最新 物理速度选择器和回旋加速器专题练习(及答案)

最新 物理速度选择器和回旋加速器专题练习(及答案)
最新 物理速度选择器和回旋加速器专题练习(及答案)

最新 物理速度选择器和回旋加速器专题练习(及答案)

一、速度选择器和回旋加速器

1.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?

(2)带电粒子的比荷(即电荷量的数值和质量的比值

q

m

)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?

【答案】(1)负电(2)2

q E m B L =

(3)从dc 边距离d 点距离为32

L 处射出磁场;3BL E

π

【解析】 【详解】

(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:

qE =qv 0B

得:

0E

v B

=

撤去磁场后,粒子做类平抛运动,则有:

x =v 0t =L

2 2

12qE L

y t m =

=

得:

2 q E m B L

= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:

2

00v qv B m r

= 得:

mv r L qB

=

= 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:

22

22L x r r +-=()

r=L

得:

3x L =

所以1

3

θπ=

23BL t T E

θππ=

= 答:(1)带电粒子带负电; (2)带电粒子的比荷2

q

E

m B L

=

; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点

3

x L =

处离开磁场,在磁场中运动的时间3BL t E =π.

2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.

(1)求两极板间电压U 的大小

(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.

【答案】(1)20mv q (2)002121

22

v v v -+≤≤ 【解析】

试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.

(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:

212

R at =

,02R v t =,2qU

a Rm =

解得:2

mv U q

=

(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R

= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:

由几何关系有:2r r R +=

由洛伦兹力提供向心力有:2

11v qv B m r

=

解得:1021

v v -=

若打到b 点,如图乙所示:

由几何关系有:2r R R '-=

由洛伦兹力提供向心力有:22

2v qv B m r ='

解得:2021

v v += 故

01021

21

2

2

v v v v -+≤≤=

3.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =

1×104

V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为m

q

=5×10-8kg/C

的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小

(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.

【答案】(1)竖直向下;52s 10m /?(2)1.34m 【解析】 【详解】

(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得

qE qvB =

离子流的速度

5210m /s E

v B

=

=? (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有

2

v qvB m r

=

0.2m mv

r qB

=

= 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示

图一

由几何关系可得,圆心角60θ

=?

1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-

若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示

图二

通过电场的时间

6110L

t s v

-=

=? 加速度

11210m /s qE

a m

=

=? 在电场中的偏移量

2

10.1m 2

y at =

=

粒子恰好从电场右下角穿出电场,则

tan 1y x

v v α=

=

由几何关系得

20.4m y =

a 和

b 的距离

()

120.63-0.30.40.2m ab y y y L =++=++=1.34m

4.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;

(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;

(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.

【答案】(1)E B ; (2qEL

m

3)54qBL m 或4qBL m

【解析】 【分析】 【详解】

(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:

qv 1B =qE

解得:

1E v B

=

(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:

L =v 2t

竖直方向有:

21122

L at = 由牛顿第二定律有:

qE =ma

解得:

2qEL

v m

=

(3)若粒子从板右边缘飞出,则

222

2

L r L r =+-()

解得:

5 4

r L =

由23

3v qv B m r

= 得:

354qBL

v m

若粒子从板左边缘飞出,则:

4

L r =

由24

4v qv B m

r

=得:

44qBL

v m

5.如图为质谱仪的原理图。电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:

(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?

(3)打在a 、b 两点的距离差△x 为多大?

【答案】(1)垂直纸面向外 (2)1U

v B d = (3)

12122()U m m x qB B d

-?= 【解析】 【详解】

(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:

1U

qvB q

d

= 解得:1U v B d

=

(3)两粒子均由洛伦兹力提供向心力

2

2v qvB m R

=

可得:112m v R qB =

,222

m v

R qB = 两粒子打在底片上的长度为半圆的直径,则:

1222x R R ?=-

联立解得:12122()

U m m x qB B d

-?=

6.如图所示为一速度选择器,也称为滤速器的原理图.K 为电子枪,由枪中沿KA 方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S .设产生匀强电场的平行板间的电压为300 V ,间距为5 cm ,垂直纸面的匀强磁场的磁感应强度为0.06 T ,问:

(1)磁场的方向应该垂直纸面向里还是垂直纸面向外? (2)速度为多大的电子才能通过小孔S?

【答案】(1)磁场方向垂直纸面向里(2)1×105m/s 【解析】 【分析】 【详解】

(1)由题图可知,平行板产生的电场强度E 方向向下.带负电的电子受到的静电力F E =eE ,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S ,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B 的方向垂直于纸面向

里.

(2)能够通过小孔的电子,其速率满足evB=eE

解得:v=E B

又因为E=U d

所以v=U

Bd

=1×105m/s

即只有速率为1×105m/s的电子才可以通过小孔S

7.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E、磁感应强度为B的复合场区域.进入时氕与氘、氘与氚的间距均为d,射出复合场后进入y轴与MN之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN射出.虚线MN与PQ间为真空区域Ⅱ且PQ与MN

平行.已知质子比荷为q

m

,不计重力.

(1)求粒子做直线运动时的速度大小v;

(2)求区域Ⅰ内磁场的磁感应强度B1;

(3)若虚线PQ右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN上的一点,求该磁场的最小面积S和同时进入复合场的氕、氚运动到汇聚点的时间差△t.

【答案】(1)E

B

(2)

mE

qdB

(3)

(2)Bd

E

πθ

+

【解析】

【分析】

由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B1;分析可得氚粒子圆周运动直径为3r,求出磁场最小面积,在结合周期公式即可求得时间差.

【详解】

(1)粒子运动轨迹如图所示:

由电场力与洛伦兹力平衡,有:Bqv =Eq 解得:E v B

=

(2)由洛伦兹力提供向心力,有:2

1v qB v m r

=

由几何关系得:r =d

解得:1mE

B qdB

=

(3)分析可得氚粒子圆周运动直径为3r ,磁场最小面积为:2

2

13222r r S π????

=- ? ?????

解得:S =πd 2 由题意得:B 2=2B 1

由2r

T v

π= 可得:2m T qB π=

由轨迹可知:△t 1=(3T 1﹣T 1)2θ

π

, 其中11

2m

T qB π= △t 2=

1

2(3T 2﹣T 2)其中22

2m T qB π=

解得:△t =△t 1+△t 2=()()1

22m dB

qB E

θπθπ++=

【点睛】

本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.

8.如图所示,在直角坐标系xOy 平面内,以O 点为圆心,作一个半径为R 的园形区域,A 、B 两点为x 轴与圆形区域边界的交点,C 、D 两点连线与x 轴垂直,并过线段OB 中点;将一质量为m 、电荷量为q(不计重力)的带正电的粒子,从A 点沿x 轴正方向以速度v 0射入圆形区域.

(1)当圆形区域内只存在平行于y 轴方向的电场时,带电粒子恰从C 点射出圆形区域,求此电场的电场强度大小和方向;

(2)当圆形区域内只存在垂直于区域平面的磁场时,带电粒子怡从D 点射出圆形区域,求此磁场的磁感应强度大小和方向;

(3)若圆形区域内同时存在(1)中的电场和(2)中的磁场时,为使带电粒子恰能沿直线从B 点射出圆形区域,其入射速度应变为多少?

【答案】(1)2

43mv E =

方向沿y 轴正方向 (2)0

33mv B qR

= 方向垂直坐标平面向外 (3)043v v =

【解析】 【分析】

(1)只存在电场时,粒子在电场中做类平抛运动,根据水平和竖直方向的运动列方程求解电场强度;(2)区域只存在磁场时,做匀速圆周运动,由几何关系求解半径,再根据洛伦兹力等于向心力求解磁感应强度;(3)若电场和磁场并存,粒子做直线运动,电场力等于洛伦兹力,列式求解速度. 【详解】

(1)由A 到C 做类平抛运动:

03

2

R v t =; 231

2at qE ma =

解得3

439mv E qR

=

方向沿y 轴正方向; (2)

从A 到D 匀速圆周运动,则0

tan30R

r

=

,3r R =

20

0v qv B m r

= 0mv r qB =

解得0

33mv B qR

=

方向垂直坐标平面向外. (3)从A 到B 匀速直线运动,qE=qvB 解得E v B

= 即043v v =

【点睛】

此题是带电粒子在电场中的偏转,在磁场中的匀速圆周运动以及在正交场中的直线运动问题;粒子在电场中做类平抛运动,从水平和竖直两个方向列式;在磁场中做匀速圆周运动,先找半径和圆心,在求磁感应强度;在正交场中的直线运动时列平衡方程求解.

9.如图所示,两竖直金属板间电压为U 1,两水平金属板的间距为d .竖直金属板a 上有一质量为m 、电荷量为q 的微粒(重力不计)从静止经电场加速后,从另一竖直金属板上的小孔水平进入两水平金属板间并继续沿直线运动.水平金属板内的匀强磁场及其右侧宽度一定、高度足够高的匀强磁场方向都垂直纸面向里,磁感应强度大小均为B ,求:

(1)微粒刚进入水平金属板间时的速度大小v 0; (2)两水平金属板间的电压;

(3)为使微粒不从磁场右边界射出,右侧磁场的最小宽度D . 【答案】(1)1

02qU v m =12qU U m = (3)12qU m D Bq m

=【解析】 【分析】

(1)粒子在电场中加速,根据动能定理可求得微粒进入平行金属板间的速度大小; (2)根据粒子在平行板间做直线运动可知,电场力与洛伦兹力大小相等,列式可求得电压大小;

(3)粒子在磁场中做匀速圆周运动,根据几何关系可知半径与D 之间的关系,再由洛伦兹充当向心力可求得最小宽度. 【详解】

(1)在加速电场中,由动能定理,得 qU 1=

1

2

mv 02,

解得v0

(2)在水平金属板间时,微粒做直线运动,则

Bqv0=q U

d

解得U=

(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D,则

Bqv0=m

2

v

r

且r=D,

解得D

【点睛】

题考查带电粒子在电场和磁场中的运动,要注意明确带电粒子在磁场中运动时注意几何关系的应用,明确向心力公式的应用;而带电粒子在电场中的运动要注意根据功能关系以及运动的合成和分解规律求解.

10.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D1和D2,磁感应强度为B,金属盒的半径为R,两盒之间有一狭缝,其间距为d,且

R?d,两盒间电压为U。A处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量。已知带电粒子的质量为m、电荷量为+q。

(1)不考虑加速过程中的相对论效应和重力的影响。

①求粒子可获得的最大动能E k m;

②若粒子第1次进入D1盒在其中的轨道半径为r1,粒子第2次进入D1盒在其中的轨道半径为r2,求r1与r2之比;

③求粒子在电场中加速的总时间t1与粒子在D形盒中回旋的总时间t2的比值,并由此分析:计算粒子在回旋加速器中运动的时间时,t1与t2哪个可以忽略?(假设粒子在电场中的加速次数等于在磁场中回旋半周的次数);

(2)实验发现:通过该回旋加速器加速的带电粒子能量达到25~30MeV后,就很难再加速了。这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。

【答案】(1)①222

2q B R m

3;③2d R π, t 1可以忽略;(2)见解析

【解析】 【分析】 【详解】

(1)①粒子离开回旋加速器前,做的还是圆周运动,由洛仑兹力提供向心力,根据牛顿第二定律可得

2

m v qv B m R =

212

km m E mv =

解得

222

2km

B R E q m

=

②设带电粒子在两盒间加速的次数为N ,在磁场中有

2

v qvB m r

=

在电场中有

212

NqU mv =

第一次进入D 1盒中N=1,第二次进入D 1盒中N=3,可得

123

r r = ③带电粒子在电场中的加速度为

qE qU

a m md =

= 所以带电粒子在电场中的加速总时间为

1m v BdR t a U

=

= 设粒子在磁场中回旋的圈数为n ,由动能定理得

2

122

m nqU

mv =

带电粒子回旋一圈的时间为

2πm

T qB

=

所以带电粒子在磁场中回旋的总时间为

2

2π2BR t nT U

== 122πt d t R

= 已知R d >>可知12t t <<,所以1t 可以忽略。 (2)带电粒子在磁场中做匀速圆周运动周期为

2πm

T qB

=

对一定的带电粒子和一定的磁场来说,这个周期是不变的。如果在两盒间加一个同样周期的交变电场,就可以保证粒子每次经过电场时都能被加速,当粒子的速度足够大时,由于相对论效应,粒子的质量随速度的增加而增大,质量的增加会导致粒子在磁场中的回旋周期变大,从而破坏了与电场变化周期的同步,导致无法继续加速。

11.回旋加速器是利用磁场和电场共同作用对带电粒子进行加速的仪器。现在有一个研究小组对回旋加速器进行研究。研究小组成员分工合作,测量了真空中的D 形盒的半径为R ,磁感应强度方向垂直加速器向里,大小为B 1,要加速粒子的电荷量为q ,质量为m ,电场的电压大小为U 。帮助小组成员完成下列计算: (1)本回旋加速器能将电荷加速到的最大速度是? (2)求要达到最大速度,粒子要经过多少次电场加速?

(3)研究小组成员根据磁场中电荷偏转的规律设计了如图乙的引出装置。在原有回旋加速器外面加装一个圆环,在这个圆环区内加垂直加速器向里的磁场B 2,让带电粒子在加速器边缘恰好能偏转至圆环区域外边缘加以引导。求圆环区域所加磁场的磁感应强度B 2?

【答案】(1) 1m qB R v m =;(2)22

12qB R n Um

=;(3) 1222B R B R d =+

【解析】 【详解】

(1)粒子在磁场中运动时满足:

2

1v qvB m r

=

当被加速的速度达到最大时满足:

r=R

则解得

1m qB R

v m

=

(2)粒子在电场中被加速,每次经过电场时得到的能量为Uq ,则:

2

12

m nUq mv =

解得

22

12qB R n Um

=

(3)由左手定则可知,粒子带负电;要想使得带电粒子在加速器边缘恰好能偏转至圆环区域外边缘,则粒子运动的轨道半径

11

22

r R d =+() ;

2

21

m m v qv B m r =

解得

1222B R

B R d

=

+

12.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B 的匀强磁场与盒面垂直,A 处粒子源产生的粒子初速度可忽略不计,质量为m 、电荷量为+q ,每次在两D 形盒中间被加速时加速电压均为U ,加速过程中不考虑相对论效应和重力作用。求:

(1)粒子第4次加速后的运动半径与第5次加速后的运动半径之比; (2)粒子在回旋加速器中获得的最大动能及加速次数。

【答案】(152) 2222km q B R E m = 22

2qB R n mU

=

【解析】

【分析】

(1)带电粒子在磁场中做匀速圆周运动,根据动能定理和洛伦兹力提供向心力求出轨道半径与加速电压的关系,从而求出轨道半径之比。

(2)通过D形盒的半径求出粒子的最大速度和最大动能,结合动能定理求出加速的次数。

【详解】

(1)设粒子每加速一次动能增加qU,第n次被加速后粒子的动能:nqU=1

2

mv n2

qv n B=m

2 n n v r

解得:

12

n

nmU

r

B q

=

粒子笫4次加速后的运动半径与笫5次加速后的运动半径之比:4

5

5

r

r

(2)设粒子在回旋加速器中运动的最大半径为R,粒子的最大速度为v m,受力分析可知qv m B=m

2

m

n

v

r

粒子的最大动能:2

222

1

22

k m

m

q B R

E

m

v

m

==

粒子在回旋加速器中加速总次数:

22

2

km

E qB R

n

qU mU

==

【点睛】

解决本题的关键掌握回旋加速器的原理,运用电场加速和磁场偏转,知道粒子在磁场中运动的周期与加速电场的变化周期相等。

13.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速.

求该回旋加速器所加交变电场的频率;

求粒子离开回旋加速器时获得的动能;

设两D形盒间的加速电压为U,质子每次经电场加速后能量增加,加速到上述能量所需时间不计在电场中的加速时间.

【答案】(1)(2)(3)

【解析】

试题分析: (1)由回旋加速器的工作原理知,交变电场的频率与粒子在磁场运动的频率相等,故:

粒子在磁场中做匀速圆周运动过程,洛伦兹力提供向心力,根据牛顿第二定律,有:

周期:

联立解得:,

(2)粒子离开磁场时速度最大,根据牛顿第二定律,有:

最大动能:

联立解得:

(3)加速次数:粒子每转动一圈加速两次,故转动的圈数为:

粒子运动的时间为:t=nT

联立解得:

考点:带电粒子在磁场中运动

14.如图甲所示为回旋加速器的工作原理示意图.置于真空中的“D”形金属盒半径为R,两盒间的狭缝间距为d,匀强磁场B垂直盒面向下,加速电压U按如图乙所示的规律变化.若被加速粒子的质量为m、电量为+q,粒子从A点飘入时的速度可忽略不计,且加速过程中不考虑相对论效应和重力的影响.

(1)求粒子第n 次被加速前、后的轨道半径之比;

(2)要使前半个周期飘人的粒子中有超过90%的能射出,求狭缝间距d 应满足的条件. 【答案】(1

)1n n r r -=(2)210U m d qRB π≤ 【解析】 【分析】 【详解】

(1)粒子每次加速获得的能量为qU ,由动能定理得第n 次加速后的动能为

2

12

n nqU mv =

; 粒子在磁场中回旋时由洛伦兹力提供向心力,由2n n n v qv B m r =

得n r =

故粒子第n

次被加速前、后的轨道半径之比为

1n n r r -=

; (2)由金属盒半径为R 知粒子获得的最大速度为m RqB

v m

=; 粒子加速时qU a md =

,粒子k 此加速达到最大速度,则有2112kd at =,2

12

m kqU mv =; 联立解得加速时间1RBd

t U

=

; 由电压的变化规律知前半个周期内只有前一段时间212

T

t t =

-内飘入的粒子才能每次被加速,欲使通过率为90%,则有20.92

T

t ≥?,代入数据可得

210U m d qRB π≤.

15.回旋加速器是加速带电粒子的常用仪器,其结构示意图如图甲所示,其中置于高真空中的金属D 形盒的半径为R ,两盒间距极小,在左侧D 形盒圆心处放有粒子源S ,匀强磁场的磁感应强度为B ,方向如图乙所示(俯视).设带电粒子质量为m ,电荷量为+q ,该粒子从粒子源S 进入加速电场时的初速度不计,两金属盒狭缝处加高频交变电压,加速电压大小U 可视为不变,粒子重力不计,粒子在电场中的加速次数等于回旋半周的次数,求: (1)粒子在回旋加速器中经过第一次加速可以达到的速度和第一次在磁场中的回旋半径; (2)粒子在第n 次通过狭缝前后的半径之比;

(3)粒子若能从上侧边缘的引出装置处导出,则R 与U 、B 、n 之间应满足什么条件?

【答案】2Uq m 2Uqm 1n n - (3) qBR m 2nUq

m

【解析】

(1)粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动, 根据Uq =

2

112

mv v 12Uq

m

根据2

v qvB m r

=

12Uqm

r =

(2)根据nUq =212

n mv v n 2nUq

m

根据2

v qvB m r

=

2n nUqm

r =

粒子在第n 1n n -

(3)根据2

v qvB m r

=

nUq =

212

n mv 知v m =

2qBR

nqU

m m

=

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

高考物理速度选择器和回旋加速器各地方试卷集合汇编及解析(1)

高考物理速度选择器和回旋加速器各地方试卷集合汇编及解析(1) 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1)求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ;

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

高中物理速度选择器和回旋加速器专项训练及答案及解析

高中物理速度选择器和回旋加速器专项训练及答案及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

最新高二物理综合强化训练试题

N S G 胡文2021年高二物理综合强化训练试题(八) 审稿人:胡文2021年 1、如图所示,线圈两端接在电流表上组成闭合电路,在下列情况中,电流表指针会发生偏转的是 ( ABD ) A 、线圈不动,磁铁插入线圈 B 、线圈不动,磁铁拔出线圈 C 、磁铁插在线圈内不动 D 、线圈不动,磁铁以其中心为轴,沿纸面做顺时针方向转动 2.如图所示的光控电路用发光二极管LED 模仿路灯,RG 为光敏电阻.“功能的非门,当加在它的输入端 A 的电压逐渐上升到某个值时,输出端Y 会突然从高电平跳到低电平,而当输入端A 的电压下降到另一个值时,Y 会从低电平跳到高电平.在天暗时路灯(发光二极管)会点亮,下列说法中正确的是( BD ) A .天暗时Y 处于高电平 B .天暗时Y 处于低电平 C .当R1调大时A 端的电压降低, 灯(发光二极管)点亮 D .当R1调大时A 端的电压降低, 3、如图所示,质量为m 电量为q 的带正电物体,在磁感强度为B 、方向直纸面向里的匀强磁场中,沿动摩檫因数为μ的水平面向左运动,则CD A.物体的速度由v 减小到零所用的时间等于mv/μ(mg+qvB) B.物体的速度由。减小到零所用的时间小于mv/μ(mg+qvB) 物体做匀速 C.若另加一个电场强度为μ(mg+qvB)/q 、方向水平向左的匀强电场, 运动 。 D.若另加一个电场强度为 (mg+qvB)/q 、方向竖直向上的匀强电场,物体做匀速运动· 4、如图所示,回旋加速器D 形盒的半径为R ,用来加速质量为m ,电量为q 的质子,质子每次经过电场区时,都恰好在电压为U 时并被加速,且电场可视为匀强电场,使质子由静止加速到能量为E 后,由A 孔射出 。下列说法正确的是( BD ) A.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的能量E 将越大 B.磁感应强度B 不变,若加速电压U 不变, D 形盒半径R 越大、质子的能量E 将越大 C.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的在加速器中的 运动时间将越长 D.D 形盒半径R 、磁感应强度B 不变,若加速电压U 越高,质子的在加速器中的运动时间将越短 5.在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B = 0.2T 。一个带正电的粒子,以初速度v 0=106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q/m =108 C/kg ,不计粒子重力。 (1)粒子在磁场中作匀速圆周运动的半径是多少?R =0.05m (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的夹角θ。θ=37 v 0 θ a O 图5 t 4 e t t 1 t 2 t 3

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高考物理最新模拟题精选训练(磁场)专题05 质谱仪与回旋加速器(含解析)

专题05 质谱仪与回旋加速器 1.(2017武汉武昌模拟)回旋加速器的核心部分是真空室中的两个相距很近的D形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下。连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出。如果用同一回旋加速器分别加速氚核(13H)和α粒子(24He),比较它们所需要的高频交流电源的周期和引出时的最大动能,下列说法正确的是 A.加速氚核的交流电源的周期较大;氚核获得的动能较大 B.加速氚核的交流电源的周期较小;氚核获得的动能较大 C.加速氚核的交流电源的周期较大;氚核获得的动能较小 D.加速氚核的交流电源的周期较小;氚核获得的动能较小 【参考答案】C. 【命题意图】本题考查回旋加速器、带电粒子在匀强磁场中的匀速圆周运动、周期、动能及其相关的知识点。 【解题思路】由于氚核的比荷q/m小于α粒子的比荷,由带电粒子在匀强磁场中运动的周期公式T=2m qB 可 知加速氚核的交流电源的周期较大。粒子通过回旋加速器获得的最大速度v=qBR m ,动能 E k=1 2 mv2= 222 2 q B R m ,将氚核和α粒子的电荷量q和质量m代入比较可知,α粒子获得的动能较大,选项C 正确。

2.(2017云贵川百校大联考)图甲是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒均置于匀强磁场中,并分别与高频交流电源两极相连.带电粒子在磁场中运动的动能E k随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法正确的是() A.(t2﹣t1)=(t3﹣t2)=…(t n﹣t n﹣1) B.高频交流电源的变化周期随粒子速度的增大而减小 C.要使得粒子获得的最大动能增大,可以减小粒子的比荷 D.要使得粒子获得的最大动能增大,可以增大匀强磁场的磁感应强度 【参考答案】AD. 3.(2016济南模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示。粒子源S发出两种带正电的同位素粒子甲和乙,两种粒子从S出来时速度很小,可忽略不计,粒子经过加速电场加速后垂直进入有界匀强磁场(图中线框所示),最终打到照相底片上。测得甲、乙两种粒子打在照相底片上的点到入口的距离之比为5︰4,则它们在磁场中运动的时间之比是 A.5︰4 B.4︰5 C.25︰16 D.16︰25 【参考答案】. C 【命题意图】本题考查了质谱仪、洛伦兹力和带电粒子在匀强磁场中的运动、动能定理及其相关的知识点。

2020届高考物理冲刺专项训练21 带电粒子在复合场中的运动 (原卷版)

带电粒子在复合场中的运动 一、单选题 1.(2020·全国高三专题练习)作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力.某电磁泵及尺寸如图所示,矩形截面的水平管道上下表面是导体,它与磁感强度为B的匀强磁场垂直,并有长为的部分在磁场中,当管内充满血液并通以横穿管子的电流时血液便能向前流动.为使血液在管内不流动时能产生向前的压强P,电流强度I应为 A.B.C.D. 2.(2020·全国高三专题练习)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的() A.前表面的电势比后表面的低 B.前、后表面间的电压U与υ无关 C.前、后表面间的电压U与c成正比 D.自由电子受到的洛伦兹力大小为eU a 3.(2020·江苏省高三月考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的

是 A .增大匀强电场间的加速电压 B .增大磁场的磁感应强度 C .减小狭缝间的距离 D .减小D 形金属盒的半径 4.(2020·江苏省高三月考)磁流体发电机的结构简图如图所示。把平行金属板A 、B 和电阻R 连接,A 、B 之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 喷入磁场,A 、B 两板间便产生电压,成为电源的两个电极。下列推断正确的是( ) A .A 板为电源的正极 B .电阻R 两端电压等于电源的电动势 C .若减小两极板的距离,则电源的电动势会减小 D .若增加两极板的正对面积,则电源的电动势会增加 5.(2020·四川省高三二模)反质子的质量与质子相同,电荷与质子相反。一个反质子从静止经电压U 1加速后,从O 点沿角平分线进入有匀强磁场(图中未画岀)的正三角形OAC 区域,之后恰好从A 点射岀。已知反质子质量为m ,电量为q ,正三角形OAC 的边长为L ,不计反质子重力,整个装置处于真空中。则( ) A B .保持电压U 1不变,增大磁感应强度,反质子可能垂直OA 射出

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。 【答案】(1)1U B d (2)22cos v B L α(3)(1sin )2cos L αα - 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得: qυB 1=q U d 解得υ=1U B d ; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高考物理速度选择器和回旋加速器专题训练答案及解析

高考物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

高中物理速度选择器和回旋加速器及其解题技巧及练习题

高中物理速度选择器和回旋加速器及其解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.

(1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r = 解得:1021 2 v v = 若打到b 点,如图乙所示:

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题 一、速度选择器和回旋加速器 1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m =3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。求: (1)粒子初速度v 0的大小; (2)圆形匀强磁场区域的磁感应强度B 2的大小; (3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。 【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。 【解析】 【详解】 (1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡 qv 0B 1=Eq 带电粒子初速度 v 0=5×104m/s (2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力 20 02v qv B m r = 轨迹如图所示:

由几何关系,带电粒子做圆周运动的半径为 4 0.8m tan 373 R r R = ==? 联立解得: B 2=0.02T (3)带电粒子在电场中做类平抛运动 水平方向 0L v t =? 竖直方向 212 y at = 由牛顿第二定律 qE ma = 粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示: 由几何关系 ,利用三角形相似,有: 22 ()22 L y y R d +=+ 解得

2020年高考物理考点题型归纳与训练专题十一 带电粒子在组合场、复合场中的运动(含解析)

2020高考物理考点题型归纳与训练 专题十一 带电粒子在组合场、复合场中的运动 题型一、带电粒子在复合场中运动的应用实例 【典例1】.(1)(2019·安徽省示范高中高三调研)如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器。静电分析器通道中心线MN 所在圆的半径为R ,通道内有均匀辐射的电场,中心线处的电场强度大小为E ;磁分析器中分布着方向垂直于纸面,磁感应强度为B 的匀强磁场,磁分析器的左边界与静电分析器的右边界平行。由离子源发出一个质量为m 、电荷量为+q 的离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN 做匀速圆周运动,而后由P 点进入磁分析器中,最终经过Q 点进入收集器。下列说法中正确的是( 0 A .磁分析器中匀强磁场的方向垂直于纸面向内 B .加速电场中的加速电压U =12 ER C .磁分析器中轨迹圆心O 2到Q 点的距离d = mER q D .任何带正电的离子若能到达P 点,则一定能进入收集器 【答案】 B 【解析】 该离子在磁分析器中沿顺时针方向转动,所受洛伦兹力指向圆心,根据左手定则可知,磁分析器中匀强磁场的方向垂直于纸面向外,A 错误;该离子在静电分析器中做匀速圆周运动,有qE =m v 2R ,在加速电场中加速有qU =12mv 2,联立解得U =1 2ER ,B 正确;该离 子在磁分析器中做匀速圆周运动,有qvB =m v 2r ,又qE =m v 2R ,可得r = 1 B mER q ,该离子经Q 点进入收集器,故d =r = 1 B mER q ,C 错误;任一初速度为零的带正电离子,质量、电荷

相关文档
最新文档