处理,当已生成氧化膜时应进行酸化处理或用机械法打磨掉,焊前再用丙酮去污。 2、预热:黑色金属焊接一般不须预热,δ> 26mm时,可适当预热。预热可加快焊接速度、防止过热、减少合金元素烧损,并利 (四) 1 缝长 接口口融合。 2、引弧:可采用短路接触法引弧,既钨极在引弧板上轻轻接触一下并随即抬起2mm左右即可引燃电弧。使用普通氩弧焊机, 3~5mm 3、填丝施焊: 75~80 150~200 以防扰乱氩气保护。不能象气焊那样在熔池中搅拌, 或者将焊丝端头浸入熔池中不断填入并向前移动。视装配间隙大小,焊丝 与焊枪可同步缓慢地稍做横向摆动,以增加焊缝宽度。防止焊丝与钨极接触、碰撞 ,打底焊应1次连续完成,避免停弧以减少接头。焊接时发现有缺陷,如加渣、气孔等应将缺陷清除,

手工钨极氩弧焊知识

手工钨极氩弧焊知识 手工钨极氩弧焊知识讲座一、手工钨极氩弧焊工艺 1. 手工钨极氩弧工艺特点 (1)工作原理钨极氩弧焊是采用钨棒作为电极,利用氩气作为保护气体进行焊接的一种气体保护焊方法,如下图所示。通过钨极与工件之间产生电弧,利用从焊枪喷嘴中喷出的氩气流在电弧区形成严密封闭的气层,使电极和金属熔池与空气隔离,以防止空气的侵入。同时利用电弧热来熔化基本金属和填充焊丝形成熔池。液态金属熔池凝固后形成焊缝。由于氩气是一种惰性气体,不与金属起化学反应,所以能充分保护金属熔池不被氧化。同时氩气在高温时不溶于液态金属中,所以焊缝不易生成气孔。因此,氩气的保护作用是有效和可靠的,可以获得较高质量的焊缝。焊接时钨极不熔化,所以钨极氩弧焊又称为非熔化极氩弧焊。根据所采用的电源种类,钨极氩弧焊又分为直流、交流和脉冲三种。 (2)工艺特点 1 氩弧焊与其他电弧焊相比具有的优点 a 保护效果好,焊缝质量高氩气不与金属发生反应,也不溶于金属,焊接过程基本上是金属熔化与结晶的简单过程,因此能获得较为纯净及质量高的焊缝。 b 焊接变形和应力小由弧受氩气流的压缩和冷却作用,电弧热量集中,热影响区很窄,焊接变形与应力均小,尤其适于薄板焊接。 c 易观察、易操作由于是明弧焊,所以观察方便,操作容易,尤其适用于全位置焊接。 d 稳定电弧稳定,飞溅少,焊后不用清渣。 e 易控制熔池尺寸由于焊丝和电极是分开的,焊工能够很好的控制熔池尺寸和大小。 f 可焊的材料范围广几乎所有的金属材料都可以进行氩弧焊。特别适宜焊接化学性能活泼的金属和合金,如铝、镁、钛等。 2)缺点 , 氩气电离势高,引弧困难,需要采用高频引弧及稳弧装置。 ; 设备成本较高。 ,

手工钨极氩弧焊接工艺指导规程

手工钨极氩弧焊接工艺操作规程氩弧焊是用氩气作保护气体的气体保护电弧焊 焊接时从焊枪喷嘴连续喷出保护气体氩气 以排除焊接区的空气,保护电极和溶池不受大气有害气体的危害。 (一)手工钨极氩弧焊工艺参数 钨极氩弧焊是以高熔点钨棒做为电极 利用氩气层流保护下的钨极与工件间放电的电弧加热焊丝及母材进行焊接。由于电弧具有良好的稳定性 即使在20~30A的低电流下电弧还可稳定地燃烧。 手工钨极氩弧焊工艺参数主要有焊接电流、电弧电压、钨极直径、氩气流量、焊丝直径、喷嘴直径、钨极伸出长度、焊接速度等。 1、焊接电流电流过大容易产生烧穿或焊缝下陷、咬边等缺陷还会引起钨极烧损或产生夹钨缺陷,电流过小,电弧燃烧不稳定甚至发生偏吹。 2、电弧电压钨极端部越尖 电压越高。过高影响气体保护效果,也会使焊缝氧化或产生焊透不匀等缺陷。应在保证良好视线的前提下短弧操作。通常电弧电压的选用范围是10~20V。 3、钨极直径相应的电流调节参数: 4、焊丝直径和氩气流量:

D=(2.5-3.5)d D---表示喷嘴直径(mm)d---表示钨针直径(mm)氩气流量过大可能破坏层流保护、卷入空气 流量过小 气流挺度减弱 也易使空气侵入。气体流量取决于喷嘴形状、尺寸、坡口形式、焊接电流及喷嘴与工件间距离 也与外界环境有关。 Q=KD Q—表示氩气流量(L/min)D---表示喷嘴直径(mm)K—表示系数K值=0.8~1.2大喷嘴取上限 小喷嘴取下限 5、钨极伸出长度: 系钨极端头伸出喷嘴端面的距离。伸出长度小 喷嘴与工件距 离近则保护效果好。但过近影响视线 妨碍操作。 总之手工钨极氩弧焊的喷嘴直径一般为5~20mm氩气流量3~25 L/min 钨极伸出长度为5~10mm喷嘴与工件距离5~12mm。 (二)手工钨极氩弧焊操作技术 1.焊接工艺参数: 氩气保护试验法:按选定的工艺参数在试验板(与工件材质相同)上引燃电弧后并保持不动 待电弧燃烧5~10秒灭弧 然后检查熔化焊点周围有无明显、光亮的圆圈。圆圈越大越光亮清晰 说明保护效果越好。 颜色观察法:在试验板上焊接 焊后观察焊缝表面的氧化色以鉴别气体保护效果。不锈钢焊缝表面呈银白色和金黄色最好蓝色次之 灰色不良 黑色最差;铝焊缝表面呈银白本色。 2. 电源种类和极性的选择:

钨极氩弧焊

钨极氩弧焊 一、概述: 1、钨极氩弧焊就是以氩气作为保护气体,钨极作为不熔化极,借助钨电极与焊件之间产生的电弧,加热熔化母材(同时添加焊丝也被熔化)实现焊接的方法。氩气用于保护焊缝金属和钨电极熔池,在电弧加热区域不被空气氧化。 2、一般氩弧焊的优点: (1) 能焊接除熔点非常低的铝锡外的绝大多数的金属和合金。 (2) 交流氩弧焊能焊接化学性质比较活泼和易形成氧化膜的铝及铝镁合金。 (3) 焊接时无焊渣、无飞溅。 (4) 能进行全方位焊接,用脉冲氩弧焊可减小热输入,适宜焊0.1mm不锈钢 (5) 电弧温度高、热输入小、速度快、热影响面小、焊接变形小。 (6) 填充金属和添加量不受焊接电流的影响。 3、氩弧焊适用焊接范围 适用于碳钢、合金钢、不锈钢、难熔金属铝及铝镁合金、铜及铜合金、钛及钛合金,以及超薄板0.1mm,同时能进行全方位焊接,特别对复杂焊件难以接近部位等等。 二、钨极氩弧焊焊机的组成 1、本公司氩弧焊机的型号(见图表)、编制方法、文字说明。 2、焊机的部件(焊机、焊枪、气、水、电)、地线及地线钳、钨极。 3、焊机的连接方法(以WSM系列为例) (1) 焊机的一次进线,根据焊机的额定输入容量配制配电箱,空气开关的大小,一次线的截面。 (2) 焊机的输出电压计算方法:U=10+0.04I (3) 焊机极性,一般接法:工件接正为正极性接法;工件接负为负极性接法。钨极氩弧焊一定要直流正极性接法:焊枪接负,工件接正。 (4) 水源接法、氩气接法 三、焊枪的组成(水冷式、气冷式):

手把、连接件、电极夹头、喷嘴、气管、水管、电缆线、导线。 四、氩气的作用、流量大小与焊接关系、调节方法。 1、氩气属于惰性气体,不易和其它金属材料、气体发生反应。而且由于气流有冷却作用,焊缝热影响区小,焊件变形小。是钨极氩弧焊最理想的保护气体。 2、氩气主要是对熔池进行有效的保护,在焊接过程中防止空气对熔池侵蚀而引起氧化,同时对焊缝区域进行有效隔离空气,使焊缝区域得到保护,提高焊接性能。 3、调节方法是根据被焊金属材料及电流大小,焊接方法来决定的:电流越大,保护气越大。。活泼元素材料,保护气要加强加大流量。具体见下表: 氩气太小,保护效果差,被焊金属有严重氧化现象。氩气太大,由于气流量大而产生紊流,使空气被紊流气卷入溶池,产生溶池保护效果差,焊缝金属被氧化现象。所以流量一定要根据板厚、电流大小、焊缝位置、接头型式来定。具体以焊缝保护效果来决定,以被焊金属不出现氧化为标准。 五、钨极 1、钨极是高熔点材料,熔点为3400℃,在高温时有强烈的电子发射能力,并且钨极有很大的电流载流能力。钨极载流能力见下表:

2、手工钨极氩弧焊作业指导书.

山东天元建设集团安装工程有限 公司工业设备安装公司企业标准 SDTY/GAQMSⅢ-003(2) 手工钨极氩弧焊作业指导书 2005—03—01 发布 2005—03—01实施山东天元建设集团安装工程有限公司工业设备安装公司发布

SDTY/GAQMSⅢ-003(2) 前言 本标准主要起草人:刘珍 本标准审核人:林青友王文高 本标准批准人:沈银根 本标准自2005年03月01日发布,自发布之日起在全公司范围内试行。 本标准由公司焊接与无损检测室负责解释。

手工钨极氩弧焊作业指导书 1 范围 本标准适用于锅炉本体受热面、锅炉本体管路、主蒸汽管道、主给水管道、工业管道、公用管道和长输管道的手工钨极氩弧焊焊接工作。本标准也适用于电站锅炉受热工仪表管道的手工钨极氩弧焊焊接工作。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 983—95 《不锈钢焊条》 DL/T 869-2012 《火力发电厂焊接技术规程》 DL/T 5210.7-2010《电力建设施工质量验收及评价规程》—焊接篇 SY0401-98 《输油输气管道线路工程施工及验收规范》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 3 先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工氩弧焊风速应小于2M/S。

钨极氩弧焊

项目六钨极氩弧焊 教学目标:了解钨极氩弧焊过程、特点及应用范围; 能合理选用焊接材料; 能合理制定钨极氩弧焊焊接工艺; 掌握典型焊接接头的钨极氩弧焊操作技术; 了解钨极氩弧焊新技术。 教学活动设计:1在实训室中进行讲练结合的现场教学; 2.利用多媒体课件、仿真等辅助教学; 教学重点:合理制定钨极氩弧焊焊接工艺; 掌握典型焊接接头的钨极氩弧焊操作技术; 教学难点:对工艺制定及操作的掌握。 学习单元一认知钨极氩弧焊 一、TIG焊的原理 TIG焊是在惰性气体的保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可以不加填充焊丝),形成焊缝的焊接方法,如图6-1所示。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,保护电极和焊接熔池以及临近热影响区,以形成优质的焊接接头。

TIG焊分为手工和自动两种。焊接时,用难熔金属钨或钨合金制成的电极基本上不熔化,故容易维持电弧长度的恒定。填充焊丝在电弧前方添加,当焊接薄焊件时,一般不需开坡口和填充焊丝;还可采用脉冲电流以防止烧穿焊件。焊接厚大焊件时,也可以将焊丝预热后,再添加到熔池中去,以提高熔敷速度。 TIG焊一般采用氩气作保护气体,称为钨极氩弧焊。在焊接厚板、高导热率或高熔点金属等情况下,也可采用氦气或氦氩混合气作保护气体。在焊接不锈钢、镍基合金和镍铜合金时可采用氩一氢混合气作保护气体。 二、TIG焊的特点 TIG焊与其他焊接方法相比有如下特点: (1)可焊金属多氩气能有效隔绝焊接区域周围的空气,它本身又不溶于金属,不和金属反应;TIG焊过程中电弧还有自动清除焊件表面氧化膜的作用。因此,可成功地焊接其他焊接方法不易焊接的易氧化、氮化、化学活泼性强的有色金属、不锈钢和各种合金。 (2)适应能力强钨极电弧稳定,即使在很小的焊接电流下也能稳定燃烧;不会产生飞溅,焊缝成形美观;热源和焊丝可分别控制,因而热输入量容易调节,特别适合于薄件、超薄件的焊接;可进行各种位置的焊接,易于实现机械化和自动化焊接。 (3)焊接生产率低钨极承载电流能力较差,过大的电流会引起钨极熔化和蒸发,其颗粒可能进入熔池,造成夹钨。因而TIG焊使用的电流小,焊缝熔深浅,熔敷速度小,生产率低。 (4)生产成本较高由于惰性气体较贵,与其他焊接方法相比生产成本高,故主要

钨极氩弧焊的技术特点及应用样本

钨极氩弧焊的技术特点及应用 一、钨极氩弧焊的工作原理 钨极氩弧焊 是利用惰性气体( 氩气) 保护的一种电弧焊焊接方法。从喷嘴中喷出的氩气在焊接中造成一个厚而密的气体保护层隔绝空气, 在氩气层流的包围中, 电弧在钨极与工件之间燃烧, 利用电弧产生的热量, 熔化被焊处, 并填充焊丝, 把两块分离的金属连接在一起, 从而获得牢固的焊接接头。 二、钨极氩弧焊的特点 钨极氩弧焊与手工焊条电弧焊相比主要有以下特点: l、氩气是惰性气体, 高温下不分解, 与焊缝金属不发生反应, 不溶解于液态金属, 故保护效果最佳, 能有效的保护熔池金属, 是一种高质量的焊接方法。 2、氩气是单原子气体, 高温无二次吸放热分解反应, 导电能力差, 以及氩气流产生的压缩效应和冷却作用, 使电弧热集中, 温度高, 电弧稳定性好, 即使在低电流下电弧还能稳定燃烧。 3、氩弧焊热量集中, 从喷嘴中喷出的氩气有冷却作用, 因此焊缝热影响区窄, 焊件变形小。 4、用氩气保护无熔渣, 提高了工作效率, 而且焊缝成形美观, 质量好。 5、氩弧焊明弧操作, 熔池可观性好, 便于观察和操作, 技术容易掌握, 适合各种位置焊接。 6、除黑色金属外, 可用于焊接不锈钢、铝、铜等有色金属及合金钢。但氩弧焊成本高; 而且氩气电离势高, 引弧困难; 氩弧焊产生紫外线强度高于手工焊条电弧焊5—30倍; 另外, 钨极有一定放射性, 对焊工也有一定的危害, 当前推广使用的铈钨极对焊工的危害较小。 三、钨极氩弧焊的分类 钨极氩弧焊按操作方法可分为手工钨极氩弧焊和机械化焊接两种。对于直线焊缝和规则的曲线焊缝, 可采用机械化焊接。而对于不规则的或较短的焊缝, 则采用手工钨极氩弧焊。当前使用较多的是直流手工钨极氩弧焊, 直流钨极氩弧焊一般

钨极氩弧焊技术浅析

教学论文 手工钨极氩弧焊技术浅析 伍红军 钨极氩弧焊是采用钨棒作为电极,利用氩气作为保护气体进行焊接的一种气体保护焊方法,如图1所示。 图1 钨极氩弧焊示意图 1—喷嘴2—钨极3—电弧4—焊缝5—工件6—熔池 7—焊丝8—氩气 1、钨极氩弧焊原理 通过钨极与工件之间产生电弧,利用从焊枪喷嘴中喷出的氩气流在电弧区形成严密封闭的气层,使电极和金属熔池与空气隔离,以防止空气的侵入。同时利用电弧热来熔化基本金属和填充焊丝形成熔池。液态金属熔池凝固后形成焊缝。由于氩气是一种惰性气体,不与金属起化学反应,所以能充分保护金属熔池不被氧化。同时氩气在高温时不溶于液态金属中,所以焊缝不易生成气孔。因此,氩气的保护作用是有效和可靠的,可以获得较高质量的焊缝。 焊接时钨极不熔化,所以钨极氩弧焊又称为非熔化极氩弧焊。根据所采用的电源种类,钨极氩弧焊又分为直流、交流和脉冲三种。 2、钨极氩弧焊工艺特点 氩弧焊与其他电弧焊相比具有的优点: (1)保护效果好,焊缝质量高氩气不与金属发生反应,也不溶于金属,焊接过程基本上是金属熔化与结晶的简单过程,因此能获得较为纯净及质量高的焊缝。

(2)焊接变形和应力小由弧受氩气流的压缩和冷却作用,电弧热量集中,热影响区很窄,焊接变形与应力均小,尤其适于薄板焊接。 (3)易观察、易操作由于是明弧焊,所以观察方便,操作容易,尤其适用于全位置焊接。 (4)稳定电弧稳定,飞溅少,焊后不用清渣。 (5)易控制熔池尺寸由于焊丝和电极是分开的,焊工能够很好的控制熔池尺寸和大小。 (6)可焊的材料范围广几乎所有的金属材料都可以进行氩弧焊。特别适宜焊接化学性能活泼的金属和合金,如铝、镁、钛等。 钨极氩弧焊的缺点: (1)设备成本较高。 (2)氩气电离势高,引弧困难,需要采用高频引弧及稳弧装置。 (3)氩弧焊产生的紫外线是手弧焊的5-30倍,生成的臭氧对焊工有危害,所以要加强防护。 (4)焊接时需有防风措施。 钨极氩弧焊的应用范围: 钨极氩弧焊是一种高质量的焊接方法,因此在工业行业中均广泛的被采用。特别是一些化学性能活泼的金属,用其他电弧焊焊接非常困难,而用氩弧焊则可容易地得到高质量的焊缝。另外,在碳钢和低合金钢的压力管道焊接中,现在也越来越多地采用氩弧焊打底,以提高焊接接头的质量。 3、手工钨极氩弧焊的基本操作技术 手工GTAW的基本操作技术包括:引弧与熔池控制、运弧与焊炬运动方式、填丝手法、停弧和熄弧、焊缝接头操作方法等。 (1)引弧 我们用的引弧方式为击穿式,普通GTAW电源均有高频或脉冲引弧和稳弧装置。手握焊炬垂直于工件,使钨极与工件保持3-5min距离,接通电源,在高压高频或高压脉冲作用下,击穿间隙放电,使保护气电离形成离子流而引燃电弧。该法保证钨极端部完好,烧损小,引弧质量好,因此应用广泛。 (2)熔池控制 控制熔池的形状和大小说到底就是控制焊接温度:温度对焊接质量的影响是很大的,各种焊接缺陷的产生是温度不适当造成的,热裂纹、咬边、弧坑裂纹、凹陷、元素烧损、凸瘤等都是因为温度过高产生的,冷裂纹、气孔、夹渣、未焊透、未熔合等都是焊接温度不够造成的。 (3)运弧 运弧有一定的要求和规律:焊炬轴线与已焊表面夹角称为焊炬倾角,它直接影响热量输入、保护效果和操作视野,一般焊炬倾角为70°-85°,焊炬倾角90°时保护效果最好,但从焊炬中喷出的保护气流随着焊炬移动速度的增加而向后偏离,可能使熔池得不到充分的保护,所以焊速不能太快。GTAW一般采用左焊法。 (4)焊炬握法 用右手拇指和食指握住焊炬手柄,其余三指触及工件作为指点。 (5)焊丝握法

手工钨极氩弧焊焊接作业指导书

手工钨极氩弧焊焊接作 业指导书

手工钨极氩弧焊焊接作业指导书 一、焊接接头及坡口形式 焊接接头主要有对接接头、角接接头两种型式。 为保证对接接头的焊件能够焊透,常将焊件接头边缘加工成V型坡口。坡口除保证焊透外,还能起到调节母材金属和填充金属比例的作用,由此可以调整焊缝的性能。 二、管道焊前准备 1、焊接工艺评定及焊工考试 焊接工艺评定试验时制定合理工艺的基础,是指导生产的依据,压力管道焊接前必须进行焊接工艺评定。从事压力管道氩弧焊的焊工,必须按《特种设备焊接操作人员考核细则》进行考试,取得焊工合格证后,方能在有效期内担任合格项目范围内的压力管道焊接工作。 2、压力管道的焊接全过程,均在焊接责任工程师的指导下进行,焊接责任工程师和其他焊接技术人员,应承担管道工程的总体计划、管理和技术指导 3、坡口制备及焊前清理:对于对接接头的管道,坡口形式如图1所示;管道组对时,对坡口及其内表面进行清理,将表面上的氧化膜或锈斑、油脂、水分除净,使之呈金属光泽。可用机械法,化学法等办法清理,焊前再用丙酮去油。焊丝和焊件清理后最好立即施焊。清理范围及要求如表1所示。 图1

表1:坡口及其内表面进行清理要求 4、定位焊:定位焊应采用手工钨极氩弧焊工艺,采用与根部焊道相同牌号的焊丝,并具有相应资格的合格焊工施焊。定位焊焊缝应直接焊在坡口内,公称直径不大于100mm的管道对接口,可用定位焊焊接两处。定位焊缝的长度、厚度,应能保证焊缝在正式焊接过程中不致开裂。定位焊缝不得有裂纹、气孔等缺陷,否则应清除缺陷后重焊。 5、管内充氩气保护:奥氏体不锈钢管道手工钨极氩弧焊时,管内应充氩气保护,以防止管内侧焊缝金属氧化,保证管内侧焊缝的质量。 三、焊接参数规范 1、焊接电流 这是钨极氩弧焊的主要规范参数,它可根据焊件厚度选定。随着电流的增大(或减小),熔深和熔宽相应增大(减小),而加强高减小(或增大)。当焊接电流过大时,容易产生烧穿、焊缝下陷和咬边等缺陷,而且还会导致钨极烧损,造成电弧和夹钨缺陷。反之,当电流过小时,会使电弧燃烧不稳和偏吹,还容易产生未焊透和气孔等缺陷。 2、电弧电压 随着电弧电压的增加(或减小),焊缝宽度将会稍有增加(或减小)而熔深有所下降(或稍微增加)。电弧电压太大时,由于气体保护不好,会使焊缝

不锈钢管道药芯焊丝钨极氩弧焊焊接工艺

不锈钢管道药芯焊丝钨极氩弧焊焊接工艺 发表时间:2019-04-29T14:21:37.197Z 来源:《基层建设》2019年第6期作者:郭建明 [导读] 摘要:对于THY-A316L(W)不锈钢管道背面免充氩自保护钨极氩弧焊药芯焊丝进行了很多的实验,特别是对于焊接工艺这一方面,实验中特别关注了在熔敷金属上它的力学特性。 大庆油田工程建设公司培训中心黑龙江大庆市 163000 摘要:对于THY-A316L(W)不锈钢管道背面免充氩自保护钨极氩弧焊药芯焊丝进行了很多的实验,特别是对于焊接工艺这一方面,实验中特别关注了在熔敷金属上它的力学特性。通过大量的实验数据得出,在这种焊接工艺之下,所形成的的焊缝品质极好特别是它的脱渣性极为出色、造成的焊接飞溅极少,并且在焊接之后,其管道的背面并没有出现氧化,所以这种焊接方式适应于各个位置及不同部分的工作。 关键词:背面免充氩自保护;钨极氩弧焊;不锈钢药芯焊丝 1、概述 在对于不锈钢管的焊接工作当中,因为管子的粗细原因导致焊接工作无法从内外进行,因此大部分使用的方法就是以手工的方式进行钨极氩弧焊接不锈钢管的实体部分,用盖面的工艺对焊条的电弧焊进行填充工作。在进行这项工作的过程中,需要对管道内部充加氩气,以此来进行保护。特别是对于三通位置和所处的弯头位置的时候,应该进行的保护措施应该更加的繁琐,否则将导致焊接处的背面产生强烈的氧化。根据这种工艺,研制开发一种THY—A316L(W)不锈钢管道背面免充氩钨极氩弧焊药芯焊丝。这种焊丝的特点极为显著,不进了一事焊接部分的背面得到全面的保护,这种焊丝不仅大大的提高了工作效率,更使成本费用得到很显著的降低。 2、工艺的优点概括 这种焊接工艺的存在是极为重要的,它可以运用的方面也是极为广泛的,它既能满足在不充氩气的情况下【1】,焊接面不会产生氧化作用,还能满足不同部分的的焊接工作,并且对于焊接工作其他方面的要求也十分的达标。 3、焊丝的配成设计 此篇文章进行了许多的实验论证,最终将THY—A316L(W)药芯焊丝的渣系确定了下来,它是属于TiO 2 -氟化物-SiO 2 的渣系,通过对THY-A316L(W)药芯焊丝的性能调整优化来调整配方的成分,这些优化的方面包括烟雾的大小,、飞溅情况、进行全方位焊接的能力【2】、以及是否会发生氧化现象。 首先对于金红石等成分进行相关的改变,让破口在焊接的过程中,使熔渣进行完全的覆盖,而且渣壳的厚度也要达到均匀的程度,还要使焊缝的覆盖达到标准要求。把SiO 的成分进行调整,让脱渣性得到有效的调整,并且使造成的飞溅降到最低。配方中的氟化物很好的限制了气孔的出现,并使整个熔渣流动性得到很好改良,但是氟化物的加入一定要控制好量,如果加入的过多,就会导致飞溅,并生成超量的烟雾。 4、工艺性能测试 4、1 首先进行以水平的方式急慢性5G位置的焊接,然后进行底层的焊接工作。从六点钟方向的位置进行起弧工作,这个过程采用的方法的内拉丝,将焊丝加入到已经形成的熔池中,这里要注意拉丝的过程一定要极为准确。6~3的点进行立向上的焊接方法【3】,左右两侧的两点内进行拉丝工作,并且其频率要和电弧摆动相一致,以此来保证焊接两面的成型达到标准,6~12之间的点,从内拉丝的方式逐渐变为外拉丝的方式,用这种方法来保障里面的透明度达到一致。在进行盖面层与填充层的焊接方式时,摆动的方式应该是两慢一快,形成的形状为锯齿,将焊丝添加到已经清晰形成的熔池当中。这种工艺使焊层的两面并没有发生氧化,而且焊接过程中没有烟尘的出现,以及电弧的稳定性达到标准规格。 4、2 焊接2G位置时应该将其竖直固定,在对于打底层的焊接工作中,在组对位置形成的间隙的上侧部分将焊丝稳稳地送入,所进行的锯齿形摆动保障了熔池的清晰度。为了保障内部突出,应该将焊丝每次的送入量控制在4~6mm。在进行盖面层与填充层的焊接工作中,要注意上下两侧应该进行摆动,而且应该在上侧的位置进行拉丝流程,所进行的锯齿形摆动,有利于保证了熔池的清晰度。但是电弧上下的摆动应该符合从下往上的速度快,这样才能保障熔池无法下落。这种工艺使焊层的两面并没有发生氧化,而且焊接过程中没有烟尘的出现,以及电弧的稳定性达到标准规格【4】。 5、性能调整与测试结果 对于这种焊丝进行的力学调整相对来说比较简易,进行熔覆的金属所具有的化学性质是影响力学性能的主要原因,我们要严格的控制杂质元素的进入,严格的控制它们的含量。我们好要严格的控制C的含量,因为这种工艺所用焊丝是超低碳焊丝,这样才能保障焊丝的耐晶间的腐蚀性能,同时还应保证 w Mo >2%,这样才能使焊丝的耐点蚀性。焊缝的力学性质主要由Mn、Si的联合脱氧反应来决定的,这样能产生比较好的效果,从而大大的降低焊缝中氧的含量。 结语 采用这种焊接方式,能够很好的完成大部分位置的焊接工作,且焊接的工艺性达到标准,管道的背面不会存在氧化的现象,脱渣性能很好并且造成的飞溅现象很弱。而且该药芯焊丝的各方面属性均达到了国家的标准。 参考文献: [1]巨创.不锈钢管道药芯焊丝免充氩打底焊接技术研究[D].兰州理工大学,2013. [2]李长城,肖尔波.不锈钢管道的药芯焊丝手工钨极氩弧焊[J].焊接,1991(09):16-19. [3]杨钢,杨敬雷,杨天文,杨新禄,东岩,刘飞飞,张兆弟.不锈钢管道背面免充氩自保护钨极氩弧焊药芯焊丝的研制[J].金属加工(热加工),2017(08):24-25. [4]罗保,李何成,王毅.不锈钢药芯焊丝打底背面无氩气保护手工钨极氩弧焊工艺[J].焊接技术,2017,46(08):111-113.

第五章钨极氩弧焊

第五章钨极氩弧焊 气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便;没有熔渣或很少熔渣,勿需焊后清除,适应于各种位置的焊接。但在室外作业时需要采取专门的防风措施。 根据保护气体的活性程度,气体保护焊可以分为惰性气体保护焊和活性气体保护焊。钨极氩气保护焊(TIG)是典型的惰性气体保护焊,它是在氩气(Ar)的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法。 5.1适用范围 钨极氩弧焊可进行手工操作或机械自动操作,其适用范围见下表: 被焊材质 碳钢、合金钢、不锈钢、耐热钢、耐热合金钢、难熔金属、铝合金、铜合金及钛合金等。 被焊板厚 适宜于焊接薄板,可以焊接的最小板厚为0.15mm。 焊接位置 全位置 焊件形状 手工焊适宜于焊接形状复杂的焊件,难以接近的部位或间断短焊缝。 自动焊肆适宜于焊接有规则的长焊缝;例如纵缝、环缝或曲线焊缝。 钨极氩弧焊能够焊接的最大板厚小于4mm,在要求高质量接头的场合,也采用填充金属的多层钨极氩弧焊。这样,虽然焊接速度慢、生产效率低,但焊缝质量高。对于某些厚壁重要构件(如压力容器及管道),在底层熔透焊道焊接、全位置焊接和窄间隙焊接时,为了保证底层焊接质量,往往采用氩弧焊打底。 5.2氩弧焊原理及特点 5.2.1原理: 钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法。焊接时氩气从焊枪的喷咀中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。焊接过程根据工件的具体要求可以或者不加填充焊丝。 5.2.2 TIG焊的优缺点: 1)氩气具有极好的保护作用,能有效地隔绝周围空气;它本身既不与金属起化学反应,也不溶于金属,使得焊接过程中熔池的冶金反应简单易控制,因此为获得高质量的焊缝提供了良

钨极氩弧焊基本知识

手工钨极氩弧焊基本知识 1. 手工钨极氩弧工艺特点 (1)工作原理 钨极氩弧焊是采用钨棒作为电极,利用氩气作为保护气体进行焊接的一种气体保护焊方法。通过钨极与工件之间产生电弧,利用从焊枪喷嘴中喷出的氩气流在电弧区形成严密封闭的气层,使电极和金属熔池与空气隔离,以防止空气的侵入。同时利用电弧热来熔化基本金属和填充焊丝形成熔池。液态金属熔池凝固后形成焊缝。 由于氩气是一种惰性气体,不与金属起化学反应,所以能充分保护金属熔池不被氧化。同时氩气在高温时不溶于液态金属中,所以焊缝不易生成气孔。因此,氩气的保护作用是有效和可靠的,可以获得较高质量的焊缝。 焊接时钨极不熔化,所以钨极氩弧焊又称为非熔化极氩弧焊。根据所采用的电源种类,钨极氩弧焊又分为直流、交流和脉冲三种。(2)工艺特点 1) 氩弧焊与其他电弧焊相比具有的优点 a、保护效果好 焊缝质量高氩气不与金属发生反应,也不溶于金属,焊接过程基本上是金属熔化与结晶的简单过程,因此能获得较为纯净及质量高的焊缝。 b、焊接变形和应力小

由弧受氩气流的压缩和冷却作用,电弧热量集中,热影响区很窄,焊接变形与应力均小,尤其适于薄板焊接。 c、易观察、易操作 由于是明弧焊,所以观察方便,操作容易,尤其适用于全位置焊接。 d、稳定 电弧稳定,飞溅少,焊后不用清渣。 e、易控制熔池尺寸 由于焊丝和电极是分开的,焊工能够很好的控制熔池尺寸和大小。 f、可焊的材料范围广 几乎所有的金属材料都可以进行氩弧焊。特别适宜焊接化学性能活泼的金属和合金,如铝、镁、钛等。 2)缺点 a、设备成本较高; b、氩气电离势高,引弧困难,需要采用高频引弧及稳弧装置; c、氩弧焊产生的紫外线是手弧焊的5-30倍,生成的臭氧对焊工有危害,所以要加强防护; d、焊接时需有防风措施。 3)应用范围 钨极氩弧焊是一种高质量的焊接方法,因此在工业行业中均广泛的被采用。特别是一些化学性能活泼的金属,用其他电弧焊焊接非常困难,而用氩弧焊则可容易地得到高质量的焊缝。另外,在碳钢和低

氩弧焊操作方法理论知识

手工氩弧焊工艺 1.焊前清理 氩弧焊不仅要求氩气有良好的保护效果,而且必须对被被焊工件的接头附近及填充丝进行焊前清理,去除金属表面的氧化膜、油脂、油漆等物质,以保证焊接接头的质量。清理的方法因材料而异。 A.机械清理此法较简单,而且效果较好,对不锈钢可用砂布打磨,铝合金可用钢丝刷或电动钢丝轮及用刮刀刮。用刮刀的方法对清理铝合金表面氧化膜是行之有效的,而用锉刀则不能彻底去除氧化膜。机械清理后,可用丙酮去除油污。 B.化学清理对于铝、钛、镁及其合金,在焊前需进行化学清理。此法对工件及填充焊丝都是适用的。由于化学清理对大工件不太方便,因此,此法大多用于清理填充丝及小工件。 2.焊接参数选择 1.根据工件材质规格选择焊丝牌号规格和钨极牌号:选用焊丝太细不但生产 率低,并且由于比表面积大,相应带入焊缝中的杂质也多。 2.根据工件特性和焊丝规格确定钨极直径和端部形状:正确选用钨极直径, 技能提高生产率又能满足工艺上的要求和减少钨极的烧损。钨极直径选用过小则使钨极熔化和蒸发,或引起电弧不稳和焊缝夹钨等现象出现。钨极直径选用过大,在用交流电源焊接时会出现电弧漂移而分散或出现偏弧现象。如果钨极直径选用合适,交流焊接时一般端部会熔成圆球形。钨极直径一般应等于或大于焊丝直径,焊接薄工件或熔点低的铝镁合金时钨极直径略小于焊丝直径,中厚工件钨极直径等于焊丝直径,厚工件钨极直径大于焊丝直径。 3.焊接电流:是GTAW最重要的参数,取决于钨极种类和规格。电流太小, 难以控制焊道成形,容易形成未熔合和未焊透缺陷,同时电流太小造成生产效率降低会浪费氩气。电流太大,容易形成凸瘤和烧穿缺陷,熔池温度过高时,会出现咬边、焊道成形不美观。电流大小要适当,根据经验,电流一般为钨极直径的30-55倍,交流电源选下限,直流正接选上限,当钨极直径小于3mm时,从计算值减去5-10A,当钨极直径大于4mm时,计算值再加10-15A。同时还需要注意的是焊接电流不能大于钨极的许用电

手工钨极氩弧焊知识讲座

手工钨极氩弧焊知识讲座 一、手工钨极氩弧焊工艺 (1)工作原理 钨极氩弧焊是采用钨棒作为电极,利用氩气作为保护气体进行焊接的一种气体保护焊方法,如下图所示。通过钨极与工件之间产生电弧,利用从焊枪喷嘴中喷出的氩气流在电弧区形成严密封闭的气层,使电极和金属熔池与空气隔离,以防止空气的侵入。同时利用电弧热来熔化基本金属和填充焊丝形成熔池。液态金属熔池凝固后形成焊缝。 由于氩气是一种惰性气体,不与金属起化学反应,所以能充分保护金属熔池不被氧化。同时氩气在高温时不溶于液态金属中,所以焊缝不易生成气孔。因此,氩气的保护作用是有效和可靠的,可以获得较高质量的焊缝。 焊接时钨极不熔化,所以钨极氩弧焊又称为非熔化极氩弧焊。根据所采用的电源种类,钨极氩弧焊又分为直流、交流和脉冲三种。 (2)工艺特点 氩弧焊与其他电弧焊相比具有的优点 保护效果好,焊缝质量高氩气不与金属发生反应,也不溶于金属,焊接过程基本上是金属熔化与结晶的简单过程,因此能获得较为纯净及质量高的焊缝。 焊接变形和应力小由弧受氩气流的压缩和冷却作用,电弧热量集中,热影响区很窄,焊接变形与应力均小,尤其适于薄板焊接。 易观察、易操作由于是明弧焊,所以观察方便,操作容易,尤其适用于全位置焊接。 稳定电弧稳定,飞溅少,焊后不用清渣。 易控制熔池尺寸由于焊丝和电极是分开的,焊工能够很好的控制熔池尺寸和大小。 可焊的材料范围广几乎所有的金属材料都可以进行氩弧焊。特别适宜焊接化学性能活泼的金属和合金,如铝、镁、钛等。 2)缺点 a设备成本较高。 b氩气电离势高,引弧困难,需要采用高频引弧及稳弧装置。 c氩弧焊产生的紫外线是手弧焊的5-30倍,生成的臭氧对焊工有危害,所以要加强防护。 d焊接时需有防风措施。 3)应用范围 钨极氩弧焊是一种高质量的焊接方法,因此在工业行业中均广泛的被采用。特别是一些化学性能活泼的金属,用其他电弧焊焊接非常困难,而用氩弧焊则可容易地得到高质量的焊缝。另外,在碳钢和低合金钢的压力管道焊接中,现在也越来越多地采用氩弧焊打底,以提高焊接接头的质量。 2.手工钨极氩弧焊工艺参数 手工钨极氩弧焊的工艺参数有:焊接电源种类和极性、钨极直径、焊接电流、电弧电压、氩气流量、焊接速度、喷嘴直径及喷嘴至焊件的距离和钨极伸出长度等。必须正确的选择并合理的配合,才能得到满意的焊接质量。 1)接头及坡口形式钨极氩弧焊多用于厚度5mm以下的薄板焊接,接头形式有对接、搭接、角接和T形接。对于1mm以下的薄板,亦可采用卷边接头。当板厚大于4mm时,应开V形坡口(管子对接2-3mm就需开V形坡口)。厚壁管的对接接头亦可开U形坡口。 2)焊前清理钨极氩弧焊时,焊前清理对于保证接头的质量具有十分重要的意义。因为在惰性气体的保护下,熔化金属基本上不发生冶金反应,不能通过脱氧的方法清除氧化物和污染。因此,焊件坡口表面、接头两侧以及填充焊丝表面应在焊前采用有机溶剂(汽油、丙酮、三氯乙烯、四氯化碳等)擦洗,去除油污、水分、灰尘及氧化膜等。 对于表面氧化膜与基层结合力较强的材料,如不锈钢和铝合金应采用机械方法清除氧化膜。通常采用不

氩弧焊的焊接方法

氩弧焊的焊接方法 ?教学目的:掌握好手工钨极氩弧焊的焊前准备、运焊把、送丝、引弧、焊接、收弧的技巧 ?具体要求: ?1、了解焊弧焊的原理、特点和分类 ?2、掌握好氩弧焊焊前准备和焊接方法 ?3、掌握好氩焊在焊接过程中产的缺陷和解决的办法 ?4、适用于有接焊接基础人员,其焊件需要进行无损检测、内部和外观要求有较高要求的标准焊件。 ?1、氩弧焊的原理: ?氩弧焊是使用惰性气体氩气作为保护气体的一种气电保护焊的焊接方法。?2、氩弧的特点: ?(1)焊缝质量高,由于氩气是一种惰性气体,不与金属起化学反应,合金元素不会被烧损,而氩气也不熔于金属,焊接过程基本上是金属熔化和结晶的过程,因此,保护较果好,能获得较为纯净及高质量的焊缝?(2)焊接变形应力小,由于电弧受氩气流的压缩和冷却作用,电弧热量集中,且氩弧的温度又很高,故热影响区小,故焊接时应力与变形小,特别造用于薄件焊接和管道打底焊。 ?(3)焊接范围广,几乎可以焊接所有金属材料,特别适宜焊接化学成份活泼的金属和合金。 ?3、氩弧焊的分类: ?氩弧焊根据电极材料的不同可分为钨极氩弧焊(不熔化极)和熔化极氩弧焊。根据其操作方法可分为手工、半自动和自动氩弧焊。根据电源又可以分为直流氩弧焊、交流氩弧焊和脉冲氩弧焊。 ?4、焊前准备: ?(1)阅读焊接工艺卡,了解施焊工件的材质、所需要的设备、工具和相关工艺参数,其中包括选用正确的焊机,(如焊接铝合金则需要用交流焊机),正确的选用钨极和气体流量, ?首先,要从焊接工艺卡上得知焊接电流的大小等工艺参数。然后选用钨极(一般来说直径2.4mm用的比较多,它的电流造应范围是150A—250A,铝例外)。

氩弧焊基础知识

氩弧焊工艺基础知识 一.钨极氩弧焊(氩弧焊工艺基础知识) 以下内容是钨极氩弧焊的基础知识,建议用户认真阅读,对正确使用焊机很重要。 钨极氩弧焊就是把氩气做为保护气体的焊接。借助产生在钨电极与焊体之间的电弧,加热和熔化焊材本身(在添加填充金属时也被熔化),而后形成焊缝金属。钨电极,熔池,电弧以及被电弧加热的连接缝区域,受氩气流的保护而不被大气污染。 氩弧焊时,焊炬、填充金属及焊件的相对位置如下图: 弧长一般取1-1.5倍钨电极直径。 停止焊接时,首先从熔池中抽出填充金属(填充金属根据焊件厚薄添加),热端部仍需停留在氩气流的保护下,以防止其氧化。 1.焊枪(焊炬) 钨极氩弧焊枪(也称焊炬)除了夹持钨电极,输送焊接电流外,还要喷射保护气体。大电流焊枪长时间焊接还需使用水冷焊枪。因此,焊枪的正确使用及保护是相当重要的。 钨电极负载电流能力(A)

2.气路 气路由氩气瓶减压阀、流量计、软管及电磁气阀(在焊机内)等组成。减压阀用以减压和调节保护气体的压力。流量计是标定和调节保护气体流量,氩弧焊机通常采用组合一体式的减压流量计,这样使用方便、可靠。 3.氩气纯度 氩弧焊时材质对氩气纯度的要求 4.规范参数 钨极氩弧焊的规范参数主要由电流、电压、焊速、氩气流量,其值与被焊材料种类、板厚及接头型式有关。其余参数如钨极伸出喷嘴的长度,一般取1-2倍钨极直径,钨电极与焊件距离(弧长)一般取1.5倍以下钨电极直径,喷嘴大小等则在焊接电流值确定后再选定。一般不锈钢氩弧焊规范如下:

焊缝表面颜色与气体保护效果 5.钨极氩弧焊特有的工艺缺陷及防止措施

以上工艺规范仅供参考,如欲更深了解请参阅专业焊接工艺手册。 6.焊前清理 钨极氩弧焊对焊件和填充金属表面的污染相当敏感,因此焊前须清除焊件表面的油脂,涂层,加工用的润滑剂及氧化膜等。 7.安全技术 钨极氩弧焊操作者,必须戴好头面罩、手套、穿好工作服、工作鞋,以避免电弧光中的紫外线和红外线灼伤。 斯泰尔钨极氩弧焊机均装有高频引弧器,小功率的高频高压电虽不会电击操作者,但当绝缘性能不良时,高频电会灼伤操作者手的表皮,且很难治愈,所以焊接手把的绝缘性能一定要经常检查。 钨极氩弧焊接时,应加强焊接区的通风。在不能进行通风的局部空间施焊时,应戴供给新鲜空气面罩或防毒面具。

相关文档
最新文档