化工原理课程设计书

化工原理课程设计书
化工原理课程设计书

目录

前 言 ........................................................................................................ 2 第一篇:设计任务 .................................................................................... 3 第二篇:设计方案 .................................................................................... 4 第三篇:浮阀塔结构性能 ........................................................................ 6 第四篇:工艺流程 .................................................................................... 7 第五篇:工艺流程计算 ............................................................................ 8 5.1设计计算与论证 ........................................................................... 8 5.1.1板式塔的基础数据计算 ..................................................... 8 5.1.2汽液平衡数据与图示 ......................................................... 9 5.1.3物料衡算 ........................................................................... 11 5.1.4塔板数的确定 ................................................................... 11 5.2板式塔的工艺条件及物料计算 ................................................. 12 5.3精馏塔的塔体工艺尺寸计算 ..................................................... 17 5.3.1塔径的计算 ....................................................................... 17 5.3.2塔板主要工艺尺寸的计算 ............................................... 18 5.4塔板的流体力学验算 ................................................................. 20 5.4.1气相通过浮阀塔板的压强降 ........................................... 20 5.4.2淹塔 ................................................................................... 21 5.4.3雾沫夹带 ........................................................................... 22 5.4.4汽液负荷性能计算 ........................................................... 22 5.5热量衡算 ..................................................................................... 25 5.5.1塔顶全凝器的热负荷 ....................................................... 25 5.5.2再沸器 ............................................................................... 25 5.6附属部件与接管设计 ................................................................. 26 5.6.1各接管尺寸的确定 ........................................................... 26 5.6.2塔的总体结构 . (27)

第第六六篇篇 设设计计结结果果统统计计 .......................................................................... 29 第七篇:符号说明 .................................................................................. 30 第八篇:参考资料 .................................................................................. 31 第九篇:心得体会 . (32)

前言

在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。

精馏是气液两相之间的传质过程,而传质过程是由能提供气液两相充分接触的塔设备完成,并且要求较高的传质效率。根据塔内气液接触部件结构型式分为:板式塔和填料塔两大类。

板式塔内设置一定数量塔板,气体以鼓泡形式或者喷射形式穿过板上上层液体进行质量,热量传递,气液组成呈阶梯变化,属于逐级接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶填料表面下流,气体逆向而上,与液相接触进行质量,热量传递,气液相组成沿塔高连续变化,属于微分接触操作过程。

板式塔大致分为两类:一类是有降液管的塔板,如泡罩,浮阀,筛板.多降液管的塔板;另一类是无降液管的塔板,如穿流式筛板,波纹板等。工业应用最多的有降液管的浮阀.筛板,泡罩塔板等。

工业对塔设备的主要要求:①生产能力大②传质传热效率高③气流的摩擦阻力小④操作稳定,适应性强,操作弹性大⑤结构简单,耗材少⑥制造安装容易,操作维修方便等等。

本次设计采用浮阀塔。

一、题目:乙醇水连续精馏浮阀塔的设计

二、设计任务及条件:

1.进料含乙醇38.2(质量),其余为水(均为质量分率,下同);

2.产品乙醇含量不低9

3.1%;

3.釜残液中乙醇含量不高于0.01%;

4.生产能力3400 t/y乙醇含量,年开工7200小时;

5.操作条件:i间接蒸汽加热;ii.塔顶压强:1.03atm(绝对压强);

iii.进料热状况:泡点进料

6.回流比:R=5;5单板压降:75mm液柱;

三、设计内容:

c.流程的确定与说明;

c.塔板和塔径计算;

c.塔盘结构设计:i.浮阀塔盘工艺尺寸及布置简图;ii.流体力学验

算;iii.塔板负荷性能图。

c.其它:i.加热蒸汽消耗量;ii冷凝器的传热面积及冷却水的消耗

量。

四、设计成果:

1)设计说明书一份;

2)A2流程图一份,A1精馏塔工艺条件图。

1.操作压力

精馏操作通常可在常压,减压,和加压下进行.确定操作压力时,必须根据所处理的物料性质,兼顾技术上的可行性和经济性合理的全面考虑.操作压力常取决冷凝温度,一般热敏物料除外。

2.进料状态

进料状态与塔板数,塔径,回流比以及塔的热负荷有关.进料热状况有五种。

①q>1.0时,为低于泡点的温度的冷液进料;

②q=1.0时,为泡点下的饱和液体;

③0<q<1时,为介于泡点与露点的气液混合物;

④q=0时,为露点下的饱和蒸汽;

⑤q<0时,高于露点的过热蒸汽进料。

一般都将料液预热到泡点或者接近泡点才送入塔内,这样塔操作容易被控制,不受季节气温的影响.另外,泡点进料时提馏段与精馏段的塔径相同,在设计和制造上很方便。

3.加热方式

蒸馏大多数采用间接加热,设置再沸器.有时也可以用直接蒸汽加热.低浓度下请组分的相对挥发度较大时以采用直接加热,可以利用低压的加热蒸汽以节约操作费用.但是直接加热,对塔釜溶液具有稀释作用,在进料条件和产品纯度,轻组成收率一定的前提下,釜液浓度相应降低,故在提馏段增加塔板以达到要求。

4.回流比的选择

适宜的回流比是指精馏过程中设备费用与操作费用两方面之和最低时回流比.精馏过程的主要设备有精馏塔,再沸器和冷凝器,当回流比最小时塔板数为无穷大,故设备费用最大,当回流比逐渐增大时,塔板数随之减少,而塔径,再沸器等尺寸增加,导致操作费用增加。

一般经验值为:()min 0.2`1.1R R -= 5.热能利用

精馏过程中的特性是反复进行部分气化和冷凝,因此,热效率很低.一般进入再沸器能量的95%以上被塔顶冷凝器中的冷气或者空气带走。

第三篇:浮阀塔结构性能

浮阀塔是许多工厂进行蒸馏操作易采用的一种板式塔.其结构特点,是在带有降液管的板塔上开有若干个大孔,每孔装有一个可以上下浮动的阀片,其标准孔径是39mm.有孔上升的气流,经过阀片与塔板的间隙而与塔板上横流的液体接触.

国内最常用的阀片型式为:F1型,阀片带有三条"腿",插入阀孔后将各腿底脚扭转90°角,用以限制操作是阀片在板上升起的最大高度(8.5mm), 阀片周边又冲出三块略向下弯的定距片,使阀片处于静止位置时仍与塔板间留有一定的缝隙(2.5mm).这样,当气量很小时气体仍可以通过缝隙均匀地鼓泡,避免阀片起,闭不稳的脉动现象.

F1浮阀的结构简单,制造方便,节约材料,广泛用于化工及炼油生产中,已知标准化(JB1118-68).F1浮阀又分为轻阀和重阀两种;重阀每个约重33g,轻阀约重25g.除了F1浮阀外,阀片还有V-0,V-4,V-6型A型,十字架型等.

浮阀塔的特点

①生产能力大

②操作弹性大

③塔板效率高

④气体压强降及页面落差较小

⑤塔的造价不高

第四篇:工艺流程

流程概要:

乙醇-水混合原料经预热器加热到泡点后,送进精馏塔,塔顶上升的蒸汽采用全凝器冷凝后,一部分采用回流,其余为塔顶产物,塔釜采用间接蒸汽加热供热,塔底产物冷却后送入

贮槽。

第五篇:工艺流程计算

5.1设计计算与论证

5.1.1板式塔的基础数据计算

由于精馏过程的计算均以摩尔分数为准,需先把设计要求中的质量分数转化为摩尔分数。

(1) 进料组成由质量分数转换成摩尔分数:

0.382

46.0680.1950.3820.61846.06818.015

x F ==+ 产品组成由质量分数转换成摩尔分数:

塔釜残液组成由质量分数转换成摩尔分数:

0.0146.0680.003930.010.9946.06818.015

x W ==+ (2)进料平均分子量:

F M =46.068?0.195+(1-0.195)?18.015=23.485Kg/mol

塔顶产品平均分子量:

D M =46.068?0.841+(1-0.841)?18.015=41.60 Kg/mol

产品平均分子量:

W M =46.068?0.00391+(1-0.00391)?18.015=18.12 Kg/mol

(3)分离要求:D x ≥0.841 W x ≤0.00393

0.93146.0680.8410.9310.06946.06818.015

x D ==+

(4)进料状态:泡点进料 加热方式:间接蒸汽加热 进料温度: 83.5F t =℃ 塔顶温度: 99.2D t = ℃ 塔釜温度 78.7W t =℃ (5)冷却介质及加热介质:

冷却介质为水,加热介质为水蒸气。 (6)产品流量:

塔顶的产品3

(20001000)1010.01/720041.60

D Kg h +?==? 5.1.2汽液平衡数据与图示(760mm Hg )

5.1.3物料衡算

W D F W x Dx Fx +=

W D F +=

? W=33.84 Kmol/h

F=43.85 Kmol/h 5.1.4塔板数的确定 (1)操作回流比 R=5 (2)理论塔板数的求取: a. 操作线方程 精馏段方程:

140.015841.01=+=+R x D 833.01

55

1=+=+R R y=0.833x+0.140 提馏段方程:

因为提馏段操作线过点(W x ,W x ),(F x ,F y ),所以提馏段操作线方程为y=1.560x-0.00220 q=1

在~y x 相图中分别画出上述直线,利用图解法可以求出11块(不含塔釜)其中,精馏段10.3块,提馏段0.7块(不包括塔釜),第11层为加料板。 b. 全塔效率的估算T E

lg m μ= 1x lg 1μ+ 2x lg 2μ 其中1x =0.195,1μ=0.365;2x =0.805,2μ=0.285;

? lg m μ=-0.5242

T E =0.17-0.616 lg m μ=0.4929

c. 实际塔板数N 实

N 精=10.3/0.4929=20.90≈21层 N 实=0.7/0.4929=1.42≈2层

第21块进料

5.2板式塔的工艺条件及物料计算(全塔主题尺寸的计算)

(1)操作压强计算

因为常压下乙醇-水是液态混合物,其沸点较低小于100℃,故采用常压精馏就可以分离,故:

塔顶压强:D P =1.03?101.3Kpa=104.3 Kpa; 取每层压强降为P ?=0.74 Kpa

进料板压强:F P = 104.3+21?0.74=119.84 Kpa 塔底压强:W P = F P +2?0.74=121.32 Kpa

精馏段平均压强M P =(104.3+119.84)/2=112.07 Kpa 提馏段平均压强m P =(119.84+121.32)/2=120.58 Kpa 全塔平均压强:P 平=( 112.07+120.58)/2= 1116.325Kpa (2)平均温度计算

塔顶:78.7W t =℃ ,进料:83.5F t =℃,塔釜:99.2D t = ℃ 精馏段平均温度: M t ,精C ?=+=1.8125

.837.78 提馏段平均温度:M t ,提C ?=+=

35.912

2

.995.83

全塔平均温度:,M t 平C ?=+=225.862

35

.911.81

(3)平均分子量计算

a. 塔顶:D X =0.841 =D Y 0.828

气相 0.841×46.068+(1-0.841)×18.015=41.67kg/kmol 液相 0.828×46.068+(1-0.828)×18.015=41.24 kg/kmol b. 进料:F X =0.195 F Y = 0.517

气相 0.517×46.068+(1-0.517)×18.015=32.52 kg/kmol 液相 0.000393×46.068+(1-0.000393)×18.015=23.49 kg/kmol c. 塔釜:W X =0.000393,W Y =0.045

气相 0.045×46.068+(1-0.045)×18.015=19.28 kg/kmol 液相 0.00393×46.068+(1-0.00393)×18.015=18.12 kg/kmol d. 精馏段平均分子量

=VM M (41.67+32.52)/2=37.065 kg/kmol

=LM M (41.24+23.49)/2=32.365 kg/kmol

e. 提馏段平均分子量

=VM M (32.52+19.28)/2=26.00 kg/kmol

=LM M (23.49+18.12)/2=20.805 kg/kmol

(4)平均密度计算 a. 气相平均密度计算

由理想气体状态方程计算,精馏段的平均气相密度:

119.8437.065,31.50,8.314(273.1581.1)

P M m v m kg m v m RT m

ρ?===?+

提馏段的平均气相密度:

120.5826.00,'3

1.03,8.314(273.1591.35)

P M m v m

kg m v m

RT m

ρ?===?+全塔的汽相平均密度:

1.50 1.03

1.272

2

vj vt

v ρ

ρρ

++=

=

=kg kmol

b. 液相平均密度计算 液相平均密度依下式计算,即

塔顶液相平均密度的计算: 由D t =78.7℃,查手册得

33743.82,972.6A B kg m kg m ρρ==

,,10.931/743.820.069/972.6,757.00L Dm L Dm kg kmol ρρ=+=

进料板液相平均密度的计算: 由F t =83.5℃,查手册得

33737.94,969.52A B kg m kg m ρρ==

进料板液相的质量分率:

0.19546.068

0.3830.19546.068(10.195)18.015

A α?=

=?+-?

10.383798(10.383)969.52,865.49,,kg kmol

L Fm L Fm

ρ

ρ

=+-=

塔底液相平均密度的计算: 由W t =92.2℃,查手册得

33718.4,959.0A B kg m kg m ρρ== 塔底液相的质量分率 :

10.01/718.4(10.01)/959.0,952.3,,kg kmol

L wm

L wm

ρ

ρ

=+-=精馏段液相平均密度为:

757.00865.49

811.245,2

kg kmol L m

ρ

+=

=

提馏段液相平均密度为:

865.49952.38

'

908.94,2

kg kmol L m

ρ+=

=

全塔的液相平均密度:

908.94811.24

860.092

2

vj vt

l ρρρ++=

=

=kg kmol

(5)液体平均表面张力计算 液相平均表面张力依下式计算,即

塔顶液相平均表面张力的计算: 由D t =78.7℃,查手册得 σA= 18.41m N/m σB=62.8m N/m

σLDm=(1-0.841)×62.8+0.841×18.41=25.47 mN/m 进料板液相平均表面张力的计算: 由F t =83.5℃,查手册得

σA=61.94 m N/m σB=17.93 m N/m

σLFm=0.195×17.93+(1-0.195)×61.94=51.32 mN/m 塔底液相平均表面张力的计算 由W t =92.2℃查手册得

σA=16.37 m N/m σB=58.95 m N/m

σLwm=0.00393×16.37+(1-0.00393)×58.95=19.87mN/m 精馏段液相平均表面张力为

σLm=(25.47+51.32)/2=38.395 mN/m 提馏段液相平均表面张力为

σ'Lm=(53.36+58.78)/2=56.07mN/ m (6)液体平均表面粘度的计算

1

n

lm i i i x μμ==∑

,l μ顶=0.841×0.502+(1-0.841) ×0.362=0.480mpa.s

μl,进=0.195×0.341+(1-0.195) ×0.472=0.246 mpa.s μl,釜=0.00393×0.361+(1-0.00393) ×0.286=0.286 mpa.s

,l μ精=(0.480+0.246)/2=0.363 mpa.s

,l μ提=(0.286+0.446)/2=0.336 mpa.s

(7)气液负荷计算

精馏段:()1(51)10.0160.06/V R D Kmol h =+=+?=

360.0637.065

0.41/36003600 1.50

Vm S vm V M V m s ρ??=

==?

510.0150.05/L RD Kmol h ==?=

350.0532.365

0.00056/36003600805.85

Lm Lm LM Ls m s ρ?=

==?

提馏段:'60.06/V V Kmol h ==

'360.0626.00

0.42/36003600 1.03

Vm S vm V M V m s ρ??=

==?

'60.0633.8493.90/L L W Kmol h =+=+=

'

393.9020.805

0.00060/36003600908.94

Lm Lm LM Ls m s ρ?=

==?

全塔平均汽液相流速:

0.410.42

0.41522

SJ ST s V V V ++=

== 0.000560.000600.0005822

SJ ST s V V L ++===

5.3精馏塔的塔体工艺尺寸计算

5.3.1塔径的计算

塔板间距HT 的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关。可参照下表所示经验关系选取。 板间距与塔径关系:

初选板间距0.35T H m =,取板上液层高度m h L 05.0=,

故0.350.050.30H h m T L -=-=;120.036L

S

Lm V

S

vm ρ

ρ

???? ? ?= ? ????

?

C 20=0.068;依式2

.02020?

?

?

??=σC C

校正物系表面张力为46.09/mN m 时

0.2

0.2

2046.0690.0750.08042020C C σ??

??

==?= ?

?

??

??

0.0804 2.09/max

m s μ

===

可取安全系数为0.7,则(安全系数0.6—0.8):

max 0.70.7 2.09 1.46/m s μμ==?=

故0.640D m =

=

=

按标准,塔径圆整0.7m,则空塔气速1.22m/s 。 5.3.2塔板主要工艺尺寸的计算 (1)溢流装置计算

因塔径D =0.7m ,可选用单溢流弓形降液管,采用平形受液盘及平行溢流堰,不设进口堰。计算如下:

a. 溢流堰长w l :单溢流长w l =(0.6~0.8)D , 取堰长w l 为0.7D=0.7×0.7=0.49m

b. 出口堰高W h :O W L W h h h -= 由于/0.7W l D =, E=0.1

依式2

3

2.84

1000L h h E ow l w ?? ?=

? ???

可得:2

23

3

36002.84 2.8436000.000580.00800100010000.49s OW

W L h E m l ?????==?= ? ?????

故0.050.00800.042w h m =-= c. 降液管的宽度d W 与降液管的面积f A :

7.0/=D l w

查得15.0/=D W d ,09.0/=T f A A

0.150.150.70.105d W D m ==?= 22385.04/m D A T ==π

2223.14

0.090.090.70.0354

4

f A D m π

=?

=?

?= 计算液体在精馏段降液管中停留时间以检验降液管面积, 即:0.0350.35

19.440.00063

f T s

A H s L τ?=

=

=(大于5s ,符合要求)

液体在提馏段降液管中停留时间:

0.0350.35

18.010.00068

f T

s

A H s L τ?=

=

=(大于5s ,符合要求)

d. 降液管底隙高度o h :o h =w h -0.006=0.036 满足不少于20~25mm ,符合要求。 (2)塔板布置

塔板的分块:因D ≤800mm ,故塔板采用整块式。 取:边缘区宽度Wc=0.05m(30~50mm)

安定区宽度(当D 〈1.5m 时,Ws=60~75mm 〉)S W =60~75mm (3)计算开空区面积

??

???

?+

-=-R x R x

R

x

A a

1

2

2

2

sin 180

2π 0.312

C D

R W m =

-= ,

()0.1752

d s D

x W W =

-+=m 20.205a A m =

本设计采用1F 型重阀,当板上浮阀刚刚全开时,动能因数0F 在9到12之间,故取0F =10(1F 型重阀:重量33g,孔径:0d 39mm )

阀孔气速-18.87m.s F u

o =

=

每层板上的阀孔数:N=200

(3.14/4)s

V d u =45

浮阀孔排列:因为浮阀塔在塔板鼓泡区用叉排时气液接触效果较好,故选用叉排,对整块式塔板,采用正三角形叉排。孔心距t 为75~125mm 。取相邻两排孔的中心距t =75mm 。排得45孔。浮阀孔排布图见附图。

(4)验算气速及阀孔动能因数

s m u /7.845

039.04

47

.02=??=

π

s m u F V o o /8.927.17.8=?==ρ

阀孔动能因数变化不大,仍在9-12范围之内。 塔板开孔率:

%5.13%100%100=?=?塔截面积

阀孔面积u u o 开孔率应在10%~14%之间,塔板开孔率符合要求。

5.4塔板的流体力学验算

5.4.1气相通过浮阀塔板的压强降 (1)干板阻力:σP P P P l C p

?+?+?=?

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 <

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计模板-换热器

化工原理课程设计 学院: 班级: 姓名: 学号:(长号) 指导教师: 2016年11月

化工原理课程设计 《列管式换热器》设计任务书 班级姓名 一、设计题目:列管式柴油冷却器的工艺设计 二、设计任务及操作条件 (1)设计任务 非标准系列列管式柴油冷却器的工艺设计。 说明:对于非标准系列列管式换热器的设计,因是非标,显然不能按照标准系列列管式换热器在标准系列规格中进行选型设计,而应按照非标准系列列管式换热器的设计程序进行。 (2)操作条件 ①处理能力(班级×0.3)×104t/a柴油 ②设备型式列管式换热器(或立式、或卧式)。 ③操作条件 柴油入口温度:100+班级+学号℃,出口温度:25+班级+学号℃冷却介质:自来水,入口温度:29 ℃,出口温度:49 ℃ 允许压降:不大于105Pa 每年按330天计,每天24h连续运行 已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s 三、设计项目(说明书格式) 1、封面、任务书、目录。 2、设计方案简介:对确定的换热器类型进行简要论述。 3、换热器的工艺计算: 1)确定物性数据 2)估算传热面积 3)工艺结构尺寸 4)换热器核算:包括传热面积核算和换热器压降核算 4、换热器的机械设计 5、绘制列管式换热器结构图(CAD)。 6、对本设计进行评述。 7、参考文献 成绩评定指导教师 2016年月日

课程设计内容1设计方案简介 1.1选择换热器类型 1.2冷热流体流动通道的选择 2工艺设计计算 2.1 确定物性数据 2.2估算传热面积 2.3 工艺结构尺寸 2.3.1 管径和管内流速 2.3.2 管程数和传热管数 2.3.3 管子排列方式和分程方法 2.3.4 平均传热温差校正及壳程数 2.3.5 壳体内径 2.3.6 折流板 2.4 换热器核算 2.4.1 传热面积校核 2.4.2 换热器内流体流动阻力 2.5 换热器主要结构尺寸和计算结果 3换热器机械设计 3.1 壳体壁厚 3.2 管板尺寸 3.3 接管尺寸 3.4 换热器封头选择 3.5 膨胀节选择(根据设计可选可不选) 3.6其他部件 4评述 4.1 可靠性评价 4.2 个人感想 5参考文献 附表换热器主要结构尺寸和计算结果 附录换热器结构图 时间安排: 2016-11-1 发任务书,设计指导 6 2016-12-0 完成计算 6 2016-12-1 完成初稿(包括绘图) 6

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

化工原理课程设计

化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化工学院_____ 学生姓名: _____ 马学成______ 学号: ____ 201007042____ 专业班级: ____化艺1001班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体8000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮6%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、丙酮在水中的扩散系数(2)气相密度、粘度、表面张力、丙酮在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石化出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

化工原理课程设计模板

化工原理课程设计 1 引言 塔设备是化工﹑石油化工﹑生物化工﹑制药等生产过程中广泛应用的气液传质设备。根据塔内气液接触构件的结构形式,可以分为板式塔和填料塔。 本设计的目的是设计符合设计任务的苯-甲苯分离过程板式精馏塔以及附属设备。通过设计工艺流程草图板式塔主体设备计算及选型、辅助设备的计算及选型等阶段,最终完成各项参数的设计、验算,认为设计符合设计任务要求。并作出相关装配图和工艺流程图。 2 设计方案简介 确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。为此,必须具体考虑如下几点、满足工艺和操作的要求、满足经济上的要求、保证安全生产。在化工原理课程设计中,对第一个原则作较多的考虑,对第二个原则只作定性的考虑,而对第三个原则只要求作一般的考虑。 本设计按以下几个阶段进行: 1)设计方案确定和说明。根据给定任务,对精馏装置的流程、操作条件、主要设备 型式及其材质的选取等进行论述。 2)蒸馏塔的工艺计算,确定塔高和塔径。 3)塔板设计:计算塔板各主要工艺尺寸,进行流体力学校核计算。接管尺寸、泵等, 并画出塔的操作性能图。 4)管路及附属设备的计算与选型,如再沸器、冷凝器。 5)抄写说明书。 6)绘制精馏装置工艺流程图和精馏塔的设备图。 本设计任务将采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品经冷

化工原理课程设计终稿

化工原理课程设计终稿 成绩华北科技学院环境工程系《化工原理》课程设计报告设计题目分离乙醇-正丙醇二元物系浮阀式精馏塔的设计学生姓名张帆学号200801034215指导老师孙春峰专业班级化工B082班教师评语设计起止日期:2011年6月14日至2011年6月26日化工原理课程设计化工原理课程设计任务书 1.设计题目:分离乙醇—正丙醇二元物系浮阀式精馏塔的设计 2.原始数据及条件:进料:乙醇含量45%,其余为正丙醇分离要求:塔顶乙醇含量99%;塔底乙醇含量% 生产能力:年处理乙醇-正丙醇混合液25000吨,年开工7200小时操作条件:间接蒸汽加热;塔顶压强(绝压);泡点进料;R=5 3.

设计任务:完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。- 2 - 化工原理课程设计目录第一章绪论 4 第二章塔板的工艺设计 5 精馏塔全塔物料衡算5 有关物性数据的计算 5 理论塔板数的计算12 塔径的初步计算14 溢流装置15 塔板分布、浮阀数目与排列1 6 第三章塔板的流体力学计算18 、气相通过浮阀塔板的压降18 、淹塔19 、雾沫夹带20 、塔板负荷性能图20 物沫夹带线20 液泛线21 相负荷上限21 漏液线

22 相负荷下限22 浮阀塔工艺设计计算结果23第四章塔附件的设计25 接管............................................................... ............................................... 25 筒体与封头............................................................... ................................... 27 除沫器............................................................... ........................................... 27 裙座............................................................... ............................................... 27 人孔............................................................... ............................................... 27 第五章塔总体高度的设计............................................................... ........................ 28 塔的顶部空间高度............................................................... ....................... 28 塔的顶部空间高度............................................................... ....................... 28 塔总体高

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

相关文档
最新文档