变压器的参数和数学模型

变压器的参数和数学模型
变压器的参数和数学模型

第二节变压器的参数和数学模型

?双绕组变压器的参数和数学模型

?三绕组变压器的参数和数学模型

?自耦变压器的参数和数学模型

一.双绕组变压器的参数和数学模型

?阻抗

?电阻

变压器的电阻是通过变压器的短路损耗,其近似等于额定总铜耗。

我们通过如下公式来求解变压器电阻:

(MV A)Rt—电阻(欧)

?电抗

在电力系统计算中认为,大容量变压器的电抗和阻抗在数值上接近相等,可近似如下求解:

Uk —阻抗电压(%),Un —额定电压(kV ),Sn —额定容量(MV A ) Xt —电抗

?

导纳

?电导 变压器电导对应的是变压器的铁耗,近似等于变压器的空载损耗,因此变压器的电导可如下求解:

?电纳

在变压器中,流经电纳的电流和空载电流在数值上接近相等,其求解如下:

二.三绕组变压器的参数和数学模型

?按三个绕组容量比的不同有三种不同的类型:

100/100/100、100/50/100、100/100/50

?按三个绕组排列方式的不同有两种不同的结构:

升压结构:中压内,低压中,高压外

降压结构:低压内,中压中,高压外

?电阻

由于容量的不同,对所提供的短路损耗要做些处理 ?

?对于100/50/100或100/100/50

首先,将含有不同容量绕组的短路损耗数据归算为额定电流下的值。

例如:对于100/50/100

然后,按照100/100/100计算电阻的公式计算各绕组电阻。

2. 电抗

?根据变压器排列不同,对所提供的短路电压做些处理:

一般来说,所提供的短路电压百分比都是经过归算的

三.自耦变压器的参数和数学模型

就端点条件而言,自耦变压器可完全等值于普通变压器,但由于三绕组自耦变压器第三绕组的容量总小于变压器的额定容量,因此需要进行归算。

对于旧标准:

对于新标准,也是按最大短路损耗和经过归算的短路电压百分比值进行计算。

第二章 电力系统各元件的特性和数学模型

一.电力线路的参数和数学模型

二.负荷的参数和数学模型

第三节 电力线路的参数和数学模型

?电力线路结构简述

电力线路按结构可分为

架空线:导线、避雷线、杆塔、绝缘子和金具等

电缆:导线、绝缘层、保护层等

架空线路的导线和避雷线

导线:主要由铝、钢、铜等材料制成

避雷线:一般用钢线

1. 架空线路的导线和避雷线

认识架空线路的标号

×××××—×/×

钢线部分额定截面积

主要载流部分额定截面积

J 表示加强型,Q表示轻型

J 表示多股线

表示材料,其中:L表示铝、

G表示钢、T表示铜、HL表示铝合金例如:LGJ—400/50表示载流额定截面积为400、钢线额定截面积为50的普通钢芯铝线。

为增加架空线路的性能而采取的措施

目的:减少电晕损耗或线路电抗。

?多股线:其安排的规律为:中心一股芯线,由内到外,第一层为6股,第二层为12股,第三层为18股,以此类推

?扩径导线:人为扩大导线直径,但不增加载流部分截面积。不同之处在于支撑层仅有6股,起支撑作用。

?分裂导线:又称复导线,其将每相导线分成若干根,相互间保持一定的距离。但会增加线路电容。

2. 架空线路的绝缘子

架空线路使用的绝缘子分为:针式(35KV以下线路)和悬式(35KV及以上线路)

通常可根据绝缘子串上绝缘子的片数来判断线路电压等级,一般一个绝缘子承担1万V左右的电压。

3. 架空线路的换位问题

目的在于减少三相参数不平衡

整换位循环:指一定长度内有两次换位而三相导线都分别处于三个不同位置,完成一次完整的循环。

换位方式分为:滚式换位和换位杆塔换位

? 电力线路的阻抗

?有色金属导线架空线路的电阻

有色金属导线指铝线、钢芯铝线和铜线

每相单位长度的电阻:

s r /1ρ=

其中: 铝的电阻率为31.5

铜的电阻率为18.8

考虑温度的影响则:

[])20(120-+=t r r t α

2.有色金属导线三相架空线路的电抗 最常用的电抗计算公式:

其中:1g —对数(高等数学)

41105.0lg 6.42-???? ??+=r

m r D f x μπ311 /ca

bc ab m m r r D D D D cm m m D Hz f cm m m r km x =--=--Ω-),或几何均距()交流电频率(数,对铜、铝,导线材料的相对导磁系

)或导线的半径()导线单位长度的电抗(

μμ

进一步可得到:

还可以进一步改写为:

在近似计算中,可以取架空线路的电抗为:0.40欧/km

?分裂导线三相架空线路的电抗

分裂导线采用了改变导线周围的磁场分布,等效地增加了导线半径,从而减少了导线电抗。

可以证明:

4. 钢导线三相架空线路的电抗

钢导线与铝、铜导线的主要差别在于钢导线导磁。

5. 电缆线路的阻抗

电缆线路的结构和尺寸都已经系列化,这些参数可事先测得并0157.0lg 1445.01+=r D x m r r r D x m 779.0','lg 1455.01==根导线间的距离:某根导线与其余

1)(0157.0lg 1445.011312)1(113121-==+=-n d d d rd d d d r r n r D x n n n m n n eq eq m r m r D x μ

0157.0lg 1445.01+=

由制造厂家提供。一般,电缆线路的电阻略大于相同截面积的架空线路,而电抗则小得多。

? 电力线路的导纳

?三相架空线路的电纳

其电容值为:

最常用的电纳计算公式:

架空线路的电纳变化不大,一般为

?分裂导线线路的电纳

10lg 0241.061-?=r D C m (S /km) 10lg 58.761-?=r

D b m km S /1085.26-?(S/km) 10lg 58.761-?=eq m r D b

?架空线路的电导

线路的电导取决于沿绝缘子串的泄漏和电晕

绝缘子串的泄漏:通常很小

电晕:强电场作用下导线周围空气的电离现象

导线周围空气电离的原因:是由于导线表面的电场强度超过了某一临界值,以致空气中原有的离子具备了足够的动能,使其他不带电分子离子化,导致空气部分导电。

确定由于电晕产生的电导,其步骤如下:

1.确定导线表面的电场强度

2.电晕起始电场强度

空气介电常数其中:-==εεπ?r

D r U r Q

E m r ln 2大气压力空气的相对密度气象系数粗糙系数其中:,----+==b m m t b m m E cr

273002996.0 4.212121δδδ

3. ,得电晕起始电压或临界电压

4. 每相电晕损耗功率

5. 求线路的电导

6. 对于分裂导线在第一步时做些改变

实际上,在设计线路时,已检验了所选导线的半径是否能满足晴朗天气不发生电晕的要求,一般情况下可设 g =0

四.电力线路的数学模型

电力线路的数学模型是以电阻、电抗、电纳和电导来表示线路cr r E E =为单位为相电压的有效值,以KV U r D r m m r D r E U cr m

m cr cr -==lg 3.49ln 21δ()521025241)()/( )(-?+=--=?m c cr c c D r f k kV U km kW U U k P δ??线路实际运行电压

)(km S U P g g / 10321-??=()n d r n k r D r U n k r Q k E m eq m m m r πεπ?sin 121ln 2-+===

的等值电路。

分两种情况讨论:

? 一般线路的等值电路

一般线路:中等及中等以下长度线路,对架空线为300km ;对电缆为100km 。

不考虑线路的分布参数特性,只用将线路参数简单地集中起来的电路表示。

二.负荷的参数和数学模型

?负荷用有功功率P 和无功功率Q 来表示。

第二章 电力系统各元件的特性和数学模型

一.电力网络的数学模型

?标幺值的折算

?电压等级的归算

?等值变压器模型

?电力网络的数学模型

?标幺值

?基本概念

?有名制:在电力系统计算时,采用有单位的阻抗、导纳、电压、电流和功率等进行计算。

?标幺制:在电力系统计算时,采用没有单位的阻抗、导纳、电压、电流和功率等进行计算。

?基准值:对于相对值的相对基准。

三者之间的关系:

标幺制=有名制/基准值

4)基本级:将参数和变量归算至同一个电压级。一般取网络中最高电压级为基本级。

?标幺制的优点:线电压和相电压的标幺值数值相等,三相功率和l b B l g G l x X l r R 1111

====

单相功率的标幺值数值相等。

?选择基准值的条件:

基准值的单位应与有名值的单位相同

阻抗、导纳、电压、电流、功率的基准值之间也应符合电路的基本关系

功率的基准值=100MV A

电压的基准值=参数和变量归算的额定电压

2. 电压级的归算

?有名值的电压级归算

对于多电压级网络,都需将参数或变量归算至同一电压级——基本级。

?标幺值的电压级归算

将网络各元件阻抗、导纳以及网络中各点电压、电流的有名值都归算到基本级,然后除以与基本级相对应的阻抗、导纳、电压和电流的基准值。

将未经归算的各元件阻抗、导纳以及网络中各点电压、电流的有名值除以由基本级归算到这些量所在电压级的阻抗、导纳、电压和电流的基准值。 B B B B B B B B Y Z Z I U I U S /133===B B B B B B B B B U S I U S Y S U Z 3///22===

干式变压器技术标 技术参数

3.2.2.5 武钢冷轧新脱脂机组项目 10kV干式变压器 招标技术附件 二0一一年三月

目录 1 概述及通用说明 2 技术资格 3 技术规格 4 供货范围 5 设计、制造、检验标准 6 资料交付 7 设备监制及验收 8 设备制造进度和保证措施 9 功能指标、保证值和考核方法 10 技术服务

1.概述及通用说明 本招标技术附件涉及武钢冷轧新脱脂机组配套用SCB10-10和ZSCB10-10系列环氧树脂浇注干式电力变压器和整流变压器。其各项性能指标均应符合GB、IEC、DIN、ZBK等最新标准。 该产品应具有下述特点: ●阻燃能力强,不会污染环境。 ●防腐、防潮性好,可在100%湿度下正常运行,定运后不需处理即可再 次进网运行。 ●局部放电量小于8Pc(对SCB8),SCB10应好于此值。 ●空载损耗比国际ZBK41003技术条件组I所规定的数值下降10%(对 SCB8)以上,SCB10应好于此值,散热性能好,过载能力强,强迫风冷 时可使额定容量提高50%。 ●低压采用铜箔绕组,匝间电容增大,安匝分布平衡,抗短路、耐雷电冲 击性好。 ●高压绕组须在真空状态下进行浇注,浇注后线圈无气泡,不会因温度骤 变导致线圈开裂,机械强度高。 ●体积小,质量轻,安装方便,经济性能好。 SCB10-10和ZSCB10-10系列环氧树脂浇注干式电力变压器和整流变压器应好于上述性能指标。 所有干式变压器采用F级绝缘,一次、二次均采用电缆进/出线,采用标准的附件和安装材料,制造和试验按照GB和IEC标准,(若有标准不一致时,取高值)。要求损耗小,过载能力强,环保性能好,具有防潮和抗环境温度突变的能力,运行可靠,维护方便。 2.技术资格 2.1卖方应具有生产干式变压器设备的经验和能力。 2.2卖方应提交其过去参加和已建厂的厂名、厂址、性能指标,包括可靠性 和可用性的数据,以及其提供设备实际所具有的特性指标和保证数值的证书,并具有切实可行的质量体系及管理制度。 2.3卖方应提供所投标设备的生产(制造)的许可证。

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括: 额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电 压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA): 额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV): 变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A): 变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):

把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示.H、相数和频率: 三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、xx与冷却: 变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种: 油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平: 有绝缘等级标准。绝缘水平的表示方法举例如下: 高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为 200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为LI75AC35,表示变压器高压雷电冲击耐受电压为75kV,工频耐受电压为35kV,因为低压是400V,可以不考虑。 K、联结组标号: 根据变压器一.二次绕组的相位关系,把变压器绕组连接成各种不同的组合,称为绕组的联结组。为了区别不同的联结组,常采用时钟表示法,即把高压侧线电压的相量作为时钟的长针,固定在12上,低压侧线电压的相量作为时钟的短针,看短针指在哪一个数字上,就作为该联结组的标号.如Dyn11表示一次绕组是(三角形)联结,二次绕组是带有中心点的(星形)联结,组号为 (11)点 B1双绕组变压器损耗电量分两部分计算

实验四 单相变压器的参数测定 (4)

实验四 单相变压器的参数测定 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 二、实验项目 1. 空载实验 测取空载特性U 0=f(I 0),P 0=f(U 0) , cosφ0=f(U 0)。 2. 短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφK =f(I K )。 三、实验方法 1. 实验设备 D33、D32、D34-3、DJ11 图1 空载实验接线图 2. 空载实验 1)在三相调压交流电源断电的条件下,按图1接线。I 0选用0.3A 档,U 0选用100V 档。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量 P N =77W ,U 1N /U 2N =220/55V ,I 1N /I 2N =0.35/1.4A 。变压器的低压线圈a 、x 接电源,高压线圈A 、X 开路。 2)选好所有电表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。 A X

3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U 0=1.2U N ,然后逐次降低电源电压,在1.2~0.2U N 的范围内,测取变压器的U 0、I 0、P 0。 4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表1中。 5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表1中。 3. 短路实验 1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。I k 选用1A 档,U k 选用100V 档。

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

研究报告单相变压器的参数测定实验

研究报告单相变压器的参数测定实验单相变压器实验设计方案 系别:工学院 专业:智能检测 姓名:关济凯 学号:2010016011 单相变压器实验 一、实验目的 1、通过空载试验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。 2、通过短路试验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。 二、实验线路 单相变压器的空载试验和短路试验的接线图分别为图一、图二,功率表的内部等效结构如图三。 图一单相变压器空载试验 图二单相变压器短路试验

图三功率表内部等效结构图 三、实验内容 1、测定变比 接线如图一所示,电源经调压器Ty接至低压绕组,高压绕组开路,合上电源闸刀K,将低压绕组外加电压,并逐渐调节Ty,当调至额定电压U的50%附近N 时,测量低压绕组电压Uax及高压绕组电压U。调节调压器,增大U记录三,AXN 组数据填入表一中。 表一测变比数据 UAX 变比K=序号 U ( V ) Uax ( V ) AXUax 2、空载实验 接线如图一所示,电源频率为工频,波形为正弦波,空载实验一般在低压侧进行,即:低压绕组(ax)上施加电压,高压绕组(AX)开路,变压器空载电流Io = ( 2.5,10%)IN,据此选择电流表及功率表电流线圈的量程。变压器空载运行的功率因素甚低,一般在0.2以下,应选用低功率因素瓦特表测量功率,以减小测量误差。 变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时,电流表功率电流线圈被冲击电流所损坏,合上电源开关K后,调节变压器从0.5UN到1.2UN,测量空载电压Uo,空载电流Io,空载功率Po,读取数据6,7组,记录到表二中。 表二空载试验数据

2.3变压器参数的测定

1、变压器空载试验,在高压侧做和在低压侧做进行比较,下列各物理量是否相同(不等时指出哪一侧大),空载电流实际值,空载损耗实际值,铁心主磁通。 2、一台单相变压器低压侧加100V,高压侧开路,测得;当高压侧加400V,低压侧开路,测得 A, W。 3、一台单相变压器,高压侧短路,当10V电压加在低压侧,测得;当低压侧短路,高压侧加电压,输入电流为5A时,外加电压 V, W。 4、一台单相变压器进行空载实验,在高压侧加额定电压测量或在低压侧加额定电压测量,所测得的空载功率。 (A)不相等,且相差较大; (B)折算后相等; (C)相等; 5、变压器短路电压u k的大小与有关。 (A)电源电压;(B)电源频率;(C)铁心材质;(D)负载大小。 6、为什么变压器的空载功率可以近似看成铁耗,而短路功率近似看成铜耗?

7、变压器空载实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的空载 电流、空载电流百分值、空载功率及算得的励磁阻抗是否相等?如实验时电源电压不加到额定值,问能否将测得的空载电流和空载功率换算到对应于额定电压时的值?为什么? 8、变压器短路实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的短路 电压、短路电压百分值、短路功率及算得的短路阻抗是否相等?如实验时电源电压不加到额定值,将对短路实验应测的和应求的哪些量有影响?哪些量无影响?如何将非额定电流时测得的换算到对应于额定电流时的值? 1、低压侧较高压侧时大相等相等 2、0.5 20 3、40 40 4、(C) 5、(B) 6、答: 7、答:从安全的角度考虑,空载实验一般希望在低压侧进行。将电源加在或高压侧所测得 的空载功率空载电流百分值相等,而空载电流不等,励磁阻抗不等 。如在实验时,电源电压不加到额定值,不能将测得的空载电流和空载功率换算到对应于额定电压时的值,因为空载时与呈非线形关系。 8、答:从仪表量程选择的角度考虑,短路试验一般希望在高压侧进行(高压侧额定电流下)。 将电源加在高压侧或低压侧所测得的短路电压百分值、短路功率相等,而短路电压

过程特性与数学模型

第四章过程特性与数学模型 教学要求:了解过程特性的类型的四种类型 掌握描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 学会一阶对象、二阶对象的建模 掌握机理分析法建模的一般步骤 了解实验测试法 重点:描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 运用机理分析法建模 难点:时间常数的物理意义 过程特性的参数对控制通道、扰动通道的影响 过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。 §4.1过程特性 被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉 等。这些被控过程的特性是由工艺生产过程和工艺设备决 定的。 被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。通道------被控过程的输入量与输出量之间的信号联系 控制通道-----操纵变量至被控变量的信号联系 扰动通道-----扰动变量至操纵变量的信号联系 一、过程特性的类型 多数工业过程的特性可分为下列四种类型: 1.自衡的非振荡过程 2. 无自衡的非振荡过程 3. 有自衡的振荡过程 4. 具有反向特性的过程 二、描述过程特性的参数 用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。(主要针对自衡的非振荡过程) 1.放大系数K ⑴K的物理意义 K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。

⑵放大系数K对系统的影响 对控制通道的影响 对扰动通道的影响 2. 时间常数T ⑴时间常数T的物理意义 时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。 时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。 ⑵时间常数T对系统的影响 对控制通道的影响 对扰动通道的影响 3. 滞后时间τ ⑴纯滞后τ0(P142) ⑵容量滞后τn ⑶滞后时间τ对系统的影响 对控制通道的影响 对扰动通道的影响 §4.2 过程数学模型的建立 过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描 述。 过程的输入是控制作用u(t)或扰动作用f(t), 输出是被控变量y(t). 数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线 和频率特性曲线;另一种是 参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、 状态空间表达式等。本节所涉及的模型均为用微分方程描述的 线性定常动态模型。 建立数学模型的基本方法 机理分析法-----通过对过程内部运动机理的分析,根据其物理或化学变化规律, 在忽略一些次要因素或做出一些近似处理后得到过程特性方 程,用微分方程或代数方程。这种方法完全依赖于足够的先验 知识,所得到的模型称为机理模型。机理分析法一般只能用于 简单过程的建模。机理分析法 实验测试法-----由过程的输入输出数据确定模型的结构和参数。 4.2.1机理分析法 微分方程建立的步骤归纳如下: ⑴根据实际工作情况和生产过程要求,确定过程的输入变量和输出变量。 ⑵依据过程的内在机理,利用适当的定理定律,建立原始方程式。 ⑶确定原始方程式中的中间变量,列写中间变量与其他因素之间的关系。 ⑷消除中间变量,即得到输入、输出变量的微分方程。 ⑸若微分方程是非线性的,需要进行线性化处理。

实验三 单相变压器实验

实验三单相变压器实验 一.实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二.预习要点 1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器的铁耗及铜耗? 三.实验项目 1.单相变压器空载实验测取空载特性U0=f(I0),P0=f(U0)。 2.单相变压器短路实验测取短路特性U K=f(I K),P K=f(I K)。 3.单相变压器负载实验保持U1=U1N,cos?2 =1的条件下,测取U2=f(I2)。 四.实验设备及仪器 1.实验台主控制屏 2.三相可调电阻器900Ω(NMEL-03)。 3.旋转指示灯及开关板(NMEL-05C)。 4.单相变压器(NMEL-25,额定参数:U1N/U2N=220V/110V,I1N/I2N=0.4A/0.8A) 5.交流电压表、电流表、功率、功率因数表(NMCL-001)。 五.实验内容 1.单相变压器空载实验Array实验线路如图3-1。A、V2分别为 交流电流表、交流电压表;W为功率表, 需注意电压线圈和电流线圈的同名端, 避免接错线。 实验时,变压器低压线圈2U1、2U2 接电源,高压线圈1U1、1U2开路。 a.在三相交流电源断电的条件下, 将调压器旋钮逆时针方向旋转到底。并 合理选择各仪表量程。 b.合上交流电源总开关,即按下绿色图3-1 空载实验接线图 “闭合”开关,顺时针调节调压器旋钮,使变 压器空载电压U0=1.2U2N。 c.然后,逐次降低电源电压,在(1.2~0.5)U2N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表3-1中。其中U0=U2N的点必须测,并在该点附近测的点应密些。为了计算变压器的变比,在U2N以下读取原方电压的同时测取副方电压U1U1。1U2,填入表3-1中。 e.测量数据以后,断开三相电源,以便为下次实验作好准备。

油浸式电力变压器技术全参数和要求

油浸式电力变压器 技术参数和要求 GB/T 6451--2008 1范围 本标准规定了额定容量为30 kVA及以上,电压等级为6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV和500 kV三相及500 kV单相油浸式电力变压器的性能参数,技术要求,测试项目及标志、起吊、安装、运输和贮存。 本标准适用于电压等级为6 kV,--500 kV、额定容量为30 kVA及以上、额定频率为50 Hz的油浸式电力变压器. 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 1094.1 电力变压器第1部分:总则(GB 1094.1--1996,eqv IEC 60076-1:1993) GB 1094.2 电力变压器第2部分:温升(GB 1094.2--1996,eqv IEC 60076-2,1993) GB 1094.3电力变压器第3部分:绝缘水平、绝缘试验和外绝缘空气间隙(GB 1094.3--2003,IEC 60076-3:2000,MOD) GB 1094.5 电力变压器第5部分:承受短路的能力(GB 1094. 5--2003,IEC 60076-5:2000,MOD) GB/T 2900.15--1997 电工术语变压器、互感器、调压器和电抗器(neq IEC50(421):1990;IEC50(321),1986) GB/T 15164油浸式电力变压器负载导则(GB/T 15164--1994,idt IEC 60354:1991) JB/T 10088--2004 6 kV—-500 kV级电力变压器声级 3术语和定义 GB 1094.1和GB/T2900.15中确立的术语和定义适用于本标准. 4 6kV、10 kV电压等级 4.1性能参数 4.1.1额定容量、电压组合、分接范围、联结组标号、空载损耗、负载损耗、空载电流及短

变压器的参数测定和标么值

3.4变压器参数测定 3.4.1空载实验: 实验目的:接线:步骤:参数求取: (1)低压加额定电压,高压开路;(2)单方向激磁; (3)作出:)()(1010U f P U f I == 求出: ) 0(%100%01001 20 ≈=?== cu Fe N P P P I I I U U K (4) m r r <<1 m x x <<1 忽略r 1和x 1, 2 22 001m m m m N m r Z x I P r I U Z -=== (5)折算; (6)三相变压器; (7)低?cos 表。 3.4.2短路实验short circuit test 实验目的:接线:步骤:参数求取:(1)高压加电压,低压短路; (2)作出:)() (s s s s U f P U f I == (3)0↓≈↓?Φ↓?Fe s P U cu s P P ≈ ∞?m m m z x r 222s s s s s s s s s r Z x I P r I U Z -=== s s x x x r r r 21212 121=≈='≈ (4)温度的折算;(5)折算;(6)三相变压器; (7)短路电压(阻抗电压): %100%100%1001117511751?= ?= ?= N s N sr N s N sa N s N s U X I U U r I U U Z I U 短路电压大小反映短路阻抗大小,正常运行希望小些 ,电压波动小 ;限制短路电流,希望大些。

3.5标么值 3.5.1标么值的概念 基准值 实际值 标么值= 3.5.2基准值的选取: 1、通常以额定值为基准值。 N N B B B I U I U Z = = N N N B B B S I U I U S === 2、各侧的物理量以各自侧的额定值为基准; 线值以额定线值为基准值,相值以额定相值为基准值; 单相值以额定单相值为基准值,三相值以额定三相值为基准值; U 、E 的基准值为N U ; Z 、r 、x 的基准值为B Z ; P 、Q 、S 的基准值为N S ; 3、额定值的标么值为1. 4、百分值=标么值×100% 5、几个计算公式:*0 *1 I Z m = 2*0 * 0*I P r m = **SN s U Z = * *SN s P r = N N P ?cos * = N N Q ?sin *= 3.5.3优缺点: 优点:折算前、后标么值相等; 物理意义不同的量标么值相等。 缺点: 物理意义不同的量标么值相等.

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定得使用环境与运行条件下,主要技术数据一般都都标注在变压器得铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、 空载电流、空载损耗与负载损耗)与总重。 A、额定容量(kVA):额定电压、额定电流下连续运行时,能输送得容量。 B、额定电压(kV):变压器长时间运行时所能承受得工作电压、为适应电网电压变化得需要, 变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压、 C、额定电流(A):变压器在额定容量下,允许长期通过得电流、 D、空载损耗(kW): 当以额定频率得额定电压施加在一个绕组得端子上,其余绕组开路时所吸 取得有功功率。与铁心硅钢片性能及制造工艺、与施加得电压有关、 E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过得电流、一般以额 定电流得百分数表示、 F、负载损耗(kW): 把变压器得二次绕组短路,在一次绕组额定分接位置上通入额定电流,此 时变压器所消耗得功率、 G、阻抗电压(%):把变压器得二次绕组短路,在一次绕组慢慢升高电压,当二次绕组得短路电 流等于额定值时,此时一次侧所施加得电压、一般以额定电压得百分数表示、 H、相数与频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外 有60Hz得国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境得温度之差,称为绕组或上层油面得温升、油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、 强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平得表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级得变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV、奥克斯高科技有限公司目前得油浸变压器产品得绝缘水平为

单相变压器实验报告

单相变压器实验报告 学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 12291099 组号: 22

一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加额定电流,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 答:在量程围,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。 2、短路实验 测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。 四、实验方法 1、实验设备 2、屏上排列顺序 D33、DJ11、D32、D34-3、D51、D42、D43

图3-1 空载实验接线图 3、空载实验 (1)在三相调压交流电源断电的条件下,按图3-1接线。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。变压器的低压线圈a、x接电源,高压线圈A、X开路。 (2)选好所有测量仪表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。 (3)合上交流电源总开关,按下“启动”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.3U N的围,测取变压器的U0、I0、P0。 (4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。

相变压器的参数测定实验报告

电机学实验报告——三相变压器的参数测定 姓名:张春 学号:32 同组者:刘扬,刘东昌

实验四三相变压器的参数测定实验 一、实验目的 1.熟练掌握测取变压器参数的实验和计算方法。 2.巩固用瓦特表测量三相功率的方法。 二、实验内容 1.选择实验时的仪表和设备,并能正确接线和使用. 2.空载实验测取空载特性、和 三条曲线。 3.负载损耗实验(短路实验)测取短路特性 三条曲线。 三、实验操作步骤 1.空载实验 实验线路如图4-3,将低压侧经调压器和开关接至电源,高压侧开路。

接线无误后,调压器输出调零,闭合S 1和S 2 ,调节调压器使输出电压为 低压测额定电压,记录该组数据于表4-2中,然后逐次改变电压,在(~)的范围内测量三相空载电压、电流及功率,共测取7~9组数据,记录于表4-2中。 图4-3 三相变压器空载实验接线图 3.负载损耗实验(又叫短路实验) 变压器低压侧用较粗导线短路,高压侧通以低电压。 按图4-4接线无误后,将调压器输出端可靠地调至零位。闭合开关S 1 和S 2 ,监视电流表指示,微微增加调压器输出电压,使电流达到高压侧额定值,缓慢调节调压器输出电压,使短路电流在(~)的范围内,测量三相输入电流、三相功率和三相电压,共记录5~7组数据,填入表4-3中。 图4-4 三相变压器负载损耗实验接线图 四、实验报告: 1.分析被试变压器的空载特性。

(1)计算表4-2中各组数据的、和标么值表4-2 空载实验数据(低压侧) 序号记录数据计算数据 U ab U bc U ca I a I b I c P Ⅰ P Ⅱ U I U *I *P cosф 1.-182 2-114 3 4 5 6 7 8 (2)根据表4-2中计算数据作空载特性、和曲线。

单相变压器的参数测定实验

单相变压器实验设计方案 系别:工学院 专业:智能检测 姓名:关济凯 学号:2010016011

单相变压器实验 一、实验目的 1、通过空载试验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。 2、通过短路试验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。 二、实验线路 单相变压器的空载试验和短路试验的接线图分别为图一、图二,功率表的内部等效结构如图三。 图一单相变压器空载试验 图二单相变压器短路试验

图三 功率表内部等效结构图 三、实验内容 1、 测定变比 接线如图一所示,电源经调压器Ty 接至低压绕组,高压绕组开路,合上电源闸刀K ,将低压绕组外加电压,并逐渐调节Ty ,当调至额定电压U N 的50%附近时,测量低压绕组电压Uax 及高压绕组电压U AX 。调节调压器,增大U N ,记录三组数据填入表一中。 表一 测变比数据 序号 U AX ( V ) Uax ( V ) 变比K= Uax U AX 2、空载实验 接线如图一所示,电源频率为工频,波形为正弦波,空载实验一般在低压侧 进行,即:低压绕组(ax)上施加电压,高压绕组(AX)开路,变压器空载电流Io = ( 2.5~10%)I N ,据此选择电流表及功率表电流线圈的量程。变压器空载运行的功率因素甚低,一般在0.2以下,应选用低功率因素瓦特表测量功率,以减小测

量误差。 变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时,电流表功率电流线圈被冲击电流所损坏,合上电源开关K后,调节变压器从0.5U N 到1.2U N,测量空载电压Uo,空载电流Io,空载功率Po,读取数据6~7组,记录到表二中。 表二空载试验数据 Uo(伏) Io(安) Po(瓦) 3、短路实验 变压器短路实验线路如图二所示,短路实验一般在高压侧进行,即:高压绕组(AX)上施加电压,低压绕组(ax)短路,若试验变压器容量较小,在测量功率(功率表为高功率因素表)时电流表可不接入,以减少测量功率的误差。使用横截面较大的导线,把低压绕组短接。 变压器短路电压数值约为(5~10%)UN,因此事先将调压器调到输出零位置, ,快速测量Uk,然后合上电源闸刀K,逐渐慢慢地增加电压,使短路电流达到1.1I N Ik,Pk,读取数据6~7组,记录在表三中。 注意:短路试验一定要尽快进行,因为变压器绕组很快就发热,使绕组电阻增大,读数会发生偏差。 表三短路实验数据 U k (伏) I k (安) P k(瓦)

单相变压器实验报告

实验一单相变压器 一.实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二.实验项目 1.空载实验测取空载特性U O=f(I O),P O=f(U O)。 2.短路实验测取短路特性U K=f(I K),P K=f(I)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos?=1的条件下,测取U2=f(I2)。 2 (2)阻感性负载 保持U1=U1N, cos?=0.8的条件下,测取U2=f(I2)。 2 三.实验设备及仪器 1.MEL系列电机教学实验台主控制屏(含交流电压表、交流电流表)2.功率及功率因数表(MEL-20或含在主控制屏内) 3.三相组式变压器(MEL-01)或单相变压器(在主控制屏的右下方)

变压器T选用MEL-01三相组式变压器中的一只或单独的组式变压器。实验时,变压器低压线圈2U1、2U2接电源,高压线圈1U1、1U2开路。 A、V1、V2分别为交流电流表、交流电压表。具体配置由所采购的设备型号不同由所差别。若设备为MEL-I系列,则交流电流表、电压表为指针式模拟表,量程可根据需要选择;若设备为MEL-II系列,则上述仪表为智能型数字仪表,量程可自动也可手动选择。仪表数量也可能由于设备型号不同而不同。若电压表只有一只,则只能交替观察变压器的原、副边电压读数,若电压表有二只或三只,则可同时接上仪表。 W为功率表,根据采购的设备型号不同,或在主控屏上或为单独的组件(MEL-20或MEL-24),接线时,需注意电压线圈和电流线圈的同名端,避免接错线。 a.在三相交流电源断电的条件下,将调压器旋钮逆时针方向旋转到底。并合理选择各仪表量程。 变压器T额定容量P N=77W,U1N/U2N=220V/55V,I1N/I2N=0.35A/1.4A b.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2U N c.然后,逐次降低电源电压,在1.2~0.5U N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表2-1中。其中U=U N的点必须测,并在该点附近测的点应密些。为了计算变压器的变化,在U N以下测取原方电压的同时测取副方电压,填入表2-1中。 e.测量数据以后,断开三相电源,以便为下次实验作好准备。 表2-1

油浸式变压器技术参数和要求

油浸式变压器技术参数和要 求 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

油浸式变压器技术参数和要求 1.变压器连接组别: 据GB/T 6451-1999《三相油浸式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。 我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。 现在国际上大多数国家的配电变压器均采用Dyn11联结。 2.分接范围: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定:±5% 。根据需要可以提供分接范围为±2×2.5%的变压器。 3.损耗: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定: 空载损耗:0.56W; 空载电流:1.4%; 负载损耗:3.20kW; 短路阻抗:4%。 4.短路承受能力: 据GB 1094.5-2008 《电力变压器第5部分:承受短路的能力》规定:短路后绕组温度的最大允许值:250℃; 绝缘系统温度最大允许值:105(绝缘耐热等级A)。 (注:当绝缘耐热等级不为A时,可与制造商协商温度的最大限值) 6.绝缘水平: 据GB/T 10237-1988 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》规定: 设备的最高电压(有效值):11.5kV; 额定短时工频耐受电压(有效值):30kV; 额定雷电冲击耐受电压(峰值):75kV; 7.温升限值: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定:顶层绝缘液体温升限值:60K;

单相变压器实验报告

单相变压器实验报告 一、实验目的 1.学习测定变压器的相对极性、变比。 2.通过空载实验和短路实验计算变压器的主要参数。 3.测定变压器外特性。 4.测定变压器效率特性。 二、实验设备 1.单相交流可调电源 2.单相变压器 3.交流电压表、交流电流表 4.功率表 5.万用表 6.温度计 三、实验原理图 图1 单相变压器相对极性测定图2 单相变压器空载实验图3 单相变压器短路实验图4 单相变压器外特性实验 图5 变压器效率特性实验 四、实验内容 R d R d

1.相对极性的测定 表1 相对极性的测定实验数据 结论: 2.空载实验 表2单相变压器空载实验 3. 表3 单相变压器短路实验 室温T=℃ 4.外特性实验 表4 变压器外特性实验数据 5.效率特性实验 表5 变压器效率特性实验数据 五、实验结果与分析 1.计算变比 K=U/U 1U1.1U22U1.2U2 2.绘出空载特性曲线和计算激磁参数

激磁参数: 2o m o P r I = = o m o U Z I = = m X == 3. 绘出短路特性曲线和计算短路参数 短路参数: 'K K K U Z I = = '2K K K P r I = = 'K X = 折算到低压侧: ' 2K K Z Z K == ' 2K K r r K == '2K K X X K == 换算到基准工作温度75℃时的阻值: 75234.575 234.5K c K r r θ θ ?+==+ 75K c Z ?==

4.利用空载和短路实验测定的参数,画出被试变压器折算到低压侧的“Г”型等效电路。 5.效率特性曲线

第六讲 变压器参数测定

第七章变压器 第三节 变压器的参数测定 2.3.1 空载试验 变压器的空载试验可以求出变比k 、空载损耗0p 以及激磁阻抗m Z 。空载试验的接线如图2.8所示。为了便于测量和安全起见,通常在低压侧加电压,将高压侧开路。电源电压1U 由零逐渐升至 .1 变压器原边加不同的电压1U ,建立的m Φ不同,磁路的饱和程度不同,激磁阻抗不同,由于变压器正常运行时原边加额定电压,所以应取额定电压下的数据来计算激磁阻抗。试验中可直接读取额定电压下的数据,若试验中未能直接读取,可在测定的空载特性曲线 )(10U f I =、)(10U f p =上,找出对应于N U U 11=时的0I 、0p 。 因图2.2变压器空载等效电路中m Z Z <<1、m r r <<1,所以 ? ??? ? ????-== = 22 2 00 1m Z m m m m N r Z x I p r I U (2.25) 式中 0p ——额定电压下的空载损耗,可作为额定电压下的铁耗。 由于空载试验是在低压侧进行的,故测得的激磁参数是以变压器低压侧为原边的激磁参数,若要得到以高压侧为原边的激磁参数,可将所测得的激磁参数乘以2k ,k 等于变压器高压侧一相的电压除以低压侧一相的电压。 对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相 图2.8 单相变压器空载试验接线图 A X

的数据,就可直接代入式(2.25)计算。 2.3.2 短路试验 变压器的短路试验可测出变压器的铜耗Cu p 和短路阻抗k Z 。短路试验的接线如图2.9所示。为了便于测量,通常在高压侧加电压,将低压侧短路。电源电压1U 由零逐渐升高,使k I 由零逐渐升高至N I 11.1,测取其对应的1U 、k I 、k p 。 由于变压器短路阻抗很小,如果在额定电压下短路,则短路电流可达(9.5~20)N I ,将损坏变压器,所以做短路试验时,外施电压必须很低,通常为(0.05~0.15)N U ,以限制短路电流。此时铁心中的磁通很小,铁耗和励磁电流可以忽略,使用简化等效电路进行分析,如图2.10所示。 ? ? ? ?? ????-=====2221211k Z k k k N kN k k k N kN k r Z x I p I p r I U I U (2.26) 式中 kN p —短路损耗,指短路电流为额定电流时变压器的损耗,kN p 可作为额定电流时的铜耗。 一般认为:k r r r 2121= '≈;k x x x 2 1 2 1='≈。 由于电阻随温度而变化,按照电力变压器的标准规定,应将室温(设为θ℃)下测得的短路电阻换算到标准工作温度75℃时的值,而漏电抗与温度无关。 对铜线变压器 k ℃ k r r θ++=23575 23575 对铝线变压器 k ℃k r r θ ++=22575 22575 227575k ℃k ℃k x r Z += U 图2.10 变压器短路时的等效电路 图2.9 单相变压器短路试验接线图 a x ~

相关文档
最新文档