浅谈极限的几种求法及注意事项

浅谈极限的几种求法及注意事项
浅谈极限的几种求法及注意事项

万方数据

万方数据

浅谈极限的几种求法及注意事项

作者:唐新华

作者单位:山东政法学院

刊名:

科学咨询

英文刊名:SCIENTIFIC CONSULT

年,卷(期):2009,""(22)

被引用次数:0次

相似文献(10条)

1.期刊论文许利极限--定积分--广义极限-呼伦贝尔学院学报2003,11(1)

本文以极限概念为基础,过渡到定积分概念,并通过对定积分和广义极限概念的剖析.加深了对极限概念的本质的更深层次的认识和理解.

2.期刊论文鲁翠仙.李天荣利用定积分求极限-科技信息(学术版)2008,""(26)

极限思想贯穿整个高等数学的课程之中,而给定函数极限的求法则成为极限思想的基础,但利用定积分求极限也是一种重要方法.定积分的本质含义是和式的极限,利用积分求解特定形式的极限问题,是微积分学的一个重要方法.本文结合具体的例子说明如何利用积分求解几种特定形式的极限以及求解方法的关键.

3.期刊论文利用定积分定义巧求和式极限-内江科技2009,30(12)

和式项数多、抽象,求其极限较困难.举例利用定积分求和式极限,使问题简单化.

4.期刊论文兰光福.LAN Guang-fu利用定积分定义求和式极限的方法初探-重庆科技学院学报(自然科学版)2007,9(1)

和式项数多、抽象,求其极限较困难,举例利用定积分求和式极限,使问题简单化.

5.期刊论文李树多巧用定积分定义求极限-湖南中学物理·教育前沿2009,""(4)

由于某些和式的项数多、结构复杂、抽象,求其极限时比较困难,本文主要通过几个实例介绍了如何运用定积分定义求和式极限的方法,使问题简单化.

6.期刊论文李福兴.Li Fuxing浅谈含定积分极限问题的解法-梧州学院学报2009,19(6)

处理含积分极限问题,需利用被积函数、变限积分函数的相关性质.根据极限变量的类型需用相应的解决方法.

7.期刊论文李冠臻.吕志敏.LI Guan-zhen.LU Zhi-min极限、定积分、二重积分概念教法之探讨-天津职业院校联合学报2006,8(5)

在极限、定积分、二重积分的概念教学过程中,运用哲学思想、引用历史典故和逻辑思维及直观图像等方式方法,变抽象数学概念为学生易于接受的信息,使学生更容易掌握新概念、新理论.

8.期刊论文傅苇.FU Wei极限、导数、定积分概念所蕴涵的数学思想方法剖析-重庆科技学院学报(自然科学版)2005,7(4)

论述了加强数学思想方法教学的重要性;分析了高等数学中的极限、导数、定积分概念在形成过程中所蕴涵的数学思想方法;辩证剖析概念中各个变量在变化过程中的量变与质变、近似与精确等对立统一规律.

9.期刊论文陈佩宁.CHEN Pei-ning浅谈定积分定义的应用-石家庄职业技术学院学报2009,21(4)

提出定积分定义为一个"n项和的极限"形式,并举例说明了将该形式转化为定积分的方法.

10.期刊论文刘涛定积分的定义在求无穷和式极限中的应用-中国西部科技2010,9(3)

本文从定积分定义出发,介绍了利用定积分的定义来求无穷和式的极限的若干方法.

本文链接:https://www.360docs.net/doc/8915772889.html,/Periodical_kxzx200922078.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:d207a637-9366-486c-a677-9dce01224c77

下载时间:2010年8月10日

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

求极限方法总结

求极限方法总结 为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,区别在于数列极限时发散的,是一般极限的一种 2解决极限的方法如下:我能列出来的全部列出来了你还能有补充么? 1 等价无穷小的转化,只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在 e的X次方-1 或者 1+x的a次方-1等价于Ax 等等。全部熟记 x趋近无穷的时候还原成无穷小 2落笔他法则大题目有时候会有暗示要你使用这个方法 首先他的使用有严格的使用前提 必须是 X趋近而不是N趋近所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷 必须是函数的.导数要存在假如告诉你gx, 没告诉你是否可导,直接用无疑于找死 必须是 0比0 无穷大比无穷大 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷应为无穷大于无穷小成倒数的关系所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 30的0次方 1的无穷次方无穷的0次方

对于指数幂数方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0 3泰勒公式含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母看上去复杂处理很简单 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了 6夹逼定理主要对付的是数列极限 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用对付数列极限 q绝对值符号要小于1 8各项的拆分相加来消掉中间的大多数对付的还是数列极限 可以使用待定系数法来拆分化简函数 9求左右求极限的方式对付数列极限例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要对第一个而言是X趋近0时候的sinx与x 比值。地2个就如果x趋近无穷大无穷小都有对有对应的形式 地2个实际上是用于函数是1的无穷的形式当底数是1 的时候要特别注意可能是用地2 个重要极限 11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方快于 x 快于指数函数快于幂数函数快于对数函数画图也能看出速率的快慢当x趋近无穷的时候他们的比值的极限一眼就能看出来了 12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求函数极限的方法和技巧

求函数极限的方法和技巧 在数学分析和微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 一、求函数极限的方法 1、运用极限的定义: 例: 用极限定义证明:12 2 3lim 22=-+-→x x x x 证: 由24 4122322-+-=--+-x x x x x x ()22 22 -=--= x x x 0>?ε,取εδ=,则当δ<-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 2 3lim 22=-+-→x x x x 。 2、利用极限的四则运算性质: 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则:B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 5 3lim 22+++→x x x x 解: 453lim 22+++→x x x x = 2 5 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() ( ) ) 12102(65) 2062(103lim 2232232+++++--+---→x x x x x x x x x x x

求极限的常用方法

毕业论文 题目:求极限的方法 学院:数学与统计学院 专业:数学与应用数学 毕业年限:2013 学生姓名:俞琴 学号:200971010249 指导教师:伏生茂

求极限的方法 俞 琴 (数学与应用数学 200971010249) 摘要:在数学分析中,极限思想始终贯穿于其中,求极限的方法也显得至关重 要,求数列和函数的极限是数学分析的基本运算.求极限的主要方法有用定义、四则运算法则、迫敛性、两个重要极限、定积分、函数连续性等,除了这些常用方法外,还有许多相关技巧.本文结合自己对极限求解方法的总结,通过一些典型的实例,对求极限的各种方法的很多细节作了具体分析,使方法更具针对性、技巧性,因此,克服了遇到问题无从下手的缺点,能够做到游刃有余. 关键词:极限 单调性 定积分 洛必达法则 函数连续性 一、极限的定义及性质 自然界中有很多量仅仅通过有限次的算术运算是计算不出来的,而必须通过分析一个无限变化过程的变化趋势才能求得结果,这正是极限概念和极限方法产生的客观基础. 极限概念是数学分析中最基本的概念,因为数学分析的其它基本概念均可用极限概念来表达,且解析运算(微分法、积分法) 都可用极限概念来描述,如函数)(x f y =在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分、三重积分的定义,无穷级数收敛的定义,这些数学分析中最重要的概念都是用极限来定义的.极限是贯穿数学分析的一条主线,它将数学分析的各个知识点连在了一起.所以,极限概念与极限运算非常重要,学好极限便为学习数学分析打好了基础. (一)定义 定义1 设}{n a 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时有 ε<-a a n ,则称数列}{n a 收敛于a ,定数a 称为数列}{n a 的极限,并记作

函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1 左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1 f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2 7.利用等价无穷小量代换求极限 例 8 求极限30tan sin lim sin x x x x →-. 解 由于()s i n t a n s i n 1c o s c o s x x x x x -=-,而 ()sin ~0x x x →,()2 1cos ~02 x x x -→,()33sin ~0x x x → 故有 2 3300tan sin 112lim lim sin cos 2 x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x → ,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x →→--==, 则得到的式错误的结果. 附 常见等价无穷小量 ()sin ~0x x x →,()tan ~0x x x →,()2 1cos ~02 x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α α+-?→. 8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞ 型不定式极限.用此种方法求极限要求在

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

极限平衡法的几种方法介绍

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主要有摩根斯坦-普瑞斯(Morgenstern-Price)法、毕肖普(Bishop)法、简布(Janbu)法、推力法、萨尔玛(Sarma)法等。 Bishop法概述: 目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。 当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,并与切向力相平衡,见图1(a),其算式为 (1)如图1(b)所示,将所有的力投影到弧面的法线方向上,则得 (2)当整个滑动体处于平衡时(图1(c)),各土条对圆心的力矩之和应为零,此时,条间推力为内力,将相互抵消,因此得 (3) 图1 毕肖普法计算图 将式(2)代入式(3),且,最后得到土坡的安全系数为

(4) 实用上,毕肖普建议不计分条间的摩擦力之差,即,式(4)将简化为 (5) 所有作用力在竖直向和水平向的总和都应为零,即并结合摩擦力之差为零,得出 (6) 代入式(5),简化后得 (7) 当采用有效应力法分析时,重力项将减去孔隙水压力,并采用有效应力强度指标有 (8) 在计算时,一般可先给假定一值,采用迭代法即可求出。根据经验,通常只要迭代3~4次就可满足精度要求,而且迭代通常总是收敛的。 摩根斯坦-普瑞斯(Morgenstern-Price)法 该方法考虑了全部平衡条件与边界条件,消除了计算方法上的误差,并对Janbu推导出来的近似解法提供了更加精确的解答;对方程式的求解采用数值解法(即微增量法),滑面形状任意,通过力平衡法所计算出的稳定系数值可靠程度较高。

求极限的常用方法Word版

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

求极限的几种方法

求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 2 3lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x

()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-< 20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

函数的极限的求解方法

函数的极限的求解方法 摘 要:本文介绍了计算函数极限的几种方法,讨论如何运用已掌握的知识方法计算极限. 关键词:零因子:初等法:两个重要极限 :等价无穷小: 等价无穷小替换 :函数的连续性 :Hospital L '法 。 引 言 极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法 . 本文也介绍了计算极限的几种方法,并对文献结论进行了推广,讨论如何利用我们已有的知识计算极限,并且以实例来阐述方法中蕴涵的数学思想. 函数的极限主要表现在两个方面: 一、自变量x 任意接近于有限值0x ,或讲趋向(于)0x (记0x x →)时,相应的函数值)(x f 的变化情况. 二、当自变量x 的绝对值x 无限增大,或讲趋向无穷大(记∞→x )时,相应的函数值)(x f 的变化情况. 相关知识点 (一)“0x x →”形: 定义1:如果对0>?ε(不论它多么小),总0>?δ,使得对于适合不等式δ<-<00x x 的一切x 所对应的函数值)(x f 满足:ε<-A x f )(,就称常数A 为函数)(x f 当0x x →时的极限,记为 A x f n =∞→)(lim ,或A x f →)( (当0x x →时) 注1:“x 与0x 充分接近”在定义中表现为:0>?δ,有δ<-<00x x , 即),(0δ∧ ∈x U x .显然δ越小,x 与0x 接近就越好,此δ与数列极限中的N 所起的作用是一样的,它也依赖于ε.一般地,ε越小,δ相应地也小一些. 2:定义中00x x -<表示0x x ≠,这说明当0x x →时,)(x f 有无限与)(0x f 在0x 点(是否有)的定义无关(可以无定义,即使有定义,与)(0x f 值也无关).

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

相关文档
最新文档