2012年中考数学第二轮复习 专题讲解 几何计算题选讲

2012年中考数学第二轮复习 专题讲解 几何计算题选讲
2012年中考数学第二轮复习 专题讲解 几何计算题选讲

八.几何计算题选讲

几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P ,PE ⊥AB 于E ,

AB=10,求PE 的长.

解法一:(几何法)连结OT ,则OT ⊥CD ,且OT=2

1AB =5

BC=OT=5,AC

25100+=55

∵BC 是⊙O 切线,∴BC 2 =CP ·CA. ∴PC=5,∴AP=CA-CP=54.

∵PE ∥BC ∴AC

AP BC

PE =,PE=

5

554×5=4.

说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要注意图形中的隐含条件. 解法二:(代数法) ∵PE ∥BC ,∴

AB

AE CB

PE =. ∴2

1==AB

CB AE

PE .

设:PE=x ,则AE=2 x ,EB=10–2 x . 连结PB. ∵AB 是直径,∴∠APB=900.

在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE . ∴

2

1==AE

PE EP

EB .∴EP=2EB ,即x=2(10–2x ).

解得x =4. ∴PE=4.

说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系. 解法三:(三角法)

连结PB ,则BP ⊥AC.设∠PAB=α 在Rt △APB 中,AP=10COS α,

在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α. 在Rt △ABC 中, BC=5,AC=55.∴sin α=

5

55

55=

,

COS α=

5

525

510=

.∴PE=10×

5

525

5?

=4.

说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系. (2) 注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化. (3) 注意几何法、代数法、三角法的灵活运用和综合运用. 二.其他题型举例 例2.如图,ABCD 是边长为2 a 的正方形,AB 为半圆O 的直径,

CE 切⊙O 于E ,与BA 的

A B

F

延长线交于F ,求EF 的长.

分析:本题考察切线的性质、切割线定理、相似三角形性质、以及正方形有关性质.本题可用代数法求解. 解:连结OE ,∵CE 切⊙O 于E , ∴OE ⊥CF ∴△EFO ∽△BFC ,∴FB

FE BC

OE =,又∵OE=

2

1AB=

2

1BC ,∴EF=

2

1FB

设EF=x ,则FB=2x ,FA=2x –2a

∵FE 切⊙O 于E ∴FE 2=FA ·FB ,∴x 2=(2x –2a )·2x 解得x =

3

4a , ∴EF=

3

4a.

例3.已知:如图,⊙O 1 与⊙O 2相交于点A 、B ,且点O 1在⊙O 2上,连心线O 1O 2交⊙O 1于点C 、D ,交⊙O 2于点E ,过点C 作CF ⊥CE ,交EA 的延长线于点F ,若DE=2,AE=52 (1) 求证:EF 是⊙O 1的切线; (2) 求线段CF 的长;

(3) 求tan ∠DAE 的值. 分析:(1)连结O 1A ,O 1E 是⊙O 2的直径,O 1A ⊥EF ,从而知 EF 是⊙O 1的切线.

(2)由已知条件DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线

和割线,运用切割线定

理EA 2

=ED ·EC ,可求得EC=10.由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △

EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102

解得 x =54.即CF=54.

(3)要求tan ∠DAE 的值,通常有两种方法:①构造含∠DAE 的直角三角形;②把求tan ∠DAE 的值转化为求某一直角三角形一锐角的正切(等角转化).在求正切值时,又有两种方法可供选择:①分别求出两线段(对边和邻边)的值;②整体求出两线段(对边和邻边)的比值. 解:(1)连结O 1A ,

∵O 1E 是⊙O 2的直径,∴O 1A ⊥EF ∴EF 是⊙O 1的切线..

(2)∵DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线 ∴EA 2

=ED ·EC ,∴EC=10

由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定

理可得:(x +52)2= x 2+102

,解得 x =54.即CF=54.

(3)解法一:(构造含∠DAE 的直角三角形)

作DG ⊥AE 于G ,求AG 和DG 的值.分析已知条件,在Rt △A O 1E 中,三边长都已知或可求(O 1A=4,O 1E=6),又DE=2,且DG ∥A O 1(因为DG ⊥AE ),运用平行分线段成比例可求得DG=,3

54,3

4=

AG 从而tan ∠DAE=

5

5.

解法二:(等角转化)

连结AC ,由EA 是⊙O 1的切线知∠DAE=∠ACD.只需求tan ∠ACD.易得∠CAD=900,所以只需求

AC

AD 的值即可.观察

和分析图形,可得△ADE ∽△CAE ,

5

510

52===CE

AE AC

AD .从而tan ∠ACD=5

5=AC

AD ,即tan ∠DAE=5

5.

说明:(1)从已知条件出发快速地找到基本图形,得到基本结论,在解综合题时更显出它的基础性和重要性.如本题(2)求CF 的长时,要能很快地运用切割线定理,先求出CE 的长. (2)方程思想是几何计算中一种常用的、重要的方法,要熟练地掌握.

例4.如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE 的延长线交⊙A 于F ,CM=2,AB=4. (1) 求⊙A 的半径;

(2) 求CF 的长和△AFC 的面积. 解:(1)∵四边形ABCD 是矩形,∴CD=AB=4,在Rt △ACD 中,AC 2=CD 2+AD

2

,∴

(2+AD )2

=42

+AD 2

,解得AD=3.

(2) A 作AG ⊥EF 于G.∵BG=3,BE=AB ―AE=1,∴

CE=

10132

2

2

2

=+=+BE BC

由CE ·CF=CD 2

,得CF=

105

810

4

2

2

=

=

CE

CD .又∵∠B=∠AGE=900

∠BEC=∠GEA ,∴△BCE ∽△GAE.∴AE

CE AG

BC =

,3

103=

AG

S △AFC =2

1CF ·AG=

5

36.

例5.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程x 2–4xcosB+1=0有两个相等的实数根.D 是劣弧AC 上的任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F. (1) 求∠B 的度数;

(2) 求CE 的长.

分析:本题是一道综合了代数知识的几何计算题,考察了圆的有关性质,解题时应注意

线段的转化.

解:(1)∵关于x 的方程x 2–4xcosB+1=0有两个相等的实数根, ∴Δ=(-4cosB )2-4=0.∴cosB=2

1,或cosB=-

2

1(舍去).

又∵∠B 为锐角,∴∠B=600.

(2) 点A 作AH ⊥BC ,垂足为H. S △ABC =

2

1BC ·AH=

2

1BC ·AB ·sin600=36,解得AB=6

在Rt △ABH 中,BH=AB ·cos600=6×2

1=3,AH=AB ·sin600=6×332

3=,∴CH=BC-BH=4-3=1. 在Rt △ACH 中,

AC 2+CH 2=27+1=28.∴AC=72±(负值舍去).∴AC=72.连结AE ,在圆内接四边形ABCD 中,∠B+∠ADC=1800

∴∠ADC=1200.又∵DE 平分∠ADC ,∴∠EDC=600=∠EAC. 又∵∠AEC=∠B=600

,∴∠AEC=∠EAC ,∴CE=AC=72.

例6. 已知:如图,⊙O 的半径为r ,CE 切⊙O 于点C ,且与弦AB 的延长线交于点E ,CD ⊥AB 于D.如果CE=2BE ,且AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根.求(1)AC 、BC 的长;(2)CD 的长. 分析:(1)图中显然存在切割线定理的基本图形,从而可得△ECB ∽△EAC ,AC=2BC.又∵AC 、BC 是方程的两根,由根与系数关系可列出关于AC 、BC 的方程组求解.(2)∵CD 是Rt △CDB 的一边,所以考虑构造直角三角形与之对应.若过C 作直径CF ,连结AF ,则Rt △CDB ∽Rt △CAF ,据此可列式计算.

解:(1)∵CE 切⊙O 于C ,∴∠ECB=∠A.又∵∠E 是公共角,∴

△ECB ∽△EAC ,

2

1=

=

CE

BE AC

BC ,∴AC=2BC.由AC 、BC 的长是关于x 的方程x 2

–3(r –2)x+ r 2

B

D

–4=0的两个实数根,∴AC+BC=3(r-2);AC ·BC=r 2-4,解得r=6,∴BC=4,AC=8.

(2) CO 并延长交⊙O 于F ,连结AF ,则∠CAF=900,∠CFA=∠CBD. ∵∠CDB=900=∠CAF ,∴△CAF ∽△CDB ,

BC

CF CD

AC =.∴CD=

3

812

48=

?=

?CF

BC AC .

说明:(1)这是一道代数、几何的综合题,关键是寻找相似三角形,建立线段之间的比例关系,再根据根与系数关系列等式计算;(2)构造与相似的直角三角形的方法有许多种,同学们不妨试一试. 例7.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,PA 是过A 点的直线,∠PAC=∠B. (1)求证:PA 是⊙O 的切线;

(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=CE ∶EB=6∶5,AE ∶EB=2∶3,求AB 的长和∠FCB 的正切值.

解:(1)∵AB 是⊙O 的直径,∴∠ACB=900

. ∴∠CAB+∠B=900

,又∠PAC=∠B ,∴∠

CAB+∠PAC=900.即PA ⊥AB ,∴PA 是⊙O 的切线. (2) 设CE=6a ,AE=2x,则ED=5a ,EB=3 x.

由相交弦定理,得2x ·3x=5a ·6a ∴x=5a. 连结AD.由△BCE ∽

△DAE ,得

5

53=

=

ED

EB AD

BC .连结BD.由△BED ∽△CEA ,得

2

5=

=

AE

BE AC

BD .

∴BD=54.由勾股定理得BC=2

2

8-AB

,AD=

2

)54(-AB .

5

53)

54(8

2

2

2

2

=

--AB

AB .两边平方,整理得1002=AB ,∴10=AB

(负值舍去).

∴AD=52.∵∠FCB=∠BAD ,∴tan ∠FCB= tan ∠BAD=

25

254==

AD

BD .

解几何计算题要求我们必须掌握扎实的几何基础知识,较强的逻辑推理能力,分析问题时应注意分析法与综合法的同时运用,还特别要注意图形中的隐含条件,在平时的学习中要善于总结归纳,只有这样才能掌握好几何计算题的解法.

F

初三中考数学计算题训练及答案

1.计算:22 ﹣1|﹣. 2计算:( )0 - ( )-2 + 45° 3.计算:2×(-5)+23-3÷. 4. 计算:22+(-1)4+(-2)0-|-3|; 5.计算:30 82 145+-Sin 6.计算:?+-+-30sin 2)2(20. 7.计算, 8.计算:a(3)+(2)(2) 9.计算: 10. 计算:()()03 32011422 - --+÷- 11.解方程x 2 ﹣41=0. 12.解分式方程 2 3 22-= +x x

13.解方程:=.14.已知﹣1=0,求方裎1的解. 15.解方程:x2+4x-2=0 16.解方程:-1)-x)= 2.17.(2011.苏州)解不等式:3﹣2(x﹣1)<1.18.解不等式组: 19.解不等式组 () ()() ? ? ? + ≥ - - + - 1 4 6 1 5 3 6 2 x x x xπ 20.解不等式组 ?? ? ? ? < + > + .2 2 1 ,1 2 x x 答案 1.解: 原式=4+1﹣3=2 2.解:原式=1-4+12.

3.解:原式10+8-68 4.解:原式=4+1+1-3=3。 5.解:原式= 222222=+-. 6. 解:原式=2+1+2×2 1=3+1=4. 7. 解:原式=1+2﹣ +2× =1+2﹣ + =3. 8.解: ()()()22a a 32a 2a a 3a 4a =43a -+-+=-+-- 9. 解:原式=5+4-1=8 10. 解:原式3 1122 -- 0. 11. 解:(1)移项得,x 2 ﹣4﹣1, 配方得,x 2 ﹣44=﹣1+4,(x ﹣2)2 =3,由此可得x ﹣2=±,x 1=2+,x 2=2﹣; (2)1,﹣4,1.b 2 ﹣4=(﹣4)2﹣4×1×1=12>0. 2±, x 1=2+,x 2=2﹣. 12.解:10 13.解:3 14. 解:∵﹣1=0,∴a﹣1=0,1;2=0,﹣2. ∴﹣21,得2x 2 ﹣1=0,解得x 1=﹣1,x 2=. 经检验:x 1=﹣1,x 2=是原方程的解.∴原方程的解为:x 1=﹣1,x 2=. 15.解: 4168426 26x -±+-±- 16. 解:去分母,得 3=2(1) . 解之,得5. 经检验,5是原方程的解. 17. 解:3﹣22<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-5 19.解:15≥x 20. 解:不等式①的解集为x >-1;不等式②的解集为x +1<4 x <3 故原不等式组的解集为-1<x <3.

射影几何中仿射变换解初等几何题

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用。 平行投影 平行投影是仿射变换中最基本、最简单的一类。因此平行投影变换具有仿射变换中的一切性质。解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量。 例1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F 。求证: 1=++CF PF BE PE AD PD . [2] C 图1 证明:如图1,分别沿AB 和AC 方向作平行投影。P →P '、P →P ''由仿射变换保简单比不变得, DC DP BD D P AD PD '''==,所以BC P P AD PD ' ''= , 同理 BC C P BE PE ''=,BC BP CF PF ' = , 所以 1''''''=++=++BC BP BC C P BC P P CF PF BE PE AD PD . 例2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真。(梅涅劳斯定理 )[3] 分析:如图2,本题要求证明当L 、M 、N 三点共线时,1-=??NB AN MA CM LC BL 。其逆命题亦成立 。 N B A L'(L) A'C B A M M N A' L C 图2 (1)证明梅涅劳斯定理成立 由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便。

如图2(a),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则 1''-=??=??LB L A LA CL LC BL NB AN MA CM LC BL .即原命题成立。 (2)证明逆命题成立 证明当BC 、CA 、AB 上三点L 、M 、N 满足1-=??NB AN MA CM LC BL 时,则L 、M 、N 三点共线。 设直线MN 交BC 于L ',如图2(b) ,由已知条件知,1''-=??NB AN MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线。 三角形仿射等价性 因为任一三角形可以经过平行投影变成正三角形。因此,如果我们要证明一个有关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立。而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多。 例3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC . [4] D 'C ' D B B' 图3 证明:如图3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、 E 、 F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。 在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '', 由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC . 例4 证明G 为ABC ?重心的充要条件是:BGC AGC AGB S S S ???==.[4]

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE = ,PE=5 554×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴2 1==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=55 25 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

中考数学计算题训练及答案

1.计算:22+|﹣1|﹣ . 2计算:( 3 )0 - ( 12 )-2 + tan45° 3.计算:2×(-5)+23-3÷12 . 4. 计算:22+(-1)4+(5-2)0-|-3|; 5.计算:3082145+- Sin 6.计算:?+-+-30sin 2)2(20. 7.计算 , 8.计算:a(a-3)+(2-a)(2+a) 9.计算: 10. 计算:()()0332011422 ---+÷-

11.解方程x 2﹣4x+1=0. 12.解分式方程 2322-=+x x 13.解方程:3x = 2x -1 . 14.已知|a ﹣1|+ =0,求方裎+bx=1的解. 15.解方程:x 2+4x -2=0 16.解方程:x x -1 - 3 1- x = 2. 17.(2011.苏州)解不等式:3﹣2(x ﹣1)<1. 18.解不等式组:???2x +3<9-x ,2x -5>3x . 19.解不等式组()()() ?? ?+≥--+-14615362x x x x 20.解不等式组?????<+>+.22 1,12x x 答案 1.解: 原式=4+1﹣3=2 2.解:原式=1-4+1=-2. 3.解:原式=-10+8-6=-8 4.解:原式=4+1+1-3=3。

5.解:原式=222222=+-. 6. 解:原式=2+1+2×2 1=3+1=4. 7. 解:原式=1+2﹣+2×=1+2﹣+=3. 8.解: ()()()22a a 32a 2a a 3a 4a =43a -+-+=-+-- 9. 解:原式=5+4-1=8 10. 解:原式=31122 -- =0. 11. 解:(1)移项得,x 2﹣4x=﹣1, 配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得x ﹣2=± ,x 1=2+,x 2=2﹣; (2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0. x==2±, x 1=2+,x 2=2﹣. 12.解:x=-10 13.解:x=3 14. 解:∵|a﹣1|+ =0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x 2+x ﹣1=0,解得x 1=﹣1,x 2=. 经检验:x 1=﹣1,x 2=是原方程的解.∴原方程的解为:x 1=﹣1,x 2=. 15.解: 2x - 16. 解:去分母,得 x +3=2(x -1) . 解之,得x =5. 经检验,x =5是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-5 19.解:15≥x 20. 解:不等式①的解集为x >-1;不等式②的解集为x +1<4 x <3 故原不等式组的解集为-1<x <3.

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(解析版)

2020全国各地中考数学压轴题按题型(几何综合)汇编 二、四边形中的计算和证明综合题 1.(2020安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点 G,与AD相交于点F,AF=AB. (1)求证:BD⊥EC; (2)若AB=1,求AE的长; (3)如图2,连接AG,求证:EG﹣DG=√2AG. 【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上, ∴∠EAF=∠DAB=90°, 又∵AE=AD,AF=AB, ∴△AEF≌△ADB(SAS), ∴∠AEF=∠ADB, ∴∠GEB+∠GBE=∠ADB+∠ABD=90°, 即∠EGB=90°, 故BD⊥EC,

(2)解:∵四边形ABCD是矩形,∴AE∥CD, ∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF, ∴AE DC = AF DF , 即AE?DF=AF?DC, 设AE=AD=a(a>0),则有a?(a﹣1)=1,化简得a2﹣a﹣1=0, 解得a=1+√5 2或 1?√5 2 (舍去), ∴AE=1+√5 2. (3)如图,在线段EG上取点P,使得EP=DG, 在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS), ∴AP=AG,∠EAP=∠DAG, ∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形, ∴EG﹣DG=EG﹣EP=PG=√2AG.

2.(2020黑龙江七台河)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG, 过点A作AM⊥BC于M,延长MA交EG于点N. (1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN; (2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由. 【解答】解:(1)证明:∵∠BAC=90°,AB=AC, ∴∠ACB=45°, ∵AM⊥BC, ∴∠MAC=45°, ∴∠EAN=∠MAC=45°, 同理∠NAG=45°, ∴∠EAN=∠NAG, ∵四边形ABDE和四边形ACFG为正方形, ∴AE=AB=AC=AG, ∴EN=GN. (2)如图1,∠BAC=90°时,(1)中结论成立.

初中数学中考计算题

初中数学中考计算题

一.解答题(共30小题) 1.计算题: ①; ②解方程:. 2.计算:+(π﹣2013)0. 3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013. 4.计算:﹣. 5.计算:.6.. 7.计算:. 8.计算:. 9.计算:. 10.计算:. 11.计算:. 12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°. 15.计算:.16.计算或化简: (1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|. (2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2) 17.计算: (1)(﹣1)2013﹣|﹣7|+×0+()﹣1; (2). 18.计算:.19.(1)

(2)解方程:. 20.计算: (1)tan45°+sin230°﹣cos30°?tan60°+cos245°; (2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60° (2)解方程:=﹣. 22.(1)计算:. (2)求不等式组的整数解. 23.(1)计算: (2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30° (2)解方程:. 25.计算: (1) (2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:; (2)解方程:. 27.计算:.28.计算:. 29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011. 30.计算:.

参考答案与试题解析 一.解答题(共30小题) 1.计算题: ①; ②解方程:. 考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题. 分析:①根据零指数幂、特殊角的三角函数值、绝对值求出每一部分的值,再代入求出即可; ②方程两边都乘以2x﹣1得出2﹣5=2x﹣1,求出方程的解,再进行检验即可. 解答:①解:原式=﹣1﹣+1﹣, =﹣2; ②解:方程两边都乘以2x﹣1得: 2﹣5=2x﹣1, 解这个方程得:2x=﹣2, x=﹣1, 检验:把x=﹣1代入2x﹣1≠0, 即x=﹣1是原方程的解. 点评:本题考查了解分式方程,零指数幂,绝对值,特殊角的三角函数值等知识点的应用,①小题是一道比较容易出错的题目,解②小题的关键是把分式方程转化成整式方程,同时要注意:解分式方程一定要进行检验. 2.计算:+(π﹣2013)0. 考点:实数的运算;零指数幂. 专题:计算题. 分析:根据零指数幂的意义得到原式=1﹣2+1﹣+1,然后合并即可. 解答:解:原式=1﹣2+1﹣+1 =1﹣. 点评:本题考查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算.也考查了零指数幂. 3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013. 考点:实数的运算;零指数幂;特殊角的三角函数值. 分析:根据绝对值的概念、特殊三角函数值、零指数幂、乘方的意义计算即可. 解答: 解:原式=﹣1﹣2×+1×(﹣1) =﹣1﹣﹣1 =﹣2. 点评:本题考查了实数运算,解题的关键是注意掌握有关运算法则.

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

2020年中考数学压轴题精讲:几何证明及几何计算

2020年中考数学压轴题精讲:几何证明及几何计算例题1:如图1,在△ABC中,BC>AC,∠ACB=90°,点D在AB边上,DE⊥AC于点E. (1)若 1 3 AD DB =,AE=2,求EC的长; (2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高还是中线?或两者都有可能?请说明理由. 图1 满分解答 (1)由∠ACB=90°,DE⊥AC,得DE//BC. 所以 1 3 AE AD EC DB ==.所以 21 3 EC =.解得EC=6. (2)△CFG与△EDC都是直角三角形,有一个锐角相等,分两种情况: ①如图2,当∠1=∠2时,由于∠2与∠3互余,所以∠2与∠3也互余. 因此∠CPF=90°.所以CP是△CFG的高. ②如图3,当∠1=∠3时,PF=PC. 又因为∠1与∠4互余,∠3与∠2互余,所以∠4=∠2.所以PC=PG. 所以PF=PC=PG.所以CP是△CFG的中线. 综合①、②,当CD是∠ACB的平分线时,CP既是△CFG的高,也是中线(如图4). 图2 图3 图4 例题2:如图1,正六边形ABCDEF的边长为a,P是BC边上的一动点,过P作PM//AB 交AF于M,作PN//CD交DE于N. (1)①∠MPN=_______°; ②求证:PM+PN=3a; (2)如图2,点O是AD的中点,联结OM、ON.求证:OM=ON. (3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊的四边形,并说明理由.

图1 图2 图3 满分解答 (1)①∠MPN=60°. ②如图4,延长F A、ED交直线B C与M′、N′,那么△ABM′、△MPM′、△DCN′、 △EPN′都是等边三角形. 所以PM+PN=M′N′=M′B+BC+CN′=3a. 图4 图5 图6 (2)如图5,联结OP. 由(1)知,AM=BP,DN=CP. 由AM=BP,∠OAM=∠OBP=60°,OA=OB, 得△AOM≌△BOP.所以OM=OP. 同理△COP≌△DON,得ON=OP. 所以OM=ON. (3)四边形OMGN是菱形.说理如下: 由(2)知,∠AOM=∠BOP,∠DON=∠COP(如图5). 所以∠AOM+∠DON=∠BOP+∠COP=60°.所以∠MON=120°. 如图6,当OG平分∠MON时,∠MOG=∠NOG=60°. 又因为∠AOF=∠FOE=∠EOD=60°,于是可得∠AOM=∠FOG=∠EON. 于是可得△AOM≌△FOG≌△EON. 所以OM=OG=ON. 所以△MOG与△NOG是两个全等的等边三角形. 所以四边形OMGN的四条边都相等,四边形OMGN是菱形. 例题3:已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3). (1)求此二次函数的解析式; (2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形. ①求正方形的ABCD的面积;

初中数学中考计算题复习含答案

. 初中数学计算题大全(一) 计算下列各题 1 .3 6 )21(60tan 1)2(100+ -----π 2. 4 3 1417)539(524---- 3.)4(31 )5.01(14-÷?+-- 4 .0(3)1---+ 5. 4+23 +38- 6.()2 3 28125 64.0-?? 7 8. (1)03220113)2 1(++-- (2)23991012322?-? 10. ??? ??-÷??? ? ?-+6016 512743 11.(1 ) - (2)4 ÷

. 12.418123+- 13.1212363?? -? ? ?? ? 14..x x x x 3)1246(÷- 15.6 1 )2131()3(2÷-+-; 16.20)21()25(29 3 6318-+-+-+- 17.(1))3 1 27(12+- (2)( )()6618332 ÷ -+ - 18.()24 335274158.0--+??? ??+-??? ??--- 19.1112()|32|43 --- +- 20. ()( ) 1 2013 3112384π -??---+-?? ??? 。 21.. 22.11281223 23.2 32)53)(53)+

参考答案 1.解=1-|1-3|-2+23 =1+1-3-2+23 =3 【解析】略 2.5 【解析】原式=14-9=5 3.87- 【解析】解:)4(3 1 )5.01(14-÷?+-- ?? ? ??-??- -=4131231 811+-= 87-= 先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。注意:4 1-底数是4, 有小数又有分数时,一般都化成分数再进行计算。 4 .0 (3)1-+ =11- -. 【解析】略 5.3 6.4 【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。 1、4+2 3 +38-=232=3+- 57 2 - 【解析】 试题分析:先化简,再合并同类二次根式即可计算出结果. 22 =- 考点: 二次根式的运算. 8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32 (2)原式=23(1012-992 ) (1分) =23(101+99)(101-99)(2分) =232200??=9200 (1分) 利用幂的性质求值。 利用乘法分配律求值。 9.(1)-3;(2)10 【解析】 试题分析:(1)把有理数正负数分开相加即可; (2)先算乘方,再运用乘法分配律,要注意不要漏乘即可. 试题解析: 解: (1)-23+(-37)-(-12)+45 = —23—37+12+45 = —23—37+12+45 =-3; =24—6—8

中考数学计算题专项训练(全)

2 + 3 8 3.计算:2×(-5)+23-3÷1 9. 计算:( 3 )0 - ( )-2 + tan45° 2 - (-2011)0 + 4 ÷ (-2 )3 中考专项训练——计算题 集训一(计算) 1. 计算: Sin 450 - 1 2.计算: 2 . 4.计算:22+(-1)4+( 5-2)0-|-3|; 5.计算:22+|﹣1|﹣ . 8.计算:(1) (- 1)2 - 16 + (- 2)0 (2)a(a-3)+(2-a)(2+a) 1 2 10. 计算: - 3 6.计算: - 2 + (-2) 0 + 2sin 30? . 集训二(分式化简) 7.计算 , 1. (2011.南京)计算 .

x 2 - 4 - 9.(2011.徐州)化简: (a - ) ÷ a - 1 10.(2011.扬州)化简 1 + x ? ÷ x ( 2. (2011.常州)化简: 2 x 1 x - 2 7. (2011.泰州)化简 . 3.(2011.淮安)化简:(a+b )2+b (a ﹣b ). 8.(2011.无锡)a(a-3)+(2-a)(2+a) 4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中 a =2,b =1. 1 a a ; 5. (2011.苏州)先化简,再求值: a ﹣1+ )÷(a 2+1),其中 a= ﹣ 1. 6.(2011.宿迁)已知实数 a 、b 满足 ab =1,a +b =2,求代数式 a 2b +ab 2 的值. ? ? 1 ? x 2 - 1 ? 集训三(解方程) 1. (2011?南京)解方程 x 2﹣4x+1=0.

圆锥曲线与射影几何

圆锥曲线与射影几何 射影几何是几何学的重要容,射影几何中的一些重要定理和结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线122=- y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据和特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调和点列。

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

最新中考数学《分式及分式方程》计算题(附答案)

中考《分式及分式方程》计算题、答案一.解答题(共30小题) 1.(2011?自贡)解方程:. 2.(2011?孝感)解关于的方程:. 3.(2011?咸宁)解方程. 4.(2011?乌鲁木齐)解方程:=+1. 5.(2011?威海)解方程:. 6.(2011?潼南县)解分式方程:. 7.(2011?台州)解方程:. 8.(2011?随州)解方程:. 9.(2011?陕西)解分式方程:. 10.(2011?綦江县)解方程:. 11.(2011?攀枝花)解方程:. 12.(2011?宁夏)解方程:. 13.(2011?茂名)解分式方程:. 14.(2011?昆明)解方程:.

(2)解不等式组. 16.(2011?大连)解方程:. 17.(2011?常州)①解分式方程; ②解不等式组. 18.(2011?巴中)解方程:. 19.(2011?巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1. 20.(2010?遵义)解方程: 21.(2010?重庆)解方程:+=1 22.(2010?孝感)解方程:. 23.(2010?西宁)解分式方程: 24.(2010?恩施州)解方程: 25.(2009?乌鲁木齐)解方程: 26.(2009?聊城)解方程:+=1 27.(2009?南昌)解方程:

29.(2008?昆明)解方程: 30.(2007?孝感)解分式方程:. 答案与评分标准 一.解答题(共30小题) 1.(2011?自贡)解方程:. 考点:解分式方程。 专题:计算题。 分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验. 解答:解:方程两边都乘以y(y﹣1),得 2y2+y(y﹣1)=(y﹣1)(3y﹣1), 2y2+y2﹣y=3y2﹣4y+1, 3y=1, 解得y=, 检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0, ∴y=是原方程的解, ∴原方程的解为y=. 点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 2.(2011?孝感)解关于的方程:. 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(x+3)(x﹣1),得 x(x﹣1)=(x+3)(x﹣1)+2(x+3), 整理,得5x+3=0, 解得x=﹣. 检验:把x=﹣代入(x+3)(x﹣1)≠0. ∴原方程的解为:x=﹣.

2018年中考数学计算题专项训练

2018年中考数学计算题专项训练 一、集训一(代数计算) 1. 计算: (1)30821 45+-Sin (2)错误!未找到引用源。 (3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 22161-+-- (9)( 3 )0 - ( 12 )-2 + tan45° (10)()()0332011422 ---+÷- 2.计算:345tan 32312110-?-??? ? ??+??? ??-- 3.计算:()() ()??-+-+-+??? ??-30tan 331212012201031100102 4.计算:() ()0112230sin 4260cos 18-+?-÷?--- 5.计算:120100(60)(1) |28|(301) cos tan -÷-+-- 二、集训二(分式化简) 1. . 2。 2 1422---x x x 、 3. (a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -??+÷ ??? 6、化简求值 (1)??? ?1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+错误!未找到引用源。)÷(a 2+1),其中a=错误!未找到引用源。﹣1. (3)2121(1)1a a a a ++-?+,其中a -1. (4))2 52(423--+÷--a a a a , 1-=a (5))12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -??+÷ ?+--??然后选取一个使原式有意义的x 的值代入求值

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

中考数学专题练习一元一次方程的实际应用几何问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-几何问题(含解析) 一、单选题 1.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=() A.4cm B.5cm C.6cm D.7c m 2.一个长方形的周长是26cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则长方形的长是() A.5cm B.7cm C.8cm D.9c m 3.如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为() A. B.m﹣n C. D. 4.一个角比它的余角大25°,那么这个角的补角是() A.67.5° B.22.5° C.57.5° D.122.5° 5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()

A.= B.= C.2π(60+10)×6=2π(60+π)×8 D.2π(60-x)×8=2π(60+x)×6 6.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程: ①4×3(2x+3)=0.5×0.5×504; ①2×3(2x+6)+2×3x=0.5×0.5×504; ①(x+6)(2x+6)﹣2x?x=0.5×0.5×504, 其中正确的是() A.① B.① C.①① D.①①① 7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆钢柱长() A.10厘米 B.20厘米 C.30厘米 D.40厘米 8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是() A.5.4米 B.7米 C.5.08米 D.6.67米 9.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是() A.10cm2 B.12cm2 C.14cm2 D.16cm2

中考数学计算题大全及答案解析

中考数学计算题大全及答案解析 1.计算: (1); (2). 【来源】2018年江苏省南通市中考数学试卷 【答案】(1)-8;(2) 【解析】 【分析】 (1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果; (2)用平方差公式和完全平方公式,除法化为乘法,化简分式. 【详解】 解:(1)原式; (2)原式. 【点睛】 本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则. 2.(1)计算: (2)化简: 【来源】四川省甘孜州2018年中考数学试题 【答案】(1)-1;(2)x2 【解析】 【分析】 (1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.

(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可. 【详解】 (1)原式=-1-4× =-1- =-1; (2)原式=-x =x(x+1)-x =x2. 【点睛】 此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键. 3.(1)解不等式组: (2)化简:(﹣2)?. 【来源】2018年山东省青岛市中考数学试卷 【答案】(1)﹣1<x<5;(2). 【解析】 【分析】 (1)先求出各不等式的解集,再求出其公共解集即可. (2)根据分式的混合运算顺序和运算法则计算可得. 【详解】 (1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 则不等式组的解集为﹣1<x<5; (2)原式=(﹣)?

=? =. 【点睛】 本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则. 4.先化简,再求值:,其中. 【来源】内蒙古赤峰市2018年中考数学试卷 【答案】, 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x的值,最后代入计算可得. 【详解】 原式(x﹣1) . ∵x=22﹣(1)=21,∴原式.【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2) 【来源】2018年四川省遂宁市中考数学试卷 【答案】-3. 【解析】 【分析】

相关文档
最新文档