冶金资源循环与利用

冶金资源循环与利用
冶金资源循环与利用

冶金资源循环与利用

随着世界、特别是我国钢铁工业规模的迅速扩大,金属矿产资源的短缺问题日趋凸现,全球优质的金属矿产资源日渐匮乏,急需开发金属矿产资源高效及循环利用技术。以优化配矿技术和优化工艺参数技术为突破点,进行了基于各炼铁工艺过程的铁矿石自身特性评价及优化配矿技术,烧结、球团、高炉炼铁、熔融还原炼铁等工艺过程及操作参数优化技术的理论研究、实验研究以及应用研究,并取得了重大突破性成果,引起国内外同行的高度关注。首次提出了铁矿石的烧结基础特性、含铁炉料高温反应性、铁矿石的粘结性能等新概念,并利用其开发烧结、高炉和COREX优化配矿新技术,此外,进行了低硅烧结、低FeO烧结、厚料层烧结、高褐铁矿烧结、烧结熔剂结构优化、烧结混合料制粒性优化、烧结矿中MgO作用机理、烧结均匀布料及稳定终点操作指导系统、高产率低燃料比高炉炼铁技术、高炉上下部调剂技术、高炉理论燃烧温度、高炉煤气流优化配置、高炉降低熟料比、COREX3000竖炉条件下铁矿石粉化行为、COREX3000竖炉内炉料粘结机理及抑制技术、COREX3000含铁炉料的预还原行为等工艺参数优化技术的研究。为最大限度地确保资源安全性,提高企业综合效益,高效及循环利用金属矿产资源提供理论基础和技术依据。

2010年我国精铅产量达420万吨,随着我国交通工具、移动通信、核电等行业的飞速发展,预计到2015年我国金属铅需求量将达到800万吨.我国铅冶炼规模大,但生产技术及装备水平不高、资源利用率低、能耗高、环境污染严重,阻碍了我国铅冶金工业可持续发展.目前国内原生铅资源日趋枯竭,国产铅精矿不能自足,废铅酸电池、阳极泥等大量含铅二次资源不能得到高效利用,亟待开发清洁、高效技术,实现铅资源循环利用。

记者从太原钢铁有限公司了解到,太钢兴建的中国首套全功能冶金除尘灰资源化装置已经建成投产一个多月,可同时处理不锈钢除

尘灰和碳钢除尘灰,在国内冶金行业首次实现了将固体废弃物转化为“新矿山”资源。记者了解到,冶金除尘灰资源化工艺技术是由太钢与德国科特纳公司联合开发的。该工艺包括制砖、冶炼、输出三大部分,有两条完整的制砖生产线和A、B、C三座85立方米的富氧竖炉,主要是对红泥、冶金除尘灰、废钢、钢渣等固体废弃物进行冶炼。

据太钢新闻中心对外宣传室主任黄传宝介绍,以前在冶炼过程中产生的冶金除尘灰,除部分消化吸收外,还得委托加工,这过程中很容易产生二次污染。冶金除尘灰资源化装置正式投产后,每年可回收水泥3万吨,处理不锈钢除尘灰23万吨、碳钢除尘灰25万吨、15万吨左右的废钢和钢渣,生产出的铁水直接供给炼铁炼钢工序,排出的水渣进入太钢高炉矿渣超细粉装置,加工成水泥原料,生成的煤气进入公司煤气管网统一调配使用。太钢从此也实现了废水、废气和废弃物的全部循环利用。

“太钢用这套装置处理不锈钢除尘灰冶炼工艺技术可将冶炼

废弃物全部回收利用,每年可生产含铬镍的铁水16万吨,普通铁水16万吨。”黄传宝说,“相当于太钢在冶炼废弃物中寻找到了一座年产200万吨铁矿石的‘新矿山’。”

代表性研究内容与成果简介:

1)“铁矿石的烧结基础特性”新概念

铁矿石的烧结过程是在高温状态下完成的,然而人们对烧结用铁矿石的高温特性却知之甚少。为此,针对这些未知特性进行了深入研究,结合烧结工艺理论,先后提取出同化性、液相流动性、粘结相强度、铁酸钙生成性以及连晶强度等五项铁矿石的高温物理化学特性。由于这些特性属于铁矿粉烧结范畴,故统称为“铁矿石的烧结基础特性”。

通过深入研究,给出了这一新概念的深刻内涵。即:所谓铁矿石的烧结基础特性,就是指铁矿石在烧结过程中呈现出的高温物理化学性质,它反映了铁矿石的烧结行为和作用,亦是评价铁矿石对烧结过程以及烧结矿产质量所做贡献的基本指标。

同化性是指铁矿石在烧结过程中与CaO的反应能力,它表征铁矿石在烧结过程中生成液相的难易程度;液相流动性是指在烧结过程中铁矿石与CaO生成的液相的流动能力,它表征的是粘结相的“有效粘结范围”;粘结相强度是指铁矿石在烧结过程中形成的液相对其周围的核矿石进行固结的能力,它表征的是铁矿石的液相固结能力;铁酸钙生成性是指铁矿石在烧结过程中生成复合铁酸钙的能力,它表征的是粘结相的质量;连晶强度是指铁矿石在高温下产生连晶的能力,它表征铁矿石的固相固结能力。

研究结果表明:不同铁矿石的同化性、液相流动性、粘结相强度、铁酸钙生成性以及连晶强度不同,而以往的研究方法并不能反映这些高温物理化学性能的不同,故铁矿石的烧结基础特性能够更贴切、更真实地反映铁矿石在烧结过程中的行为和作用,是对铁矿石造块理论的有益补充。

图1 若干种烧结用铁矿石的烧结基础特性

2) 基于铁矿石烧结基础特性的优化配矿新技术

传统的烧结配矿研究方法,主要是依靠烧结杯实验,通过变动各种铁矿石的配比,根据烧结矿的产质量指标的变化,寻求相对合理的配矿方案。一方面,这种烧结配矿研究方法存在实践上的盲目性和目标上的非优化性等问题,从而消耗大量的人力、物力和财力;另一方面,无法从机理上掌握优化配矿技术的关键。

造成上述状况的根本原因,归根结底是长期以来对烧结用铁矿石的自身特性缺乏全面的了解,没有对其在烧结过程中呈现的高温物理化学特性具备必要的理论认知,从而无法充分和正确把握铁矿石种类与烧结效果之间的内在联系。

首次获得的“铁矿石烧结基础特性”的研究成果,解决了必须重视烧结用铁矿石的高温物理化学特性,以及正确提取能反映其在烧结过程中的行为和作用之特性等理论认知问题。在此基础上,如何解明铁矿石烧结基础特性对烧结矿产质量指标的影响规律,使得铁矿石种类和烧结效果之间的“黑箱”清晰化,就成为确立烧结优化配矿新理论必须解决的关键问题。

研究结果表明:在烧结工艺参数一定的情况下,所用铁矿石的种类、配比以及搭配模式,是决定烧结矿产质量指标的关键因素,而这些配矿因素所起作用的根源正是铁矿石的烧结基础特性。例如,在烧结温度和速度一定的情况下,所用铁矿石的综合同化性指数就成为影响烧结矿产质量指标的重要因素,过低的同化性将导致烧结液相生成能力的不足而影响固结成矿,过高的同化性又会造成料层透气性下降而影响烧结矿产质量,可见适宜的铁矿石综合同化性是一个技术进步的烧结过程所要求的。

事实上,不同铁矿石由于其自身性质的差别,在烧结过程中必然表现出不同的高温行为和作用。在烧结生产进行配矿时,应重视烧结基础特性不同的铁矿粉搭配使用以互补或改善,如同化性高的铁矿粉搭配同化性低的铁矿粉,使烧结过程中铁矿粉与CaO的反应能力适宜,以获得综合同化性合适的铁矿石。

在理论和实验研究的重大突破性成果的基础上,开发了基于铁矿石烧结基础特性的优化配矿新技术,其要点是:根据铁矿石的同化性、液相流动性、粘结相强度、铁酸钙生成性、连晶强度及其相互之间的配合性等,并结合铁矿石烧结基础特性与烧结矿产质量指标之间的内在因果关系,设计烧结配矿方案,再通过少量的烧结杯验证试验,即可进入工业试验或工业应用。这一应用性研究成果已在生产实际中得以验证,取得了显著的效果,相关企业因此获得了技术进步和丰厚的经济效益。

开发的基于铁矿石烧结基础特性的优化配矿新技术,不仅改变了长期以来传统配矿的落后性,而且为烧结过程的整体优化提供了有力的技术支持。例如,这一研究结果有助于改变传统上以“变动工艺参数”去迎合“烧结原料”的被动、落后状态,通过应用铁矿石的烧结基础特性和优化配矿新技术,用“优化的原料”去适应“先进的烧结工艺”,从而有利于实现烧结过程的整体优化。事实上,已相继衍生开发出如下相关的烧结整体优化方面的新技术:

(1)高铁份、低SiO

型烧结矿的生产新技术;

2

(2)大量使用褐铁矿的低成本烧结新技术;

(3)高还原性烧结矿的生产新技术;

(4)综合考虑铁矿石自身特性的烧结燃料分加技术;

(5)超高料层烧结矿的生产新技术。

图2 若干种烧结用铁矿石的配合性

3) “含铁炉料高温反应性”新概念

块矿、球团矿入炉后在逐渐被加热、还原过程中会与周围共存的烧结矿发生化学反应,特别是进入软化熔融状态后,块矿、球团矿与烧结矿之间的交互作用将会非常明显,其重要的结果就是改变块矿、球团矿与烧结矿各自原有的软熔特征。在此,我们把这一现象称为块矿、球团矿与烧结矿的交互反应。

由于烧结矿的性质相对固定,主要考察的是各种块矿、球团矿与烧结矿的交互反应情况,它又主要受块矿、球团矿自身性质的影响而存在差异,而这一差异可以归结为块矿、球团矿与烧结矿反应能力的不同,因此我们把这种块矿、球团矿与烧结矿在高温下能够发生交互反应的能力称为块矿、球团矿的高温反应性。

通过对各种块矿、球团矿与烧结矿混合后软熔特征变化的研究,评价和把握各种块矿、球团矿与高碱度烧结矿的熔态反应程度。以此分析不同种类块矿、球团矿,在高炉条件下对综合炉料软熔性能的影响情况,为选择合适的块矿、球团矿种类提供新的理论和技术依据。

把在1200℃条件下,天然块矿、球团矿与给定烧结矿各按50%比例混合后,其体积收缩率的增量率,即因化学反应而产生的体积收缩率与物理混合所对应的体积收缩率的比值,定义为该种天然块矿、球团矿的高温反应性指数。

HRI =(MSR-PSR)/ PSR

式中:HRI——块矿、球团矿高温反应性指数

MSR——混合矿实际体积收缩率

PSR——物理混合所对应的体积收缩率

一般而言,块矿、球团矿与烧结矿的高温反应性越强,则克服自身软熔性能差的能力就越大,同时改变烧结矿软熔特性的趋势也会越大。

研究结果表明:块矿、球团矿的高温反应性对其综合炉料软熔性能的改善有着重要的影响和作用,不同块矿、球团矿的高温反应性不同,对其综合炉料软熔性能的改善幅度有所不同,这一特性能够很好地反映含铁炉料在高炉内的软熔特征,为高炉炉料结构的优化提供了理论基础。

图3 块矿、球团矿与烧结矿组成的混合矿的高温体积收缩率曲线

图4 不同块矿、球团矿的高温反应性指数比较

4) 基于含铁炉料反应性的高炉优化配矿新技术

各种块矿、球团矿与烧结矿组成的混合矿的高温体积收缩率曲线的曲率大小有别,也就是与物理混合所对应的体积收缩率的偏离程度不同。这一结果揭示了在高温下块矿、球团矿与高碱度烧结矿之间发生交互反应的能力是不同的,这种差别可以概括为块矿高温反应性的差异。

图5 不同高温反应性下综合炉料的软熔滴落性能

研究结果表明:块矿、球团矿的高温反应性与综合炉料的软化开始温度呈正相关趋势,即:反应性越强的块矿、球团矿,使用它们组成的综合炉料的软化开始温度越高,反之亦然;块矿、球团矿的高温反应性与综合炉料的软化温度区间、滴落温度区间、熔滴性能总特征值有负相关趋势,即:反应性越强的块矿、球团矿,使用它们组成的综合炉料的软化温度区间、滴落温度区间越窄,熔滴性能总特征值越小,反之亦然。因此,块矿、球团矿的高温反应性是影响综合炉料软熔特性的重要因素,块矿、球团矿高温反应性的高低直接关系着综合炉料的软熔特性的

优劣。因此在选择和使用块矿、球团矿时要充分考虑其高温反应性对综合炉料的影响。

块矿、球团矿与烧结矿在高炉高温区发生的交互反应能够明显改善其自身软熔性能差的缺点,利用这一反应性可以优化铁矿石的搭配模式和调整铁矿石间的使用比例,从而达到高炉优化配矿和合理使用铁矿石的目的。利用含铁炉料的高温反应性进行了高炉增加块矿使用比例的研究,在适宜的块矿搭配模式和块矿间使用比例下,天然块矿使用比例提高到23%甚至27%时,综合炉料仍有较好的软化熔滴性能,能够满足高炉冶炼的要求。

5) 新型的高炉炼铁全流程优化配矿专家系统

目前国内外已有的“优化配矿”计算模型软件,仅仅依据的是铁矿石的化学成分等理化性能,在此基础上进行配矿成本优化。并不清楚铁矿石的高温行为和作用,所以这些所谓的“优化配矿”模型,充其量是应用了计算机手段的配矿计算方法,而不能根据含铁炉料性能的要求进行配矿设计,更无法预测经该软件计算获得的配矿方案能否满足实际生产,大大影响了优化配矿技术的发展。

在理论研究方面,提出了铁矿石烧结基础特性、含铁炉料高温反应性等新概念,明确了其内涵,创立了基于铁矿石自身特性的优化配矿研究方法。运用这些突破性研究成果,并结合炼铁理论、物理化学原理、模糊数学方法、人工智能技术等手段,并将烧结、炼铁两种工艺结合在一起,初步建立了新型的高炉炼铁全流程优化配矿专家系统。

图6 新型的炼铁全流程优化配矿专家系统界面

综上所述,在铁矿石自身特性评价及优化配矿技术方面取得了上述几项独创性重要成果。这些研究成果是对现有理论的有益补充,在为高效利用铁矿石资源、实现高炉炼铁全流程优化配矿等方面提供理论基础和依据。

特色仪器设备简介:

为了适应理论研究上的突破,传统的实验研究装置已不符合要求,需要研制和开发新型的铁矿石烧结基础特性和含铁炉料高温反应性研究装置。通过精心研

制和不断完善,建成了在国际上处于领先水平的铁矿石烧结基础特性、含铁炉料高温反应性的研究装置。该研究装置采用红外线辐射和金面多点反射聚焦的加热方式,最高温度可达1400℃;升温速度快,最高可达160℃/sec;无耐火材料,降温速度快,实验效率高;体积小、重量轻,环保条件好。

冶金行业废渣的处理与利用

冶金行业废渣的处理与利用 重庆科技学院班级:冶金技术11-01 摘要:冶金污染是指冶金工业生产过程中产生的各种固体废弃物。主要指炼铁炉中产生的高炉渣;钢渣;有色金属冶炼产生的各种有色金属渣,如铜渣、铅渣、锌渣、镍渣等;从铝土矿提炼氧化铝排出的赤泥以及轧钢过程产生的少量氧化铁渣。每炼1t生铁排出0.3-0.9t钢渣,每炼1t钢排出0.1-0.3t钢渣,每炼1t 氧化铝排出0.6-2t赤泥。 关键字:高炉渣钢渣赤泥 1.1 钢铁生产的环境问题 钢铁工业是中国国民经济的基础产业,对国民经济的发展有着举足轻重的作用。同时,钢铁工业也是中国的重要污染源。钢铁冶炼过程中,由于各工程所采用的原材料及制造程序等原因,很有可能在较大范围内产生多种污染物质。钢铁厂产生的各种污染物有三类:大气污染、污水、固体废弃物。本文主要探究固体废弃物的污染及处理利用。 1.2 钢铁工艺进步和环境保护 钢铁生产工艺过程复杂,在每一工序都会产生粉尘、废气等过程废物排放。如钢铁冶金过程必然要产生炉渣,燃料燃烧、铁矿石被碳还原、铁水脱碳时要产生气体产物。半个世纪以来公铁企业的生产、技术和环境问题对策经历了公害治理;节能减排;清洁生产、绿色制造;工业生态链、循环经济。长期以来,人们一直认为钢铁厂是资源消耗量大、能源消耗量大、排放量大、废弃物多及污染大的企业。在推进工业生态化和构造循环型经济社会的进程中,应该从新的更广阔的视野去审视钢铁工业的经济和社会角色。钢铁企业未来的社会、经济角色应当是实现三种主要功能:钢铁产品制造功能、能源转换功能和社会大宗废弃物处理——消纳功能。 2 固体废物的处理及利用 冶金行业的生产过程中固体废弃物产生是无法避免的,国际上早在本世纪40年代就已感到解决冶金污染“渣害”的迫切性。 2.1 高炉渣处理及利用 高炉渣的产量随冶炼技术及矿石的品位不同而变化。高炉渣属于硅酸盐材料。它化学性质稳定,并具有抗磨、吸水等特点,可供广泛应有,国内对高炉渣的应用都很重视,美、英、法、日本等国高炉渣的利用率已达100%,甚至出现

2019-2020年新人教版高中化学必修2《化学与资源综合利用、环境保护》教案

2019-2020年新人教版高中化学必修2《化学与资源综合利用、环境保护》教案 一、基本说明 1.教学内容所属模块:《化学必修2》 2.年级:高一 3.所用教材出版单位:人民教育出版社 4.所属的章节:第四章第二节第1课时 5.教学时间:40分钟 二、教学设计 1.教学目标: (一)知识与技能 (1)认识煤、石油、天然气是人类能源的主要来源。能书写简单代表物燃烧的化学方程式。(2)了解煤的成分;知道通过煤的干馏可得到多种化工产品及其用途;知道煤的气化和液化可减少燃烧所造成的环境污染。 (3)了解石油的成分;知道通过石油的分馏及裂化可得到多种化工产品及其用途。 (4)通过书写乙烯聚合反应的化学方程式,了解聚合反应的原理。能举例说明高分子材料在生活等领域中的应用。 (二)过程与方法 通过本节课和本节课前的预习准备,学会讨论、交流和合作学习。 (三)情感、态度与价值观 了解煤、天然气、石油在国民经济和人民生活中的重要作用,了解使用煤、天然气、石油所带来的环境问题,体会化学资源综合利用和环境保护的重要意义,提升综合利用化学资源和环境保护的意识。 2.内容分析: 本课时教学重点:煤、石油、天然气的综合利用,特别是石油的利用。 教学难点:石油裂化的原理、加聚反应的原理。 3.学情分析: 4.设计思路: (1)、本节教学属于了解性知识,若按常规教学,以讲为主,学生会感到枯燥、乏味,难以接受。结合本节内容的特点,采取阅读、讨论、总结、归纳为主,充分发挥学生的主体作用,提高学生的阅读能力、思维能力、分析能力、归纳能力、总结能力。 (2)、课堂上尽量将多媒体进行整合,通过实物、图表、多媒体课件等增加信息量,增强学生的参与度,激发学生的学习兴趣,有效地获取信息。 (3)、煤、天然气和石油的成分、煤和石油的综合利用、有机高分子化合物、石蜡油分解生成乙烯、蒸馏原理等知识学生已经在前面的学习中了解过,为此,教学中采取复习、回忆、提问等方法促使学生原有的知识在记忆中活跃起来,沟通知识、情景、问题之间的联系,促进知识的转化和重组。

金属资源的利用和保护教案

课题3 金属资源的利用和保护 教学目标: 1、知识目标 1)知道一些常见金属如铁、铝、铜等矿物,了解从铁矿石中将铁还原出来的方法。 2)会根据化学方程式对含有某些杂质的反应物或生成物进行有关计算。 3)了解金属锈蚀的条件以及防止金属锈蚀的简单方法。 4)知道废旧金属对环境的污染,认识回收利用废旧金属等金属资源保护的重要性。 2、过程与方法 1)通过观察、实验、阅读资料、联系实际等方法获取信息 2)能主动与他人进行交流与讨论,逐步形成良好的学习习惯和学习方法。 3、情感与价值观 1)增强对生活和自然界中化学现象的好奇心和探究欲。 2)逐步树立珍惜资源、爱护环境、合理使用化学物质的观念。 教学重点: 铁的冶炼,有关化学方程式计算中的杂质问题计算,铁锈蚀的条件及其防护,合理利用金属资源的意识。 教学难点: 1、对铁锈蚀的条件及其防护措施的初步探究 2、有关化学方程式计算中的杂质问题计算。 教学方法: 实验探究讲练结合多媒体 课时:二课时 教学过程: 第一课时 情景导入: 展示各种矿物的图片,从而导入课题 讲授新课

一、金属资源概况(板书) 不同种类的金属在地壳中含量 二、铁的冶炼(板书) 1、铁的冶炼史 2、铁的冶炼 [探究与活动] 铁的冶炼 讨论:如何将铁矿石炼成铁?以赤铁矿为原料可能使用的方案: 方案一:加热使Fe 2O 3发生分解反应 方案二:找寻一种物质使其主动夺去Fe 2O 3中的“O ” 方案评价: 方案一:要使Fe 2O 3分解,需较高的温度;又因为铁在高温下易与 空气中的氧气反应,要使Fe 2O 3分解还须在非空气氛围中 进行,成本太高。 方案二:比较切实可行, 讨论:选用什么物质才能使Fe 2O 3失去“O ”呢? 讲解:H 2、C 、CO 等都符合条件,考虑经济效益等因素,一般选用C 或CO 反应原理Fe 2O 3 +3CO==3CO 2+2 Fe 多媒体演示:一氧化碳还原氧化铁实验 多媒体演示:高炉炼铁过程。 三、有关杂质问题的计算 高温

矿山二次资源综合利用政策法规问题探讨范文

矿山二次资源综合利用政策法规问题探讨 张德明乔繁盛王荃 (中国矿业联合会矿山环境保护与治理工作委员会,北京,) 矿产资源是社会经济建设的物质基础,但矿产资源开发也会对环境带来负 面影响。矿产资源开发和生产过程中发生的可被再次利用的资源统称为矿山二次资源,它包括二次矿产资源(如各类尾矿、废石、废渣)、二次水和气资源(如矿坑水、工艺废水、废气)、二次土地资源(如压占、扰动和破坏的土地)、二次生态环境资源等。 矿山二次资源中最为重要的是矿山尾矿、废石等二次矿产资源。它们不仅 造成了资源浪费,并破坏、压占土地,污染生态环境,甚至引发各种地质灾害。因此,从根本上治理矿山环境的重要环节,是开展二次矿产资源的综合利用。本文以二次矿产资源为重点,探讨我国矿产资源及矿山二次资源综合利用的有关政策法规问题。 一、我国矿产资源与二次矿产资源利用现状 我国是资源大国,又是一个人均资源严重缺乏的国家。我国矿产资源丰富,且多为共伴生综合矿产。但我国矿产资源总回收率只有30%,共伴生资源综合 利用率不到20%。全国开展综合利用的国有矿山不足其总数的10%,大量有用 资源进入尾矿、废石中,使其成为可进一步综合利用的二次矿产资源。 截止2000 年底,全国共有各类矿山企业153 063 个。据不完全统计, 1949~2000 年底,全国各类矿山产出各类矿废石162.3 亿t,其中煤矸石35.6 亿t,铁矿废石94 亿t,有色金属矿废石25 亿t,金矿废石4.6 亿t,化工矿废石3 亿t。全国矿山累计堆存尾矿50 亿t,并以每年排放3 亿多t 的速度增长。其中铁矿尾矿26 亿t,有色金属矿尾矿21 亿t,金矿尾矿2.7 亿t,化工矿尾矿0.3 亿t。此外,全国堆存粉煤灰12 亿t。

资源循环利用项目可行性分析报告

资源循环利用项目可行性分析报告 泓域咨询 规划设计/投资分析/产业运营

报告说明— 深入推进资源循环利用。树立节约集约循环利用的资源观,大力推动 共伴生矿和尾矿综合利用、“城市矿产”开发、农林废弃物回收利用和新 品种废弃物回收利用,发展再制造产业,完善资源循环利用基础设施,提 高政策保障水平,推动资源循环利用产业发展壮大。到2020年,力争当年 替代原生资源13亿吨,资源循环利用产业产值规模达到3万亿元。 自2016年底国家发布“十三五”战略性新兴产业发展规划以来,国家 和地方层面相继制定出台了一系列重要文件。在国家层面,相关部门制定 了《战略性新兴产业重点产业和服务指导目录》(2016版)、《新一代人 工智能发展规划》、《大数据产业发展规划(2016-2020)》、《“十三五”生物产业发展规划(2016-2020)》、《促进汽车动力电池产业发展行动方案》、《“十三五”生物技术创新专项规划》等文件。在地方层面,安徽 省于2017年7月在国内率先出台了《安徽省促进战略性新兴产业集聚发展 条例》,广东、山东、安徽、江苏、北京、四川等多省市发布了“十三五”战略性新兴产业发展规划,此外多地还在细分领域相继出台了一系列文件,如在节能环保领域,目前已有北京、天津、山西、内蒙、辽宁等23省(区、市)印发了“土十条”省级工作方案,河北还制定了《河北省节约能源条例》。上述文件的贯彻落实,将为战略性新兴产业发展营造日益完善的法 制政策环境。

战略性新兴产业代表新一轮科技革命和产业变革的方向,是培育发展新动能、获取未来竞争新优势的关键领域。“十三五”时期,要把战略性新兴产业摆在经济社会发展更加突出的位置,大力构建现代产业新体系,推动经济社会持续健康发展。 2017 年,在《“十三五”国家战略性新兴产业发展规划》加快落实的大背景下,我国战略性新兴产业继续保持了较快增长态势,新业态、新模式的不断涌现,产业结构持续优化,创新能力稳定提升,以及产品和商业模式的“走出去”路线取得了实质进展。展望 2018 年,全球各主要国家仍将新兴产业作为培育经济发展新动能、打造竞争新优势的重要选择,国内战略性新兴产业受供给侧结构性改革和有利发展环境影响,将继续保持稳定增长,目标不仅限于之前的“做大”,也逐渐向“做强”转化,持续引领国内经济增长。 该再生材料项目计划总投资10816.79万元,其中:固定资产投资9221.46万元,占项目总投资的85.25%;流动资金1595.33万元,占项目总投资的14.75%。 达产年营业收入15874.00万元,总成本费用12111.75万元,税金及附加188.20万元,利润总额3762.25万元,利税总额4469.38万元,税后净利润2821.69万元,达产年纳税总额1647.69万元;达产年投资利润率34.78%,投资利税率41.32%,投资回报率26.09%,全部投资回收期5.33年,提供就业职位253个。

金属资源的利用和保护

课题3 金属资源的利用和保护 2.会根据化学方程式对含有的某些杂质的反应物或生成物进行有关计算。 3.了解金属锈蚀的条件以及防止金属锈蚀的简单方法。 2.通过对某些含有杂质的物质的计算,使学生把化学原理、计算和生产实际紧密地结合在一起,培养学生灵活运用知识的能力。 3.通过观察、实验、阅读资料、联系实际等方法获取信息。 4.运用比较、分析、联想、分类等方法对所获取的信息进行加工。 2.增强对生活和自然界中化学现象的好奇心和探究欲。 3.关注与化学有关的社会问题,初步形成主动参与社会决策的意识。 4.树立为社会的进步而学习化学的志向。 5.树立珍惜资源、爱护环境、合理使用资源的观念。 [教学重难点] 重点:铁的冶炼,以及有关铁的锈蚀以及防护的“活动与探究” 难点:化学方程式中有关杂质问题的计算,以及对铁的锈蚀防护的“活动探究“的结论的辨析归纳,从而得出铁生锈的条件,以及防锈的方法。 [课时安排] 2课时

[板书设计] 课题3 金属资源的利用和保护一.铁的冶炼 1.原料:铁矿石、焦炭、石灰石 2.设备:高炉3.原理:3CO+Fe2O3高温 2Fe+3CO2 现象:红色变黑色,石灰水变浑浊。二.涉及到杂质问题的计算

例题: 解:1000t 赤铁矿石中含氧化铁的质量为: 1000t×80%=800t 设:800t 氧化铁理论上可以炼出铁的质量为x 3CO+Fe 2O 3 高温 2Fe+3CO 2 160 2×56 800t x 562160?=x t 800 x= 160 800562t ? ?=560t 折合为含铁96%的生铁的质量为: 560t÷96%=583t 答:1000t 含氧化铁80%的赤铁矿,理论上可炼出含铁96%的生铁583t 。 三.金属资源的保护 (一)金属的腐蚀和防护 1.铁生锈的条件:有水和氧气 2.防锈的方法:保持干燥;隔绝氧气 (二)金属资源保护 保护金属资源的有效途径: 1. 防止金属的腐蚀 2. 金属的回收利用 3. 有计划合理的开采矿物 4. 寻找代替品:如塑料等

钢铁冶金废物综合利用

钢铁冶金废物综合利用 摘要:在钢铁生产过程中,要产生大量的废弃物。而且随着我国钢铁产量的不断步提高,其排放量也在不断地增加。因此,如何有效地综合利用这些冶金渣以及冶金废气,减少废弃物堆放占用地和防止废气环境污染,对于进一步促进我国钢铁工业的持续高效发展具有重要意义,本文就冶金渣和冶金废气的资源化利用情况,进行介绍。 关键词:冶金渣;冶金废气;冶金炉尘 Abstract: in steel production process, to generate a lot of waste. And with China's steel production, its emissions to improve continuously step in constantly increased. Therefore, how to effectively use the comprehensive metallurgical slag, reduce the waste gas, metallurgy, and prevent waste pile to further promote the environmental pollution, the steel industry sustained development is of great significance,Based on metallurgical slag and metallurgy, the utilization of waste。 Key words: metallurgical slag;Metallurgy exhaust;Metallurgy furnace dust 1引言 我国是—个钢铁工业大国,2009年的钢产量已经达到了5.68亿t 并且全部被利用,表明了我国经济发展的良好情况。同时我国工业曾经走过高速发展,高能耗,工艺设备落后,污染严重的弯路,数据统计显示,目前钢铁工业的污染物排放占工、农业和日常生活等总排量的15%左右,目前钢铁企业废气和废渣的排放量分别在7.55~53.5Kg/t钢和0.5~1.32t/t钢的范围,如何减少钢铁各生产环节的废物的排放,增大其利用率,不但减少对环境的污染,还可以减少燃料的消耗,降低钢铁生产成本。 2冶金渣的利用 炼铁和炼钢过程中会产生大量的炉渣,如果直接将它们丢弃,不但占用土地资源也不利于资源的综合利用可以对它们进行综合回收利用。

二次资源开发与利用

1.什么是二次资源?什么是自然资源? 二次资源:是指在社会的生产、流通、消费等一系列活动中产生的一般不具有原使用价值而被丢弃的以固态和泥状赋存的物质,且人类可采取工艺措施从这些物质中回收有用的成分和能源。自然资源:是物质与动力天然来源,可以分为不可再生资源与可再生资源。 2.二次资源开发应遵循的原则? 1.技术应是可行的 2.二次资源开发的经济效益应是合理的 3.废物应尽可能在排放源就近利用,以节省废物在贮放、运输等过程的投资 4.二次资源开发出的产品应当符合国家相应产品的质量标准,因为具有与之相竞争的能力。 3.对固体废弃物进行二次资源开发的途径有哪些? 1.提取各种金属 2.生产建筑材料(生产碎石,生产水泥,生产硅酸盐建筑制品,生产铸石和微晶玻璃,生产矿渣棉和轻质骨料) 3.生产农肥 4.回收能源 5.取代某种工业原料。总之,固体废物的资源化对于减少和消除固体废物的危害,保护环境,节约原材料和能源有重大意义。 摩擦与弹跳分选:是根据固体废物中各组分的摩擦系数和碰撞恢复系数的差异,在斜面上运动或与斜面碰撞弹跳时,产生不同的运动速度和弹跳轨迹而来实现彼此分离的一种新技术。 磁流体:是指某种能够在磁场或者磁场与电场联合作用下磁化,呈现似加重现象,对颗粒具有磁浮力作用的稳定分散液。 浮选:是固体废物资源化技术中的重要工艺方法,主要用于分选出不易被重力分选所分离的细小固体颗粒。 重力分选:是将物料给入活动或流动的介质中,密度的差异导致颗粒运动速度或运动轨迹不同,因为可分选出不同密度产物。 磁力分选:磁力分选分为两种类型,一种是电磁和永磁的磁力分离,该方法是在皮带机端头设置一个电磁或永磁的磁力滚筒,当物料经过磁力滚筒时,可将铁磁性物质分离。另一种是磁流体磁力分离。拣选:是利用物料之间的光性、磁性、电性、放射性等拣选特性的差异,实现分选的一种方法。 5.固体废物的预处理包括哪些工序? 预处理主要包括固体废物的破碎、筛分、粉磨、压缩等工序。 6.二次资源开发的基本方法分几种,各有哪些具体方法,其工作原理? 基本方法:1.物理方法处理技术:重力分选(概念略),浮选(原理是利用矿物表面物理化学的特性,在一定条件下,加入各种浮选剂,并进行机械搅拌,使悬浮固体附在空气泡或浮选剂上,随着气泡一起浮到水面上,然后再加以回收),磁力分选(概念略),电场分选(是在高压电场中利用入选物料之间电性差异进行分选的方法),拣选(概念略)摩擦和弹跳分选(概念略)2.化学方法处理技术:煅烧(是天然化合物或人造化合物的热离解或晶型转变过程,此时化合物受热离解为一种组成更简单的化合物或发生晶型转变),焙烧(在适宜气氛条件下将物料加热到一定的温度,使矿物原料中的目的矿物发生物理和化学变化的工艺过程),烧结(是将粉末或粒状物质加热到低于主成分熔点的某一温度,使颗粒粘结成块或球团,提高致密度和机械强度的过程),溶剂浸出法(将固体物料加入液体溶剂内,让固体物料中的一种或几种有用金属溶解于液体溶剂中,以便下一步从溶液中提取有用金属。)热分解(是利用热能切断大分子量的有机物,使之转变为含碳量更少的低分子量物质的工艺过程),焚烧(是对固体废物进行有效控制的燃烧方法),辐射处理(用r射线和电子束辐射固体废物,以达到杀菌、消毒目的的一种无毒化处理方法)3.生物方法处理技术:沼气发酵(是有机物质在隔绝空气和保持一定的水分、温度、酸和碱度等条件下,微生物分解有机物的过程),堆肥(是将人畜粪便、垃圾、青草、农作物的秸秆等堆积起来,利用微生物的作用,将堆料中的有机物分解,产生高热,已达到杀灭寄生虫和病原菌的目的),细菌冶金(利用某些微生物的生物催化作用,使矿石或固体废弃物中的金属溶解出来,从而能够较为容易地从溶液中提取所需的金属) 7.用浸出、萃取、电积工艺处理铜的低品位矿、氧化矿的工艺过程是怎么样的,其中浸出的具体方法有多少种方法?各种浸出方法的概念? 浸出分为:堆浸:将开采的矿石或破碎至一定粒度的矿石堆成堆,在堆得表面喷洒浸出剂,浸出剂渗过矿堆时将铜溶出,浸出液自流到集液池。地浸:生物浸出: 8.细菌在浸矿过程中主要有哪两种作用? 一是直接作用,即细菌直接与矿石中的金属硫化矿发生作用,使硫化矿中的金属氧化而浸出。这一过程主要是靠细菌内特有的氧化酶能过催化或氧化黄铁矿,黄铜矿等金属硫化物,并使其晶格结构破裂,将有价金属浸出。二是间接作用,即细菌将溶液中的二价铁氧化成三价铁,将s氧化成硫酸后进一步与硫化矿发生化学反应,浸出铜,铁等有价金属,。 9.采取堆浸强化浸出的方式从金的低品位矿,氧化矿,尾矿中提金的具体措施有哪些? ○1对于细粒或粘土含量高,渗透性差的矿石,采用制粒预处理技术,来提高矿堆得渗透性,加快浸出速度,提高浸出率。○2采用“分段分层筑堆,交叉喷淋,多级逆流浸出|”工艺,同时筑堆过程中向矿堆通入空气,铺设集液管道,提高矿堆得渗透性,提高浸出效果。○3针对不同的情况,采用滴淋和喷淋技术,均匀布液。○4堆浸过程中加入氧化剂,增浸剂,湿润剂等助浸剂,加速金的浸出。 10.从尾矿回收有价成分的方式有哪些? 1.在现有选厂基础上扩建回收车间,将选厂产生的尾矿直接送到该车间,从尾矿中回收有价成分 2.在堆存多年的老尾矿场附近新建选厂,将老尾矿厂作为二次资源采出,送到选厂中处理,从而选出有价成分即精矿,即建立单独的尾矿再选厂 3.利用可移动的选矿机组,在尾矿库附近就地回收有价成分取得精矿 4.利用化学选矿方法,比如堆浸、槽浸、原地溶浸等技术从尾矿中将有用成分转入液相进行回收等。 11.我国采用尾矿作为建材开发研究主要集中在哪些方面? 1.利用尾矿生产墙体材料 2.利用尾矿生产水泥 3.利用尾矿生产玻璃及玻璃质制品 4.利用尾矿生产建筑陶瓷制品 5.利用尾矿制作无机人造大理石 6.利用尾矿生产耐火材料 7.用作混凝土粗细骨料和建筑用砂 8.用于铺筑路基、基础垫层材料和路面沥青掺混料。 12.我国尾矿建材和制品主要分为哪几个类型? 熔制型尾矿建材、烧结型尾矿建材、水合型尾矿建材、胶结型尾矿建材4个基本类型 13.熔制型尾矿建材、烧结型尾矿建材、水合型尾矿建材、胶结型尾矿建材的概念、工艺过程,各包括哪些建材? 熔制型尾矿建材的工艺过程:1.配料2.混合料制备3.熔化4.澄清与均化5.冷却6.成型7.退火 烧结型尾矿建材的工艺过程:原料处理—配料—坯料制备—成型—干燥—焙烧—后处理 水合型尾矿建材的工艺过程:原料选择与处理—配料—搅拌—消化—成型—静停—蒸压—成品。胶结型尾矿建材工艺过程:配料、搅拌、成型、养护。 14.泡沫玻璃的生产方法有哪些?生产泡沫玻璃的烧结法? 生产方法有:烧结法和熔体直接发泡法。烧结法是先将熔融的玻璃液,倒入水中,炸裂成粒,然后与发泡剂混合磨细,再在耐热模具中加热烧结和发泡,最后经退火形成制品。

资源循环利用产业项目投资分析报告

资源循环利用产业项目投资分析报告 第一章项目总论 一、项目基本情况 (一)项目名称 1、项目名称:资源循环利用产业项目 (二)项目建设单位 xx有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在xx工业园区。 (二)项目用地规模 1、该项目计划在xx工业园区建设。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积123334.0 平方米(折合约185.0 亩),代征地面积1110.0 平方米,净用地面积122224.0 平方米(折合约183.3 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照资源循环利用产业行业生产规范和要求进行科学设计、合理布局,符合资源循环利用产业制造和经营的规划建设需要。

(三)项目用地控制指标 1、该项目实际用地面积122224.0 平方米,建筑物基底占地面积83845.5 平方米,计容建筑面积137990.7 平方米,其中:规划建设生产车间112201.6 平方米,仓储设施面积15400.2 平方米(其中:原辅材料库房9289.0 平方米,成品仓库6111.2 平方米),办公用房5377.8 平方米,职工宿舍3055.6 平方米,其他建筑面积(含部分公用工程和辅助工程)1955.5 平方米;绿化面积8066.8 平方米,场区道路及场地占地面积30311.6 平方米,土地综合利用面积122223.9 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3004.5 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目背景分析 中国要从一个贫穷落后的农业国发展为一个强大的社会主义现代化国家,必须要积极推进工业化进程。1949年以来,中国共产党领导中国人民积极探索自己的工业化道路,先后提出了工业化、“四个现代化”、新型工业化、“四化同步”等相联系又有区别的发展战略。尤其是改革开放以来,在中国特色社会主义理论指导下,中国推动了快速的工业化进程,创造了人类工业化史的奇迹,利用了不到40年的时间使中国这个十几亿

化学与资源综合利用环境保护教案

第二节化学与资源综合利用、环境保护(第一课时) 课前预习学案 一、预习目标 通过阅读课文,初步了解煤、石油和天然气等化石燃料综合利用地意义. 二、预习内容 1、煤地综合利用 (1)煤成分:复杂地混合物;含有:_________________________-等元素. (2)煤地综合利用:干馏、液化和汽化. 煤地干馏:_____________________________________地过程.产品:焦炭、煤焦油、粗氨水和焦炉气. 2、天然气 (1)化石燃料 (2)化工原料:合成氨、生产甲醇、合成多个碳原子地有机化合物. 3、石油 (1)石油地成分:_________________________________________________等. (2)石油地炼制: 分馏---______________________________________________________________地过程. 裂化--___________________________________________________________地过程. 规律:生成等量地烷烃与烯烃,目地:提高汽油地产量. 裂解:_________________________________________________________气态烃和少量液态烃,以提供有机化工原料. 重整:在加热和催化剂作用下,链状烃转化为环状烃. 课内探究学案 一、学习目标 1.了解煤、石油、天然气作为能源及化工原料地综合利用. 2.掌握煤地干馏、液化、气化地原理及利用. 3.掌握石油地裂化、裂解反应及聚合反应地定义及应用. 二、学习过程 (一)煤 探究一:煤地组成元素及如何综合利用 1.现实生活中煤地用途 2.煤地组成元素 3.为了节约能源,保护环境,应如何对煤进行综合利用?

二次资源利用全手工整理

第一章绪论 1、二次资源的定义:在社会的生产、流通 和消费过程中产生的不再具有原使用价值 并以各种形态存在,但可以通过某些综合利用、回收等途径,使其重新获得使用价值的各种废弃物的总称。二次资源的分类:按来源:生产性二次资源和生活性二次资源;按物质属性:有害物质和一般物质;化学成分:有机物和无机物。形态:固体二次资源和非固体二次资源。 2、固体二次资源按来源分为:矿业固体二 次资源、钢铁冶金固体二次资源、有色冶炼固体二次资源、化工固体二次资源、煤系固体二次资源、特殊固体二次资源。 非固体二次资源:二次水资源和二次气资源。第二章基本原理 1、焙烧:在适当气氛和在低于物料熔融温 度下,对物料加热而完成的某种化学反应过程。大多是后续冶炼或提取的主要工序。 焙烧基本原理:焙烧可分为氧化焙烧、硫酸化焙烧、氯化焙烧和还原焙烧等,其共同特征有四个:1反应气体通过向围绕着固体反应物表面的气膜层扩散到固体的外表面,即外扩散。2反应气体进一步通过固体反应产物层的孔隙扩散到固体产物-固体反应物之 间的界面,即内扩散。3反应气体在固-固界面上的吸附并与固体反应物发生化学反应,以及气体反应物从反应界面上的解吸。4气体产物通过固体产物层的孔隙向外表排出。影响因素:孔隙率、比表面积、微孔的大小与分布均匀性等。 2、氯化焙烧:高温下采用氯化剂与二次资 源中某些组分发生作用生成氯化物,再利用各氯化物挥发温度的不同而将其分离的过程。对象有氧化物、碳化物、硫化物及金属或合金。缺点是对设备的腐蚀大;优点是流程简单、处理能力强。 MeO+Cl2=MeCl2+1/2O2 MeS+Cl2= MeCl2+1/2S2 3、超细粉碎技术是采用气流、液流或其他 机械力,在外力场的冲击、挤压、碰撞、剪切、摩擦等作用下,使大颗粒固体二次资源物料破碎成超细微粒的技术。 超细粉碎设备:喷射粉磨机、气流磨、搅拌磨、振动磨、胶体磨。 第三章固体二次资源 1、矿业固体二次资源主要是指废石和尾矿。主要的有自然元素矿物、含氧盐矿物、及类似化合物矿物、氧化物和氢氧化物矿物、卤化物矿物等。 2、氧化物和氢氧化物矿物分类:简单氧化物、复杂氧化物和氢氧化物。 硫化物及其类似化合物矿物分为:简单硫化物、复硫化物和含硫盐。 3性质:(1)物理性质:光学性质、力学性质、磁学性质、电学性质和表面性质等,主要取决于矿物的化学成分和内部构造,但与生成环境也有一定关系。 (2)化学性质:矿物的可溶性和氧化性。 含铁尾矿中有价组分:赤铁矿、菱铁矿、黄铜矿、磁黄铁矿、褐铁矿等。 第四章钢铁冶金钢铁冶金固体二次资源的 利用 1、钢铁冶金钢铁冶金固体二次资源包括: 高炉渣、钢渣、铁合金渣、含铁尘泥、钢铁冶炼含锌粉尘等。 2、铁合金渣的利用途径:从渣中分选回收 有价金属、用作冶炼铁合金的原料、用作炼钢炼铁的原料、用作建筑材料和生产铸石等。 3、含铁尘泥包括:烧结原料在转运、烧结 过程中除尘器收集下来的粉尘称为烧结尘泥;在高炉煤气净化过程中,重力除尘器收集下来的粉尘称为瓦斯灰,文氏管洗涤产生的粉尘称为瓦斯泥;高炉出铁场收集的粉尘,称高炉出铁场粉尘;炼钢厂的含铁粉尘一般包括转炉污泥、转炉电除尘、转炉蒸发冷却器粉尘、转炉二次布袋除尘、铁水预处理尘、电炉布袋除尘、电炉机力风冷除尘、各种精炼炉粉尘以及烟道、沉降室收尘等;在钢坯压制过程中产生的铁鳞称轧钢铁皮,在轧钢废水循环利用中沉淀池回收的污泥称轧钢 二次污泥或水渣。 含铁尘泥的利用途径:1烧结球团法做炼铁原料,大循环利用路线;2炼钢粉尘作炼钢炼钢化渣剂,小循环利用路线;3直接还原处理;4湿法处理工艺 4、含铁尘泥的组成和性质:冶金尘泥含铁 较高,TFe30%~70%,另外部分粉尘还含有

中国有色金属再生资源回收利用现状及前景展望

中国有色金属再生资源回收利用现状及前景展望 一、中国有色金属再生资源利用现状 随着我国有色金属生产和消费水平的提高,社会上可用的废杂金属的积蓄量也不断增加,利用好这些再生资源,不仅可以提高有色金属资源利用率,而且能够减少污染,保护生态环境,节约宝贵的金属资源,对创建社会文明和进步起到积极作用。另外矿产资源是不可再生的,用一点就少一点,而且我国又是有色金属资源短缺的国家,节约和合理使用资源显得特别重要。 世界工业发达国家对再生资源利用相当重视,认为是国民经济发展中重要的组成部分,是实现循环经济的重要举措。近10年来世界再生铜产量已占原生铜产量的40- 55%,其中美国约占60%,日本约占45%,德国约占80%。世界再生铝产量也占原生铝产量的35- 50%,其中美国约占50%,日本约占90%,德国约占45%。世界再生铅产量也占原生铅产量的40- 60%,其中美国约占75%,日本约占60%,德国约占55%。锌、镍、镁、锡、锑等再生资源也得到不同程度利用。 有色金属生产过程中产生的废气、废水、废渣、废石和尾矿,数量巨大,不加妥善处理,对周围环境将造成严重危害。有色金属冶炼厂排放烟气,不仅量大,而且危害严重,目前已引起各国政府高度重视,二氧化硫烟气普遍用于制造硫酸,先进国家回收利用率已达到95%以上,经济效益十分可观。世界各国循环利用工业废水有严格要求,工业化国家废水利用率已达到90-95%,还注意把数量巨大的废石、尾矿、难利用矿石变废为宝,使其减量化、无害化、资源化。 近几年再生有色金属的回收网遍布全国,还从国外大量进口废杂金属,废杂金属回收利用产业蓬勃发展,涌现出再生金属企业5000多家,收集、回收、加工、经营形成了以珠江三角洲、长江三角洲和环渤海地区的再生金属利用中心。 1.再生铜 废杂铜回收一般包括两部分:一是企业在生产过程中产生的边角废料,由于铜加工企业成材率比较低,一般综合成品率只有60- 70%,废料量很大,这部分废料在中国普遍返回生产系统循环使用,而工业发达国家却打包出售,自己处理较少。二是社会积蓄的废杂铜,这部分是国内回收的重点。目前全国再生铜企业约有3000多家,主要是中小型企业,以民营为主体,生产经营范围包括废杂铜收集、拆解、分类、冶炼、加工和销售。最近几年,再生铜产业发展迅猛,废杂铜进口量巨增,企业规模也有不断扩大趋势。目前再生铜产业主要分布在长江三角洲、珠江三角洲和环渤海地区,这些地区是我国经济最发达地区,也是铜资源最紧缺区域,但却是我国铜需求和铜加工业最发达的地区,目前全国80%的铜加工厂集中在这里,每年回收利用了全国75%的废杂铜,并已形成了从回收、进口拆解、拣选分类、加工利用一条完整的产业链,并形成广东南海、清远,浙江台州、宁波、永康,天津静海等地,以进口废杂铜为主的加工利用地区,及山东临沂、湖南汩罗、河南长葛、辽宁大石桥等地,以回收国内废杂铜为主的集散地20多处。 目前国内废杂铜回收量没有统计数据,我们按国际上一般回收水平估算(按当年精炼铜产量40%计算)。 近几年利用废杂铜原料生产精炼铜企业逐渐增多。首推江西铜业集团公司的贵溪冶炼厂,2004年该厂生产41.5万吨电解铜中就包括再生铜15.8万吨,大量使用进口紫杂铜作原料,处理工艺简单,不需扩建投资大、工艺复杂的熔炼系统,这是多快好省的举措。其次利用废杂铜生产电解铜2万吨以上企业还有6家,依次是宁波金田铜业集团股份有限公司、上海大昌铜业有限公司、天津大通铜业有限公司、广州有色金属集团有限公司、云南铜业集团有限公司和山东金升有色集团公司。中小型再生铜冶炼厂也不少,约占全国再生铜产量60%左右,但这些企业规模小,生产工艺和装备水平差,产品质量和金属回收率不高,环境污染

冶金渣综合利用与节能环保

冶金渣综合利用与节能环保 发表时间:2018-11-08T17:31:49.547Z 来源:《建筑学研究前沿》2018年第19期作者:王建军 [导读] 综合利用要求尽量开发无二次固体废弃物排放的洁净冶金新工艺,提高资源综合利用的整体科技水平。 西宁特殊钢股份有限公司青海西宁 810005 摘要:因为我国的经济正在飞速发展,钢铁生产量越来越高,所以在生产钢铁的过程中产生了大量的冶金渣,冶金渣的数量非常多如果不加以利用就会造成环境的污染和资源的浪费。因此在钢铁生产的过程中要注重冶金渣的综合利用,以及对环境的保护。 关键词:冶金渣;综合利用;环境保护 1 冶金渣综合利用的发展方向 (1)综合利用要求尽量开发无二次固体废弃物排放的洁净冶金新工艺,提高资源综合利用的整体科技水平,提高产品的附加值;(2)进一步加强对冶金弃渣物性的深入了解,对冶金弃渣的利用应有系统的科学和工程研究规划,为多途径利用冶炼渣(如物理方法、化学方法、生物方法等)提高资源化水平奠定基础;(3)对不同冶金弃渣进行跨行业集成化,使其达到互补综合利用;(4)开发低污染、低成本、低能耗、短流程的弃渣处理新工艺与装备及其高效控制技术,努力使二次资源的利用变为有利可图的环保产业;(5)积极开展冶金渣利用的技术、经济与环境评价,为冶金渣科学综合利用提供指导与评判标准。(6)冶金渣资源化高价值利用的关键是冶金渣的活性激发技术及设备。冶金渣的活性如果能和水泥的活性相接近或某些特性比水泥性能好,冶金渣在建筑工程中的高价值利用才有广阔的前景。 2 冶金渣综合利用与节能环保途径分析 2.1 钢渣混合材的节能环保分析 用于生产水泥的钢渣混合材必须烘干,而目前普遍的烘干方法是将含水约12%钢渣混合材用汽车运送至水泥厂,然后用煤燃烧产生热风进行烘干。该过程一方面增加了10%的汽车运输量,另一方面需要消耗煤炭资源。我们利用钢渣作为水泥混合材的方式是利用炼铁厂产生的副产品――高炉煤气就地进行烘干,这样可大幅节省汽车运输量和石油、煤炭等资源。钢渣应用于水泥工业在我国已有30余年历史,据不完全统计目前每年可使用钢渣混合材 1000万吨。若采用炼铁厂产生的副产品――高炉煤气就地进行烘干,每吨钢渣初水分12%烘干至终水分2%需150 立方米的高炉煤气(热值为3500千卡/立方米计),每年1000万吨钢渣混合材需15亿立方米的高炉煤气,折合标煤 75万吨(标煤热值约7000千卡/千克计)。每年1000万吨钢渣混合材(运距30公里计)可节省汽车运输油用量45 万升(重型载重汽车每吨钢渣油耗约1.5升/100公里计)、煤炭用量75万吨。 2.2 钢渣矿渣混凝土砖的节能环保分析 钢渣矿渣混凝土砖主要是以钢渣矿渣配制的砌筑水泥为胶凝材料,以钢渣、水淬矿渣和高炉重矿渣为骨料,再掺入一定量的外加剂采用半干法压制成型、钢厂余热蒸汽养护的方法生产出来的一种冶金渣砖。经过理论和实践证明该工艺生产出来的钢渣矿渣混凝土砖各项性能指标均优于国家标准要求,而且产品成本低,生产原料90%以上采用钢厂废弃的冶金渣,养护采用钢厂余热蒸汽养护,符合国家节能环保的产业政策。以新余钢铁股份有限公司年产 30万立方米的钢渣矿渣混凝土砖生产线为例,每年可消耗钢渣约11万吨、矿渣11万吨、重矿渣22万吨,可为钢厂利用大量的冶金渣并产生良好的经济效益。钢渣矿渣混凝土砖生产使用的胶凝材料采用冶金渣自配的M22.5砌筑水泥,无需采用高能耗的PS32.5以上的成品水泥。钢渣矿渣混凝土砖的骨料就地采用钢厂的冶金渣,每年减少36万吨砂石的开采开挖量和汽车运输量。钢渣矿渣混凝土砖的养护采用钢厂余热蒸汽养护,节省了煤炭资源。该条生产线集成了冶金渣、余热蒸气、高炉煤气等再生资源的综合利用,每年36万吨冶金渣代替砂石做为骨料可节省砂石运输(运距30公里计)用油量为16.2万升(重汽车运输油用量1620万升、煤炭用量400万吨。这样既大量利用了钢厂废弃的冶金渣又大量代替了粘土砖的市场,保护了耕地;此外钢渣矿渣混凝土是一种免烧砖,节能降耗。 2.3 冶金渣蒸压加气砌块生产的节能环保分析 冶金渣蒸压加气砌块是将钢渣、矿渣加水磨成浆料,加入粉状复合外加剂,适量石膏和发气剂,经发气、预养、切割、蒸压等工序后制成的加气砌块制品。该工艺方法生产出来的冶金渣蒸压加气砌块性能良好,能符合工业与民用建筑需要,而且能大量地消耗冶金渣。本工艺中采用的原材料90%以上采用冶金渣,养护蒸汽是采用炼铁厂的副产品――高炉煤气作为燃料产生的,产品生产成本低。该生产线每年消耗约7500万立方米的高炉煤气(热值为3200千卡/立方米计),折合标煤约3.4万吨(标煤热值约7000千卡/公斤计)。 3 我国在未来冶金渣处理方面的几个建议 3.1 借鉴国外的发展经验 从德国冶金渣在各领域如建筑和农业方面的应用可以清楚的看出,德国钢铁工业不仅早在一百多年前随着西门子)马丁法及电炉法的发展就为废钢铁的循环利用具备了先决条件,而且也在高炉炉渣和钢渣的应用方面具有一百多年的光辉回顾史。我国钢铁工业也需为钢渣尽可能大量高效的在各领域得以利用作出更大的努力。首先保证高炉炉渣在我国建筑行业完全利用,矿渣的获取方式在未来也要继续改善,即尽可能努力去改善粒化条件和矿渣的性能。对钢渣则可大量应用于道路工程中,这点在部分高校和研究所已得到重视,如武汉理工大学对钢渣的高效应用正做着深入的实验室和工程实际研究。我国钢渣新排渣中游离氧化钙的含量比德国的要高,如何改变生产工艺和后期处理工艺使得游离氧化钙的含量降低也是一个"待研究的课题,因为这关系到混凝土长期耐久性的问题。在这方面我们可以借鉴德国的处理方法来解决如何减低游离氧化钙的含量问题。同时要利用钢渣优势突出的技术特性,致力于代替天然岩石应用于建筑工程、交通及水工工程。并将继续尝试获取特定类型的液态钢渣,从而来获取高效冶金粉末或者胶结料。最后要通过有目的的改善技术工艺,努力去应用尚存的少量的剩余渣,拟将如今在我国还未得以完全利用的高炉炉渣、钢渣及铁合金渣等在近年得到充分利用。 3.2 进一步健全冶金渣的综合利用政策 进一步健全冶金渣的综合利用政策完善冶金渣资源综合利用的鼓励和扶持政策措施,完善税收优惠政策。把冶金渣加工处理、产品销售和产品应用纳入再生资源优惠产品目录,进一步加大对冶金渣资源综合利用和深加工产业的支持力度。对于冶金渣综合利用要实现有奖

资源综合利用 环境保护 教学设计

课题:人教新版高中化学必修②第四章化学与自然资源的开发利用 第二节资源综合利用环境保护教学设计(第一课时) 湖南醴陵第四中学(412200)汤中文(0731-3228970) 一、教材分析 化学研究和应用的一个重要目标就是开发和利用自然界中一切可能的物质资源和能量资源,为人类生存和社会发展提供必要的物质和能源基础;同时,应该注意到这一过程必须同自然环境相互协调,走可持续发展的道路,让国民经济又好又快发展。这是贯穿本章始终的重要核心观点。 本节以化石燃料等为例,了解利用化学变化实现物质间的转化,以及这些过程中的能量变化和产物在我们日常生活和社会发展中的重要作用。从科学、技术和社会相互协调作用背景的角度,有利于学生加深体会化学在综合利用自然资源中的作用,学会辩证地看待人类和自然和谐发展中可能会遇到的问题,并培养做出果断决策的意识和能力;从学科知识的角度,有利于学生将前面所学过的知识和技能进行必要的梳理、归纳和拓展,主要包括有机物之间的转化(裂解反应、聚合反应)。因此,本节作为高中必修模块的结尾,不仅对于学生总结复习很重要,而且对于学生进一步确定、学习后续的选修模块乃至选择自己未来的升学和就业方向都可能会产生一定的影响。 本节突出主题,将科学教育与人文教育融为一体,根据课程标准,本章主题是化学与可持续发展,第二节通过日常生活经验,学生比较熟悉化石燃料作为能源的利用,对化石燃料作为重要化工原料可能了解并不多,况且化石燃料的综合利用还是更为重要的发展方向,但限于课时和知识基础,通过本章学习学生只能对此形成一些粗略的认识,主要包括化石燃料的化学成分、石油化工生产的一般过程和原理、应用广泛的石油化工产品以及石油化工生产的发展趋势等,培养学生必备的化学科学素养。 塑料、合成纤维和橡胶等有机高分子化合物,目前主要是以化石燃料为原料生产的,这可以帮助学生体会石油化工同日常生活之间的紧密联系,体会石油化工给人类带来的许多好处,认识化学在物质生产领域的极大创造性和重要价值,提高学习化学、化工的兴趣,提高参与讨论诸如白色污染、可降解塑料等有关环境问题的科学素养水平。 环境保护同样是人类可持续发展所面临的一个重大课题。本章教材主要使学生了解化学在环境保护工作中所发挥重要作用的三个主要领域,即环境情况的监测、三废

第1章固体二次资源利用的基本方法

第1章固体二次资源利用的基本方法

1 二次资源利用的基本方法及原理 1.1固体物料的物理化学性质 固体二次资源包括矿山尾矿、冶金渣尘、化工渣、粉煤灰等,其资源种类纷繁复杂,其物理化学性质各异。 1.1.1物理性质 1.1.1.1几何特征 固体二次资源物料的几何特征主要包括颗粒的大小、外形、表面形态(如表面粗糙度、孔隙度等)及比表面积等。颗粒的形状,将影响到它在介质中的沉降速度、界面化学行为、流变性质、滤渣的孔隙和滤饼的比阻等。单个颗粒的几何特征及颗粒群的粒度组成是固体二次资源利用过程中应充分考虑的关键性因素。 (1)颗粒的大小 固体二次资源通常是碎散物料群体,构成该群体的颗粒大小不一,形状各异,在技术上可引入“粒径”、“粒度”、“粒级”、“粒度组成”及“平均粒度”等概念来描述其粒度特性。 粒径和粒度是用来表示颗粒大小最常用的两个术语。粒径是以单颗粒为对象,表示颗粒的大小;而粒度则是以粒群为对象,表示所有颗粒

大小的总体概念。 在固体二次资源利用中,对粒群大小的描述,常用平均粒度的概念。粒群的平均粒度是表征颗粒体系的重要几何参数,两个平均粒度相同的粒群,完全可能具有差异很大的粒度组成。描述粒度特性最好的方法是查明粒群的粒度组成,它反映了粒群中各种颗粒大小及对应的数量关系。 (2)颗粒的形状 颗粒的轮廓边界或表面上各点的图像,称作颗粒的形状,颗粒的形状是颗粒的大小外又一个重要的几何特征。主要包括球形、针状、不规则体、多角状、枝状、纤维状、多孔状及浑圆状等,也可用形状系数和形状指数等定量方式进行描述。固体二次资源利用中各作业的性质、效率在很大程度上也取决于物料颗粒的形状。 (3)颗粒的比表面积 颗粒单位体积(或单位质量)物体的表面积,称为该物体的比表面积或比表面。 比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其他的许多物

相关文档
最新文档