层析柱装填及柱效测定及凝胶过滤层析基础知识【参考借鉴】

层析柱装填及柱效测定及凝胶过滤层析基础知识【参考借鉴】
层析柱装填及柱效测定及凝胶过滤层析基础知识【参考借鉴】

层析柱装填及柱效测定及凝胶过滤层析基础知识

一、实验目的和内容

目的:1. 掌握凝胶过滤层析的原理,掌握凝胶柱柱效测定方法;

2. 熟悉凝胶层析的一般过程;

3. 了解凝胶介质的选择原则和应用领域。

内容:1. Sephadex G-50凝胶柱的装填;

2. 凝胶柱柱效测定;

3.凝胶再生的方法。

二、实验仪器和试剂

1. 实验仪器

层析柱(1×40 cm),砝码天平,玻璃棒,分部收集器,核酸蛋白质检测仪,记录仪,滴头吸管

2. 实验材料和试剂

Sephadex G-50,0.02mol/L pH8.0的PBS缓冲液,5%丙酮(PBS缓冲液作为溶剂)

三、实验步骤

清洗层析柱

测定层析柱的内径、高度,计算所需凝胶的体积

根据Sephadex G-50的膨胀体积,计算所需干凝胶的质量

称取相应质量的干凝胶,加入其总吸液量10倍的0.02 mol/L PBS

在100℃水浴中加热溶胀1小时以上,溶胀之后将极细的小颗粒倾泻出去

用真空干燥器抽尽凝胶中空气,并将凝胶上面过多的溶液倾出

关闭层析柱出水口,向柱管内加入约1/4柱容积的洗脱液

(重复使用的填料,从此步开始)

边搅拌,边将薄浆状的凝胶液连续倾入柱中,使其自然沉降

等凝胶沉降约2-3cm后,打开柱的出口,调节合适的流速,使凝胶继续沉积

待沉积的胶面上升到离柱的顶端约5cm处时停止装柱,关闭出水口

通过2-3倍柱床体积的洗脱液使柱床稳定(流速0.5~1 mL/min)

始终保护凝胶上端有一段液体

准备好恒流泵、分部收集器、核酸蛋白检测仪及记录仪

打开柱上端的螺丝帽塞子,吸出层析柱中多余液体直至与胶面相切

沿管壁将5%丙酮溶液0.6 mL小心加到凝胶床面上,应避免

将床面凝胶冲起(参考完成时间11:30)

打开下口夹子,使样品溶液流入柱内,同时收集流出液,当样品溶液流至与胶面相切时,夹紧下口夹子

按加样操作,用1 mL洗脱液冲洗管壁2次

加入3-4 mL洗脱液于凝胶上,旋紧上口螺丝帽

将层析柱进水口连通恒流泵,柱出水口与核酸蛋白质检测仪比色池进液口相连,比色池出液口再与自动部分收集器相连,用两根导线将检测仪与记录仪连接起来,设置好基线的位置

洗脱时,打开上、下进出口夹子,用0.02mol/LpH8.0的PBS,以0.5~1 mL/min流速洗脱,记录t r(记录仪纸速设为12cm/h,电压200mv;核酸蛋白监测仪检测波长254nm,灵敏度为

0.1A),计算单位高度的柱效(参考完成时间16:00)

柱效计算公式:N = 5.54?[θr/( W 1/2)]2

其中,θr为平均洗脱时间,W 1/2为半峰宽。均为无因次特性值,测量时精确到1mm。[Sephadex G-100每米理论塔板数为3000~6000]

四、注意事项

1. 各接头不能漏气,连接用的小乳胶管不要有破损,否则造成漏气、漏液。

2. 装柱要均匀,既不过松,也不过紧,最好在要求的操作压下装柱,流速不宜过快,避免因此压紧凝胶。

3. 始终保持柱内液面高于凝胶表面,否则水分蒸发,凝胶变干。也要防止液体流干,使凝胶混入大量气泡,影响液体在柱内的流动。

4. 所用凝胶比较昂贵,需小心操作,实验后回收,尽量避免浪费和损失。

五、演示

(一)核酸蛋白检测仪及记录仪操作方法

1. 在仪器使用前,首先检查检测器,电源和记录仪三部份电路连接是否正确,插上电源插头。

2. 接通记录仪电源开关,使电源开关拔到“通”指示灯亮。可根据需要调换不同的走纸速度。记录仪量程调在10mV档上。

3. 将检测仪波长旋钮旋到所需波长刻度上,把量程旋钮拔到100%T档。

4. 按下检测仪电源箱面板上的电源开关,此时记录仪指针从零点开始向右移动某一刻度,调节“光量”旋钮使指针停留在记录仪大约中间位置5mV左右数字显示为50左右。仪器开机稳定时间大约在1小时左右,待基线平直后,可加样测试。

5. 把检测器进样口塑料胶管接到部份收集器上,使层析柱中的洗脱液通过。透光率为“0”厂家巳调好,光密度A要调零,量程开关拔到100%T,调节光量旋钮,使记录仪指针在10mV 数字显示为100,即透光率为100%。把量程开关拔到“A”挡,缓慢调节A调零旋钮,使检测仪数字显示为“0” ,同时调节记录仪零位旋纽使记录仪指示在"0"位。

6. 上述5个步骤结束后,就可以在层析柱上加样。当样品经层析柱分离,通过检测后,就能通过记录仪给出所需样品吸收的图谱。

7. 测试完毕,必须切断电源,并用蒸馏水清洗样品池和尼龙管。

记录仪光吸收A读数

当采用l0mV量程记录仪时,记录仪的满量程读数对应于A量程开关所对应的A读数范围。如A量程开关选定在0-0.5A时,则记录仪满量程光吸收A读数为0.5,当记录笔指示在记录纸一半(50%刻度)位置时即为0.25A。

数字显示光吸收A读数(可变量程读数模式)

当A量程开关选定在0-1.0A档时,此时数显板上显示和读数即为光吸收A的实际读数,如显示为080即表示为0.80A。

当A量程开关切换在其它量程位置时,则数显光吸收A读数为:

A量程选定在0-2.0档时,数显读数×2=实际光吸收读数A

A量程选定在0-1.0档肘,数显读数×1=实际光吸收读数A

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

凝胶过滤层析的基本操作

凝胶过滤层析的基本操 作 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

凝胶过滤层析的基本操作 ①凝胶介质的选择 根据待分离蛋白质的分子量选择具有相应分离范围的凝胶。对于未知蛋白,应选用分离范围较宽的凝胶,如用Sephacryl S-300。对于分子量在3~5kDa的蛋白质,脱盐时应选用Sephadex G 50或G 25;而对于小分子量多肽物质(1~5kDa),脱盐则应选用Sephadex G 10或Sephadex G 15。 ②凝胶介质的处理和装柱 商品凝胶一般是干粉,使用前应用水溶胀。一般情况下,1份凝胶加十份水,自然溶胀至少24小时。溶胀后,将上清中细小的凝胶碎块弃除,重新搅拌悬起,待凝胶沉淀后,再次弃去凝胶碎块,重复数次,直到液相澄清为止。为加速溶胀,可将凝胶煮沸一小时,该法同时具有灭菌的作用。 凝胶过滤层析柱的长与直径的比例应为50~100:1。装柱时柱体要垂直,先在柱内加入约 1/3柱床体积的水或缓冲液,然后沿柱一侧将缓冲液中的凝胶(凝胶:缓冲液=3:1)搅拌均匀,缓慢并连续地一次性注入柱内。装柱过程中,要避免柱内缓冲液流干,注意保持柱体凝胶均匀无气泡和裂缝。装完后,可用2 ml蓝色葡聚糖溶液检查柱体的均匀性。如柱体均匀,可见蓝色区带均匀平稳地通过凝胶,不留任何条纹。要保持凝胶和缓冲液温度一致,以减少气泡的产生。 ③上样 凝胶过滤柱层析对于样品的体积有严格的要求。样品体积不应超过柱床体积的1~5 %,如超过5 %,则会导致分离效率降低,低于1 %则分离效率也不会提高,所以蛋白质样品应尽可能浓缩至10~20 mg/ml。样品本身对洗脱液的相对粘度不能超过2,样品粘度过高,会使层析区带不稳定,或流速不规律,区带变宽或扭曲。上样前样品应经μm孔径滤膜过滤或10, 000 g离心5 min,去除残渣,加样时避免破坏柱体表面,保持其表面均匀平整。 ④洗脱 洗脱液应保持一定的离子强度以消除凝胶中含有的游离羧基和硫酸根等与蛋白质的结合作用。Sephadex和Sepharose CL凝胶层析所用的洗脱液的离子强度至少应为 mol/L;Sephacryl凝胶应为 mol/L。有时洗脱溶液的离子强度甚至可达 mol/L,以保证蛋白质不与凝胶介质结合。 在凝胶过滤层析过程中,洗脱速度要恒定。流速不应过高,一般在 1ml/min左右,低流速可提高分辨率。可以用恒流泵控制流速。 ⑤分离蛋白的监测和收集 凝胶过滤层析中,分离蛋白的监测和搜集与离子交换层析相同。

某框架结构柱下条形基础设计

某框架结构柱下条形基础设计

————————————————————————————————作者:————————————————————————————————日期: ?

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk =2665KN 、Mk=572K N?M、Vk=146KN ,F=3331KN 、M=715KN ?M、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:F k=4231KN 、Mk=481K N?M 、Vk=165KN,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d=1.9m; 二、内力计算 1、基础梁高度的确定 取h=1.5m 符合G B50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下: a . 确定荷载合力到E 点的距离o x :

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

葡聚糖凝胶层析实验报告

葡聚糖凝胶层析实验报告 一、实验目的 1、学习凝胶(Gel)层析法的基本原理; 2、掌握葡聚糖凝胶(Sephadex)柱层析的操作技术。 二、实验原理 凝胶层析又称排阻层析,凝胶过滤,渗透层析或分子筛层析等。 对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排 阻在外,只能沿着颗粒间的缝隙流出柱外(所用洗脱液的体积为外水 体积);而一些小分子不被排阻,可自由扩散,渗透进入凝胶内部的 筛孔,尔后又被流出的洗脱液带走(所用洗脱液的体积为内水体积)。 分子越小,进入凝胶内部越深,所走的路程越多,故小分子最后流出 柱外,而大分子先从柱中流出。一些中等大小的分子介于大分子与小 分子之间,只能进入一部分凝胶较大的孔隙,亦即部分排阻,因此这 些分子从柱中流出的顺序也介于大、小分子之间。这样样品经过凝胶 层析后,分子便按照从大到小的顺序依次流出,达到分离的目的。 三、仪器、材料和试剂 1、仪器:内直径为1cm,外直径为1.5cm的层析柱,恒流泵、收集器、酶标仪、试管、烧杯、移液枪。 2、材料与试剂:交联葡聚糖、双蒸水、蛋白溶液样品。 四、实验步骤 1、装柱

将交联葡聚糖溶液用玻璃棒引流导入层析柱中,要注意,不能让柱子中有气泡,可以边装边用玻璃棒搅拌。 2、上样 装好柱后,用移液枪将柱子中上面的水吸出,再用移液枪将1ml 的蛋白溶液加入层析柱中。 3、洗脱和收集 打开恒流泵和收集器装置,待样品刚好渗入到凝胶中时,再向层析柱中加入3-4ml的蒸馏水,此时盖上层析柱的上盖,将上盖的细管插入到盛有双蒸水的烧杯中,调节恒流泵的速度和收集器时间,开始洗脱收集。 4、样品的检测 收集一段时间后,将样品取出,依次编号,依次加入200μl到酶标版上,选用一个孔加入双蒸水作为对照,用酶标仪在280nm下测检测。 五、实验结果及分析 1、实验结果: 2、蛋白质样品洗脱曲线:

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

葡聚糖凝胶G-25的使用方法

葡聚糖凝胶柱的使用方法: (1) 预处理 称取Sephadex G-25(50-100目)约5g ,加入蒸馏水100ml ,置室温下3h 进行溶胀。 (2) 装柱 凝胶层析柱的直径与柱长之比一般为1:15。柱的底部用装有细玻璃管的橡皮塞塞紧,用洗净的玻璃丝(约200目尼龙布)垫底或购买类似规格的商品柱。然后将柱垂直安装好,先加入1/3柱体积蒸馏水,接着将溶胀好的凝胶边搅匀边连续装入,使它们在柱内自然沉降。同时大开下口慢速流出蒸馏水。装柱后的凝胶必须均匀,不能有气泡或明显条纹。否则,必须到出重装,装好后,用蒸馏水平衡2-3h 即可加样品分离。 (3) 加样 加样前,首先把柱内凝胶上面多余的蒸馏水放出,直到柱内液面与凝胶表面相齐(或留一极薄液层)为止。然后,由柱的上端加水解液2ml ,注意不要让溶液把凝胶冲松浮起,加完样品后,打开下口缓慢放出液体至液面与凝胶面相齐,再用少量蒸馏水冲洗原来盛样品的容器2-3次,待全部进入层析柱后,即可进行洗脱。 (4) 洗脱与收集 洗脱时,用蒸馏水作洗脱剂,并且要连续不断地进行,使凝胶柱上端保持一定的液层,防止凝胶柱表面的液体流干。本实验洗脱液流出的速度应控制在0.8-1.0ml/min 。洗脱液的收集采用分管连续顺序收集,每管收集3ml ,共收集10管。据经验,4或5号管核苷酸浓度最大,可作为层析鉴定的样品液。但因层析柱长度的差异,管号会有变化,必要时可用紫外检测A260nm ,找出浓度最大的管号。 (5) 凝胶的再生和回收 凝胶柱使用一次后,必须反冲疏松一次,平衡后再使用。若使用数次,就需要再生处理。用0.1mol/L NaOH-0.5mol/L NaCl 溶液浸泡,然后用蒸馏水洗至中性备用。若实验完毕,将再生后的凝胶在布氏漏斗上用蒸馏水洗涤抽干,再用95%乙醇洗两次,在60℃烘箱中烘干,回收保存。

葡聚糖凝胶 Sephade LH 使用说明及使用心得

葡聚糖凝胶 Sephadex LH-20 使用说明 Sephadex G型葡聚糖凝胶只适合在水中使用,Sephadex G-25羟丙化后就是Sephadex LH-20。此君既有分子筛作用,在由极性与非极性溶剂组成的溶剂中还有反相层析效果。虽然价位很高,但由性能颇佳,可再生利用,所以倍受钦睐。此外上柱样品损失很少,对处理小样品较好,这也是我们实验室常用的原因之一。 Sephadex LH-20适合用于有机溶剂分离嗜脂性分子,天然产物在有机溶剂中的纯化。可以非常经济的大规模制备各种天然产物,尤其在中药有效成分提取中作为大孔吸附树脂解析物的纯化。 结合凝胶过滤﹑分配色谱及吸附层析于一身,能分离结构相近的分子。因此使用中要考略几种色谱的作用机制。 最高载量可达250mg样品/ml凝胶﹑极少需要再生﹑使用得当,分离效果可保持不变。上样量视被分离物的结构性能的差异而定:差异大,则大;差异小,则小。凝胶过滤的上样量一般为5-7%的床体积,我们建议初次上样量控制在1-2%的床体积,视分离情况可以逐步增加;柱高的选择也与分离要求相关――难分物质要有一定柱高和流速控制;流动相可参考TLC 的条件,正确的流动相可以提高分离度并缩短分离时间。 流动相的常用溶剂为:水 甲醇 丙酮 乙酸乙酯 二氯甲烷 上述溶剂的极性依次降低,对带有极性的被分离物而言,保留值和分离度依次递增;同理选用的凝胶柱高可依次降低,流速可以增大(或上样量可以增加,树脂体积在低极性溶剂中明显收缩)。 溶剂的溶解性,极性,沸点,毒性都是要考虑到的。 二氯甲烷通常对被分离物质间的极性和碱性差异比较小时采用。甲醇通常对带环状(包括苯环)物质分离采用,葡聚糖凝胶对环状物质有强烈吸附。 LH-20同时具备亲水和亲脂双重性质,且被分离物质的极性在分离过程中起着重要作用。 使用方法:将干粉浸泡于60—70%乙醇中过夜(充分搅拌),洗去可能存在的残留物,抽干然后湿态不间隙装柱,绝对不能出现凝胶断层(否则要重新装柱),动态用一倍柱体积的60—70%乙醇淋洗,再用水洗净乙醇即根据自己选用洗脱液平衡层析柱至少两个柱体积直到基线变得平稳为

柱下条形基础内力计算(zhang)

一、柱下条形基础的计算 1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L ,根据地基承载力特征值确定基础 底面积A ,以及基础宽度B=A/L 和截面抵抗矩6/2 BL W =。 (2).按直线分布假设计算基底净反力n p : min max n n p p W M A F i i ∑±∑= (4-12) 式中 ∑i F 、∑i M ?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不 包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心荷载时, n n n p p p ==min max 。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。 基底净线反力 B p n 和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是 作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n 个支座,第i 支座的柱轴力为i F ,支座反力为i R ,左右柱跨分别为1-i l 和i l ,则调整分析的连续梁局部分布荷载强度i q 为: 边支座)1(n i i ==或 3 /)(1)1(0) (1)(1)(1n n n n n l l R F q +-= + (4-13a ) 中间支座)1(n i << i i i i i l l R F q +-= -1)(3 (4-13b ) 当i q 为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的2q 和3q 。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。

柱下条形基础计算简化及步骤

柱下条形基础简化计算及其设计步骤 摘要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 关键字:柱下条形基础简化计算设计步骤 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足 设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式

三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1),a2=L-a-a1.

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

凝胶过滤层析gelfiltrationchromatography

凝胶过滤层析gel filtration chromatogra phy 定义 凝胶过滤层析是生化分离常用色谱技术的一种。凝胶过滤层析是生化分离常用色谱技术的一种。利用具有网状结构的凝胶的分子筛作用, 利用具有网状结构的凝胶的分子筛作用,根据被分离物质的分子大小不同来进行分离,也被称为体积排阻物质的分子大小不同来进行分离,也被称为体积排阻层析(size 层析(size exclusion chromatography)、分子筛chromatography)、分子筛层析(Molecular 层析(Molecular Sieve Chromatography)、凝胶渗Chromatography)、凝胶渗透层析(Gel 透层析(Gel Permeation Chromatography)Chromatography) 应用 凝胶层析法适用于分离和提纯蛋白质、酶、多肽、激素、多糖、核酸类等物质。分子大小彼此相差25%的样品,只要通过单一分子大小彼此相差25%的样品,只要通过单一凝胶床就可以完全将它们分开。利用凝胶的分子筛特性,可对这些物质的溶液进行脱盐、去热源和脱色。进行脱盐、去热源和脱色。 原理 凝胶是一类多孔性高分子聚合物,每个颗粒犹如一个筛子。小分子进入当样品溶液通过凝胶柱时,相对分子当样品溶液通过凝胶柱时,相对分

子葡聚糖珠内质量较大的物质沿着凝胶颗粒间的孔质量较大的物质沿着凝胶颗粒间的孔隙,随着溶剂流动,首先流出层析柱;相对分子质量较小的物质可自由地进相对分子质量较小的物质可自由地进大分子不出凝胶颗粒的网孔,使流量增长,移能进入珠内,经珠动速率慢而最后流出层析柱。之间缝隙中等大小的分子在大分子物质与小分中等大小的分子在大分子物质与小分流出子物质之间被洗脱。这样,经过层析柱,混合物中的各物质按其分子大小不同而被分离。 带网孔的葡聚糖珠 固定相(凝胶)固定相(凝胶) 三维空间网状结构 小分子 样品流动相大分子 分子筛效应:分子筛效应:按分子大小不同, 按分子大小不同,在凝胶受到的阻滞作用有差异有差异, 阻滞作用有差异,从而造成各组分在凝胶柱中的迁移速度不同得到分离。胶柱中的迁移速度不同得到分离。 小分子被延滯 固定相 较快流出 基本概念 外水体积(Vo)是指凝胶柱中凝胶颗粒周围空间的体积,外水体积(Vo)是指凝胶柱中凝胶颗粒周围空间的体积,也就是凝胶颗粒(Vo)是指凝胶柱中凝胶颗粒周围空间的体积间液体流动相的体积。间液体流动相的体积。内

葡聚糖凝胶柱使用及注意事项

葡聚糖凝胶柱使用及注意事项 1 Sephadex G型葡聚糖凝胶只适合在水中使用,Sephadex G-25羟丙化后就是Sephadex LH-20。其既有分子筛作用,在由极性与非极性溶剂组成的溶剂中还有反相层析效果。虽然价位很高,但由于性能颇佳,可再生利用,所以倍受亲睐。此外上柱样品损失很少,对处理小样品较好,这也是我们实验室常用的原因之一。 2 Sephadex LH20 的原理。 Sephadex LH20的分离原理主要有两方面:以凝胶过滤作用为主,兼具反相分配的作用(在反相溶剂中)。因为凝胶过滤作用,所以大分子的化合物保留弱,先被洗脱下来,小分子的化合物保留强,最后出柱。如果使用反相溶剂洗脱, Sephadex LH20对化合物还起反相分 配的作用,所以极性大的化合物保留弱,先被洗脱下来,极性小的化合物保留强,后出柱。如果使用正相溶剂洗脱,这主要靠凝胶过滤作用来分离。 3 Sephadex LH20 洗脱溶剂。 看完第2点后,就应该清楚Sephadex LH20 洗脱溶剂因分为两类:反相和正相两种。用得 最多的是反相溶剂洗脱,以甲醇--水系统最为常见,先用水,逐渐增加甲醇比例,最后用100%甲醇冲柱。正相系统以氯仿--甲醇最为常见,先用50%氯仿--甲醇,逐渐增加甲醇比例,最后用100%甲醇冲柱。 4 Sephadex LH20 样品的处理和洗脱溶剂的选择。 如果样品极性大,这选用反相溶剂洗脱(甲醇--水),样品用最少体积的甲醇--水(尽可能甲醇少一些)溶解,过滤后,湿法上样(一定要滤喔!要是把Sephadex LH20 堵啦, 就得将Sephadex LH20 的柱头部分弃去,很心痛呀)。如果样品极性小,这选用正相溶剂 洗脱(氯仿--甲醇),样品用最少体积的氯仿--甲醇溶解,过滤后,湿法上样。 5 Sephadex LH-20的步骤。 (1) 选择条件: 梯度洗脱在Sephadex使用中并不象在正相柱层析中那么重要。首先你的样品须要能溶解在尽量少量的洗脱剂中。极性在的用甲醇水系统;极性小者一般用不含水的系统。我们实验室常用正己烷二氯甲烷甲醇系统,用了很多年,效果较好。 (2) 饱和层析柱: 用洗脱剂将凝胶摇匀,直立柱身,让其自然沉降,此时要防止气泡留在其中。至少半小时打开开关,流出几个柱体种的洗脱剂,目的是使其膨胀在正确比例的洗脱剂中。 (3) 样品处理:用尽量少的洗脱剂溶解样品,常压过滤。 (4) 湿法上柱。这也是要有技巧的步骤。

柱下条形基础设计课程设计

柱下条形基础设计 一、设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,耕填土,层厚0.7m ,黑色,原为农田,含大量有机质。 ②号土层,黏土,层厚1.8m ,软塑,潮湿,承载力特征值kPa f ak 120=。 ③号土层,粉砂,层厚2.6m ,稍密,承载力特征值kPa f ak 160=。 ④号土层,中粗砂,层厚4.1m ,中密,承载力特征值kPa f ak 200=。 ⑤号土层,中风化砂岩,厚度未揭露,承载力特征值kPa f ak 320=。 3、岩土设计技术参数 地基岩土物理力学参数如表2.1所示。 4、水文地质条件 (1)拟建场区地下水对混凝土结构无腐蚀性。 (2)地下水位深度:位于地表下0.9m 。

5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400 。室外地坪标高同自然地面,室内外高差mm 450。柱网布置如图2.1所示。 6、上部结构作用 上部结构作用在柱底的荷载效应标准组合值=1280kN =1060kN ,,上 部结构作用在柱底的荷载效应基本组合值 =1728kN ,=1430kN (其中 k N 1为轴 线②~⑥柱底竖向荷载标准组合值;k N 2为轴线①、⑦柱底竖向荷载标准组合值; 1N 为轴线②~⑥柱底竖向荷载基本组合值;2N 为轴线①、⑦柱底竖向荷载基本 组合值) 图2.1 柱网平面图 其中纵向尺寸为6A ,横向尺寸为18m ,A=6300mm 混凝土的强度等级C25~C30,钢筋采用HPB235、HRB335、HRB400级。

二、柱下条形基础设计 1、确定条形基础底面尺寸并验算地基承载力 由已知的地基条件,假设基础埋深d 为m 6.2,持力层为粉砂层 (1) 求修正后的地基承载力特征值 由粉砂,查表10.7得,0.3,0.2==d b ηη 埋深范围内土的加权平均重度: 3/69.116 .2) 105.19(1.06.1)104.18(2.04.187.06.17m kN m =-?+?-+?+?= γ 持力层承载力特征值(先不考虑对基础宽度的修正): kPa d f f m d ak a 65.233)5.06.2(69.110.3160)5.0(=-??+=-?+=γη (2) 初步确定基础宽度 设条形基础两端均向外伸出:m 9.19.63 1 =? 基础总长:m l 4623.269.6=?+?= 则基础底面在单位m 1长度内受平均压力: kN F k 61.20746 5145021150=?+?= 基础平均埋深为:m d 825.2)05.36.2(2 1 =+= 需基础底板宽度b : m d f F b G a k 06.1)] 9.0825.2(10825.220[65.23361 .207=-?-?-=?-≥ γ 取m b 2.1=设计 (3) 计算基底压力并验算 基底处的总竖向荷载为: kN G F k k 73.2583.11)]9.0825.2(10825.220[32.251=??-?-?+=+ 基底的平均压力为: kPa f kPa G F P a k k k 65.23360.2152 .1173 .258A =<=?=+= 满足条件 2、基础的结构设计 (1) 梁的弯矩计算 在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为:

柱下条形基础设计计算书

柱下条形基础课程设计计算书 由平面图和荷载可知A 、D 轴的基础受力情况相同,B 、C 轴的基础受力情况相同。所以在计算时,只需对A 、B 轴的条形基础进行计算。 一、A 、D 轴基础尺寸设计 1、确定基础底面尺寸并验算地基承载力 由已知的地基条件,地下水位埋深12m ,假设基础埋深1.55m (基础底面到室外地面的距离),持力层为粘土层。 (1)求修正后的地基承载力特征值 查得0=b η,0.1=d η, 3180.518 1.05 18/1.55 m kN m γ?+?= = (0.5)160 1.018(1.550.5)178.9a ak d m f f d kPa ηγ=+-=+??-= (2)初步确定基础宽度 条形基础轴线方向不产生整体偏心距,设条形基础两端均向外伸出0.25 5.4 1.35m ?= 基础总长57 5.40.25259.7l m =+??= 则基础底面在单位1m 长度内受平均压力 1864.73 282.536.6k F kN = = 则基础底面在单位1m 长度内受平均弯矩 83.50 12.656.6 k M kN m = =? 282.53 1.87178.918 1.55 k a G F b m f d γ≥ ==--? 考虑偏心荷载的作用,取b=2.5m 。 (3)计算基底压力并验算 基底处的总竖向荷载为: 282.5318 1.0 1.55 2.5352.28k k F G kN +=+???= 基底总弯矩为:83.50k M kN m =? 偏心距为:83.50 2.5 0.2370.417352.2866 k k k M l e m m F G = ==<==+ 基底平均压力为:352.28 140.9178.92.5 1.0 k k k a F G p kPa f kPa A +===<=? 基底最大压力为: max 660.2371140.91201.04 1.2214.682.5k k a e p p kPa f kPa l ????? =+=?+=<= ? ???? ?满 足条件。

第3章_柱下条形基础

第3章柱下条形基础、筏形和箱形基础 §3-1概述 柱下条形基础、筏形基础和箱形基础与柱下独立基础相比,具有优良的结构特征、较大的承载能力等优点,适合作为各种地质条件复杂、建设规模大、层数多、结构复杂的建筑物基础。 柱下条形基础、筏形基础和箱形基础将建筑物底部连成整体加强了建筑物整体刚度,调整和均衡传递给地基的上部结构荷载,减小荷载差异和地基不均匀造成的建筑物不均匀沉降,减小上部结构的次应力。该类基础一般埋深较大,可提高地基的承载力,增大基础抗水平滑动的稳定性,并可利用地基补偿作用减小基底附加应力,减小建筑物的沉降量。此外,筏形和箱形基础还可在建筑物下部构成较大的地下空间,提供安置设备 和公共设施的合适场所。 但是,这类基础尤其箱形基础,技术要求及造价较高,施工中需处理大基坑、深开挖所遇到的许多问题,箱形基础的地下空间利用 不灵活,因此,选用时需根据具体条件通过技术经济及应用比较确 定。 如前所述的刚性及扩展基础,因建筑物较小,结构较简单,计算分析中将上部结构、基础和地基简单地分割成彼此独立的三个组成 部分,分别进行设计和验算,三者之间仅满足静力平衡条件。这种 设计方法称为常规设计,由此引起的误差一般不致于影响结构安全 或增加工程造价,但计算分析简单,工程界易于接受。然而对于条 形、筏形和箱形等规模较大、承受荷载多和上部结构较复杂的基础,上述简化分析,仅满足静力平衡条件而不考虑三者之间的相互作用,则常常引起较大误差。由于基础在地基平面上一个或两个方向的尺 度与其竖向截面相比较大,一般可看成是地基上的受弯构件—梁或 板。其挠曲特征、基底反力和截面内力分布都与地基、基础以及上 部结构的相对刚度特征有关,故应从三者相互作用的角度出发,采 用适当的方法进行设计。 应该指出,上部结构、基础和地基共同作用是一个复杂的研究课题,尽管已取得较丰硕的成果,但是由于涉及到的因素很多,尤其 地基土是一种很复杂的材料,目前尚缺少一种理想的地基模型去确 切模拟,因此考虑共同工作的分析结果与实测资料对比往往存在着 不同程度的差异,有时误差还较大,说明理论分析方法尚有待进一 步完善,许多设计人员提出,设计这些基础宜以“构造为主,计算 为辅”的原则,本章在介绍柱下条形基础、筏形基础、箱形基础设 计计算的同时,也介绍其结构和构造要求,供设计时采用。 §3-2弹性地基上梁的分析

葡聚糖凝胶柱的使用方法

葡聚糖凝胶柱的使用方法: 预处理(1) 称取Sephadex G-25(50-100目)约5g,加入蒸馏水100ml,置室温下3h进行溶胀。 (2) 装柱 凝胶层析柱的直径与柱长之比一般为1:15。柱的底部用装有细玻璃管的橡皮塞塞紧,用洗净的玻璃丝(约200目尼龙布)垫底或购买类似规格的商品柱。然后将柱垂直安装好,先加入1/3柱体积蒸馏水,接着将溶胀好的凝胶边搅匀边连续装入,使它们在柱内自然沉降。同时大开下口慢速流出蒸馏水。装柱后的凝胶必须均匀,不能有气泡或明显条纹。否则,必须到出重装,装好后,用蒸馏水平衡2-3h即可加样品分离。 (3) 加样 加样前,首先把柱内凝胶上面多余的蒸馏水放出,直到柱内液面与凝胶表面相齐(或留一极薄液层)为止。然后,由柱的上端加水解液2ml,注意不要让溶液把凝胶冲松浮起,加完样品后,打开下口缓慢放出液体至液面与凝胶面相齐,再用少量蒸馏水冲洗原来盛样品的容器2-3次,待全部进入层析柱后,即可进行洗脱。 (4) 洗脱与收集 洗脱时,用蒸馏水作洗脱剂,并且要连续不断地进行,使凝胶柱上端保持

一定的液层,防止凝胶柱表面的液体流干。本实验洗脱液流出的速度应控制在0.8-10,共收集3ml。洗脱液的收集采用分管连续顺序收集,每管收集1.0ml/min 管。据经验,4或5号管核苷酸浓度最大,可作为层析鉴定的样品液。但因层析柱长度的差异,管号会有变化,必要时可用紫外检测A260nm, 找出浓度最大的管号。 (5) 凝胶的再生和回收 凝胶柱使用一次后,必须反冲疏松一次,平衡后再使用。若使用数次,就需要再生处理。用0.1mol/L NaOH-0.5mol/L NaCl溶液浸泡,然后用蒸馏水洗至中性备用。若实验完毕,将再生后的凝胶在布氏漏斗上用蒸馏水洗涤抽干,再用95%乙醇洗两次,在60℃烘箱中烘干,回收保存。 实验五. 葡聚糖凝胶层析 【实验目的】 1.掌握葡聚糖凝胶的特性及凝胶层析的原理。 2.学习葡聚糖凝胶层析的基本操作技术。 【实验原理】 凝胶层析又称分子排阻层析或凝胶过滤,是以被分离物质的分子量差异为基础的一种层析分离技术,这一技术为纯化蛋白质等生物大分子提供了一种非常温和的分离方法。层析的固定相载体是凝胶颗粒,目前应用较广的是:具有各种孔径范围的葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose)。 葡聚糖凝胶是由直链的葡聚糖分子和交联剂3—氯1,2—环氧丙烷交联而成的具有多孔网状结构的高分子化合物。凝胶颗粒中网孔的大小可通过调节葡聚糖和交联剂的比例来控制,交联度越大,网孔结构越紧密;交联度越小,网孔结构就越疏松,网孔的大小决定了被分离物质能够自由出

相关文档
最新文档