运筹学实验一 线性规划求解、运输问题、整数规划求解 2

运筹学实验一 线性规划求解、运输问题、整数规划求解 2
运筹学实验一 线性规划求解、运输问题、整数规划求解 2

西华大学能源与环境工程学院学生上机实验报告

西华大学上机实验报告

一、实验目的

掌握线性规划求解的基本方法,熟悉灵敏度分析的步骤和内容;掌握运输问题的模型,概念,求解方法;掌握整数规划的算法。在熟悉lingo软件基本功能基础上,能熟练操作,正确完成模型求解过程及分析过程。

二、实验内容或设计思想

1.lingo软件或运筹学实验软件的安装及菜单熟悉了解.

2.lingo软件或运筹学实验软件应用内容之:任选几种不同类型的LP输入计算程序,运行求解;完成产销平衡的运输问题求解;求解任一整数规划。

三、实验环境与工具

计算机、lingo软件

四、实验过程或实验数据

1用lingo求解线性规划

某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示:

用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。

max=60*desks+30*tables+20*chairs;

8*desks+6*tables+chairs<=48;

4*desks+2*tables+1.5*chairs<=20;

2*desks+1.5*tables+.5*chairs<=8;

tables<=5;

求解这个模型,并激活灵敏性分析。这时,查看报告窗口(Reports Window),可以看到如下结果。

Global optimal solution found at iteration: 3

Objective value: 280.0000

Variable Value Reduced Cost DESKS 2. 0.

TABLES 0. 5.

CHAIRS 8. 0.

Row Slack or Surplus Dual Price

1 280.0000 1.

2 24.00000 0.

3 0. 10.00000

4 0. 10.00000

5 5. 0.

2 用运筹学软件求解线性规划

(例子和过程参照教材)

使用LINGO软件计算运输问题和整数规划问题

model:

!6发点8收点运输问题;

sets:

warehouses/wh1..wh6/: capacity;

vendors/v1..v8/: demand;

links(warehouses,vendors): cost, volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!需求约束;

@for(vendors(J):

@sum(warehouses(I): volume(I,J))=demand(J));

!产量约束;

@for(warehouses(I):

@sum(vendors(J): volume(I,J))<=capacity(I));

!这里是数据;

data:

capacity=60 55 51 43 41 52;

demand=35 37 22 32 41 32 43 38;

cost=6 2 6 7 4 2 9 5

西华大学能源与环境学院学生上机实验报告

4 9

5 3 8 5 8 2

5 2 1 9 7 4 3 3

7 6 7 3 9 2 7 1

2 3 9 5 7 2 6 5

5 5 2 2 8 1 4 3;

enddata

end

Global optimal solution found at iteration: 20

Objective value: 664.0000

Variable Value Reduced Cost

CAPACITY( WH1) 60.00000 0.

CAPACITY( WH2) 55.00000 0.

CAPACITY( WH3) 51.00000 0.

CAPACITY( WH4) 43.00000 0.

CAPACITY( WH5) 41.00000 0.

CAPACITY( WH6) 52.00000 0.

DEMAND( V1) 35.00000 0.

DEMAND( V2) 37.00000 0.

DEMAND( V3) 22.00000 0.

DEMAND( V4) 32.00000 0.

DEMAND( V5) 41.00000 0.

DEMAND( V6) 32.00000 0.

DEMAND( V7) 43.00000 0.

DEMAND( V8) 38.00000 0.

COST( WH1, V1) 6. 0.

COST( WH1, V2) 2. 0.

COST( WH1, V3) 6. 0.

COST( WH1, V4) 7. 0.

COST( WH1, V5) 4. 0.

COST( WH1, V6) 2. 0.

COST( WH1, V7) 9. 0.

COST( WH1, V8) 5. 0.

COST( WH2, V1) 4. 0.

COST( WH2, V2) 9. 0.

COST( WH2, V3) 5. 0.

COST( WH2, V4) 3. 0.

COST( WH2, V5) 8. 0.

COST( WH2, V6) 5. 0.

COST( WH2, V7) 8. 0.

COST( WH2, V8) 2. 0.

COST( WH3, V1) 5. 0.

COST( WH3, V2) 2. 0.

COST( WH3, V3) 1. 0.

COST( WH3, V4) 9. 0.

COST( WH3, V5) 7. 0.

COST( WH3, V6) 4. 0.

COST( WH3, V7) 3. 0.

COST( WH3, V8) 3. 0.

COST( WH4, V1) 7. 0.

COST( WH4, V2) 6. 0.

COST( WH4, V3) 7. 0.

COST( WH4, V4) 3. 0.

COST( WH4, V5) 9. 0.

COST( WH4, V6) 2. 0.

COST( WH4, V7) 7. 0.

COST( WH4, V8) 1. 0.

COST( WH5, V1) 2. 0.

COST( WH5, V2) 3. 0.

COST( WH5, V3) 9. 0.

COST( WH5, V4) 5. 0.

COST( WH5, V5) 7. 0.

COST( WH5, V6) 2. 0.

COST( WH5, V7) 6. 0.

COST( WH5, V8) 5. 0.

COST( WH6, V1) 5. 0.

COST( WH6, V2) 5. 0.

COST( WH6, V3) 2. 0.

COST( WH6, V4) 2. 0.

COST( WH6, V5) 8. 0.

COST( WH6, V6) 1. 0.

COST( WH6, V7) 4. 0.

COST( WH6, V8) 3. 0.

VOLUME( WH1, V1) 0. 5.

VOLUME( WH1, V2) 19.00000 0. VOLUME( WH1, V3) 0. 5.

VOLUME( WH1, V4) 0. 7.

VOLUME( WH1, V5) 41.00000 0. VOLUME( WH1, V6) 0. 2.

VOLUME( WH1, V7) 0. 6.

VOLUME( WH1, V8) 0. 6.

VOLUME( WH2, V1) 1. 0.

VOLUME( WH2, V2) 0. 4.

VOLUME( WH2, V3) 0. 1.

VOLUME( WH2, V4) 32.00000 0. VOLUME( WH2, V5) 0. 1.

VOLUME( WH2, V6) 0. 2.

VOLUME( WH2, V7) 0. 2.

VOLUME( WH2, V8) 0. 0.

VOLUME( WH3, V1) 0. 4.

VOLUME( WH3, V2) 11.00000 0. VOLUME( WH3, V3) 0. 0.

VOLUME( WH3, V4) 0. 9.

VOLUME( WH3, V5) 0. 3.

VOLUME( WH3, V6) 0. 4.

VOLUME( WH3, V7) 40.00000 0. VOLUME( WH3, V8) 0. 4.

VOLUME( WH4, V1) 0. 4.

VOLUME( WH4, V2) 0. 2.

VOLUME( WH4, V3) 0. 4.

VOLUME( WH4, V4) 0. 1.

VOLUME( WH4, V5) 0. 3.

VOLUME( WH4, V6) 5. 0.

VOLUME( WH4, V7) 0. 2.

VOLUME( WH4, V8) 38.00000 0. VOLUME( WH5, V1) 34.00000 0. VOLUME( WH5, V2) 7. 0.

VOLUME( WH5, V3) 0. 7.

VOLUME( WH5, V4) 0. 4.

VOLUME( WH5, V5) 0. 2.

VOLUME( WH5, V6) 0. 1.

VOLUME( WH5, V7) 0. 2.

VOLUME( WH5, V8) 0. 5.

VOLUME( WH6, V1) 0. 3.

VOLUME( WH6, V2) 0. 2.

VOLUME( WH6, V3) 22.00000 0. VOLUME( WH6, V4) 0. 1.

VOLUME( WH6, V5) 0. 3.

VOLUME( WH6, V6) 27.00000 0. VOLUME( WH6, V7) 3. 0.

VOLUME( WH6, V8) 0. 3.

西华大学能源与环境学院学生上机实验报告 Row Slack or Surplus Dual Price

1 664.0000 -1.

2 0. -4.

3 0. -5.

4 0. -4.

5 0. -3.

6 0. -7.

7 0. -3.

8 0. -6.

9 0. -2.

10 0. 3.

11 22.00000 0.

12 0. 3.

13 0. 1.

14 0. 2.

15 0. 2.

model:

!3发点4收点运输问题;

sets:

warehouses/wh1..wh3/: capacity;

vendors/v1..v4/: demand;

links(warehouses,vendors): cost, volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!需求约束;

@for(vendors(J):

@sum(warehouses(I): volume(I,J))=demand(J));

!产量约束;

@for(warehouses(I):

@sum(vendors(J): volume(I,J))<=capacity(I));

!这里是数据;

data:

capacity=60 55 51 ;

demand=35 37 22 72 ;

cost=6 2 6 7

4 9

5 3

5 2 1 9;

enddata

end

Global optimal solution found at iteration: 5

Objective value: 561.0000

Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.

CAPACITY( WH2) 55.00000 0.

CAPACITY( WH3) 51.00000 0.

DEMAND( V1) 35.00000 0.

DEMAND( V2) 37.00000 0.

DEMAND( V3) 22.00000 0.

DEMAND( V4) 72.00000 0.

COST( WH1, V1) 6. 0.

COST( WH1, V2) 2. 0.

COST( WH1, V3) 6. 0.

COST( WH1, V4) 7. 0.

COST( WH2, V1) 4. 0.

COST( WH2, V2) 9. 0.

COST( WH2, V3) 5. 0.

COST( WH2, V4) 3. 0.

COST( WH3, V1) 5. 0.

COST( WH3, V2) 2. 0.

COST( WH3, V3) 1. 0.

COST( WH3, V4) 9. 0.

VOLUME( WH1, V1) 6. 0.

VOLUME( WH1, V2) 37.00000 0.

VOLUME( WH1, V3) 0. 4.

VOLUME( WH1, V4) 17.00000 0.

VOLUME( WH2, V1) 0. 2.

VOLUME( WH2, V2) 0. 11.00000

VOLUME( WH2, V3) 0. 7.

VOLUME( WH2, V4) 55.00000 0.

VOLUME( WH3, V1) 29.00000 0.

VOLUME( WH3, V2) 0. 1.

VOLUME( WH3, V3) 22.00000 0.

VOLUME( WH3, V4) 0. 3.

Row Slack or Surplus Dual Price

1 561.0000 -1.

2 0. -6.

3 0. -2.

4 0. -2.

5 0. -7.

6 0. 0.

7 0. 4.

8 0. 1.

示例3 分配问题

model:

!4个工人,4个工作的分配问题;

sets:

workers/w1..w4/;

jobs/j1..j4/;

links(workers,jobs): cost,volume;

endsets

!目标函数;

min=@sum(links: cost*volume);

!每个工人只能有一份工作;

@for(workers(I):

西华大学能源与环境学院学生上机实验报告@sum(jobs(J): volume(I,J))=1;

);

!每份工作只能有一个工人;

@for(jobs(J):

@sum(workers(I): volume(I,J))=1;

);

data:

cost= 6 2 6 7

4 9

5 3

5 2 1 9

7 6 7 3 ;

enddata

end

Global optimal solution found at iteration: 0

Objective value: 10.00000

Variable Value Reduced Cost

COST( W1, J1) 6. 0.

COST( W1, J2) 2. 0.

COST( W1, J3) 6. 0.

COST( W1, J4) 7. 0.

COST( W2, J1) 4. 0.

COST( W2, J2) 9. 0.

COST( W2, J3) 5. 0.

COST( W2, J4) 3. 0.

COST( W3, J1) 5. 0.

COST( W3, J2) 2. 0.

COST( W3, J3) 1. 0.

COST( W3, J4) 9. 0.

COST( W4, J1) 7. 0.

COST( W4, J2) 6. 0.

COST( W4, J3) 7. 0.

COST( W4, J4) 3. 0.

VOLUME( W1, J1) 0. 1.

VOLUME( W1, J2) 1. 0.

VOLUME( W1, J3) 0. 0.

VOLUME( W1, J4) 0. 3.

VOLUME( W2, J1) 1. 0.

VOLUME( W2, J2) 0. 8.

VOLUME( W2, J3) 0. 0.

VOLUME( W2, J4) 0. 0.

VOLUME( W3, J1) 0. 5.

VOLUME( W3, J2) 0. 5.

VOLUME( W3, J3) 1. 0.

VOLUME( W3, J4) 0. 10.00000

VOLUME( W4, J1) 0. 3.

VOLUME( W4, J2) 0. 5.

VOLUME( W4, J3) 0. 2.

VOLUME( W4, J4) 1. 0.

Row Slack or Surplus Dual Price

1 10.00000 -1.

2 0. -1.

3 0. 0.

4 0. 4.

5 0. 0.

6 0. -4.

7 0. -1.

8 0. -5.

9 0. -3.

示例4 解整数规划,在lingo窗口输入以下代码,

min=3*x1+x2+3*x3+3*x4+x5+x6+3*x7;

4*x1+3*x2+2*x3+x4+x5>=50;

x2+2*x4+x5+3*x6>=20;

x3+x5+2*x7>=15;

@gin(x1);@gin(x2);@gin(x3);

@gin(x4);@gin(x3);@gin(x6);@gin(x7);

END

运行结果为:

Global optimal solution found.

Objective value: 27.00000

Extended solver steps: 0

Total solver iterations: 5

Variable Value Reduced Cost

X1 0. 3.

X2 12.00000 1.

X3 0. 2.

X4 0. 3.

X5 15.00000 0.

X6 0. 1.

X7 0. 1.

Row Slack or Surplus Dual Price

1 27.00000 -1.

2 1. 0.

3 7. 0.

4 0. -1.

2 用运筹学实验软件计算运输问题和整数规划问题

五、总结

对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。要用自己的语言表达,不得抄袭雷同

实验一线性规划

实验一线性规划 (一) 实验目的:运用Excel 和LINGO 软件求解线性规划问题 (二) 内容及要求:求解习题2-9、2-10 (三) 实验报告: 2-9已知线性规划问题: 用单纯形法求得最终表如表2-101所示。 表2-101 最优单纯形表 试分析在下列条件单独变化的情况下最优解的变化。 (1) 目标函数系数C1或C2分别在什么范围内变化时,最优解不变; (2) 当约束条件右端项b1,b2中一个保持不变时,另一个在什么范围内变化,上述最优 基保持不变; (3) 约束条件右端项目98?? ??? 变为1119?? ???时上述最优解的变化。 解:用lingo 求解,模型代码如下: max =10*x1+5*x2; 3*x1+4*x2<=9; 5*x1+2*x2<=8; 求解模型,结果如下: Global optimal solution found. Objective value: 17.50000 Infeasibilities: 0.000000 Total solver iterations: 2 Variable Value Reduced Cost X1 1.000000 0.000000 X2 1.500000 0.000000 Row Slack or Surplus Dual Price 1 17.50000 1.000000 2 0.000000 0.3571429 3 0.000000 1.785714 12121212max 105349..528,0z x x x x s t x x x x =++≤+≤≥?????

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日 班级2014级04班姓名杨艺玲学号56 实验 管理运筹学问题的计算机求解 名称 实验目的: 通过实验学生应该熟练掌握“管理运筹学”软件的使用,并能利用“管理运筹学”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。 实验所用软件及版本: 管理运筹学 实验过程:(含基本步骤及异常情况记录等) 一、实验步骤(以P31页习题1 为例) 1.打开软件“管理运筹学” 2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决 4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少这时最大利润是多少 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 (2)图中的对偶价格的含义是什么 答: 对偶价格的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加元。 (3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为。 (4)若甲组合柜的利润变为300,最优解不变为什么 . 0,0,6448,120126; 240200 z max ≥≥≤+≤++=y x y x y x y x

实验一:线性规划

实验一:线性规划 班级 姓名 学号 一、实验目的:学会用matlab 、lingo 软件求解线性规划问题。 二、实验要求: 1.熟悉线性规划问题的数学建模; 2.会用matlab 、 lingo 软件求解线性规划问题; 3.掌握线性规划的灵敏度分析。 三、实验内容: 1、求解下列线性规划问题: ????? ? ?≥≤+≤+≤++=0 ,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出lingo 原始代码; lingo 程序代码: model: max =8*x1+6*x2; 9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13; end (2) 计算结果(包括灵敏度分析,求解结果粘贴);

(3) 回答下列问题: a) 最优解及最优目标函数值是多少; (x1,x2)=(1.333333,0) Z=10.66667 b) 资源的对偶价格各为多少,并说明对偶价格的含义; 第一、二、三种资源的对偶价格分别0.8888889,0,0; 表示当对应约束有微小变动时, 目标函数的变化率。当“9x1+8x2<=12”改为“9x1+8x2<=13”时,目标函数的值为10.66667+0.8888889=11.55556。对于非紧约束,DUAL PRICE 的值为0,,表示对应约束中不等式右端项的微小扰动不影响目标函数。 c) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一 个单位,你将选择哪一个约束条件?这时目标函数值将是多少? 第一个约束条件:因为它是紧约束,即原料没有剩余。

运筹学实验报告1

运筹学实验报告(一) 实验要求:学会在Excel 软件中求解。 实验目的:通过小型线性规划模型的计算机求解方法。 熟练掌握并理解所学方法。 实验内容: 题目: 某昼夜服务的公交线路每天各时间区段内所需司机和乘务人员数如下; 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线 路至少配备多少名司机和乘 务人员。列出这个问题的线 性规划模型。 解:设Xj 表示在第j 时间区段开始上班的司机和乘务人员数 班次 时间 所需人数 1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-2:00 20 6 2:00-6:00 30

。 6-10 10-14 14-18 18-22 22-2 2-6 1 X1--- X1 2 X2--- X2 3 X3--- X3 4 X4--- X4 5 X5--- X5 6 X6 X6--- 60 70 60 50 20 30 所需人 数 Min z=x1+x2+x3+x4+x5+x6 St: x1+x6>=60 X1+x2>=70 X2+x3>=60 X3+x4>=50 X4+x5>=20 X5+x6>=30 Xj>=0,xj为整数, j=1,2,3,4,5,6

过程: 工作表[Book1]Sheet1 报告的建立: 2011-9-28 19:45:01 目标单元格(最小值) 单元格名字初值终值 $B$1 min 0 150 可变单元格 单元格名字初值终值 $B$3 x 0 45 $C$3 x 0 25 $D$3 x 0 35 $E$3 x 0 15 $F$3 x 0 15 $G$3 x 0 15 结果:最优解X=(45,25,35,15,15,15)T 目标函数值z=150 小结:1.计算机计算给规划问题的解答带来方便,让解答变得简洁;

运筹学线性规划实验报告

《管理运筹学》实验报告实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决

4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 . 0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x

(2)图中的对偶价格13.333的含义是什么? 答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。 (3)对图中的常数项围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192围变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180围变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。 (4)若甲组合柜的利润变为300,最优解不变?为什么? 答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。 二、学号题 约束条件: 无约束条件 (学号)学号43214321432143214321 0 0,30 9991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=??????????????-≥?-?-?-?-?-7606165060~5154050~414 )30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则

运筹学实验 线性规划

一:实验目的 1)熟练掌握运筹学软件LINDO的相关使用操作 2)利用软件建立模型,解决最优值问题 二:实验内容,上机问题 (1)利用lindo软件,解决如下问题 一个资源利用问题的数学模型如下 MAX z=100x1+180x2+70x3 S.T. 40x1+50x2+60x3<=10000 3x1+6x2+2x3<=600 x1 <=130 x2 <=80 x3<=200 x1>=0 x2>=0 x3>=0 用LINDO软件包解之,并从LINDO的输出表中回答下列问题: (1)在现有资源的约束条件下,企业管理者应如何组织生产,使利润最大? (2)为改善现状,以获取更大利润,管理者应该如何做? (3)若希望增加某种资源的供应量,需支付额外费用,这笔费用应控制在什么范围内,对企业才是有利的?此时(即增加某些资源供应量,同时支付相应的额外费用),企业的总利润的增量是多少? (2)对偶问题如下 MIN -10000 W1 + (-600) W2 + (-130) W3 + (-80) W4 + (-200) W5 S.T. -40 W1 + (-3) W2 + (-1) W3 <= -100 -50 W1 + (-6) W2 + (-1) W4 <= -180 -60 W1 + (-2) W2 + (-1) W5 <= -70 W1 >= 0 W2 >= 0 W3 >= 0 W4 >= 0 W5 >= 0 END 三.实验过程:介绍程序,分析结果得结论 1.建立模型如下

2.运行模型,分析如下 由图可知:最优值z=20003.8 3.分析结果如下

由图可知:最优解x1=130, x2=11.538462, x3=70.384613 4.对偶问题的模型建立如下

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期:2016年04月21日——2016年05月18日 实验目的: 通过实验学生应该熟练掌握“管理运筹学 3.0”软件的使用,并能利用“管理运筹学 3.0” 对具体问题进行问题处理,且能对软件处理结果进行解释和说明。实验所用软件及版本:管理运筹学3.0 实验过程:(含基本步骤及异常情况记录等―) 一、实验步骤(以P31页习题1为例) 1?打开软件“管理运筹学3.0” 2?在主菜单中选择线性规划模型,屏幕中会出现线性规划页面 3?在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“w”、“》”或“二”, 如图二所示,最后点击解决 班级2014级04班姓名杨艺玲学号2014190456实验 名称 管理运筹学问题的计算机求解 n 幵 目标的数 娈童个数约束条件个数 芙 遇出 保存解决关于

X 4?注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。 (2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果, 如 图所示 D tiff 0% 关于遇出 变童个数约朿条件个数F目标的数3V 标淮北结杲: 上一曲

5.输出结果如下 me車最优解如下***#尊1林*祜除目标函数最优值知2?20 变1 最优解相差値 XI 4.00 0.00 X2 8.00 0100 釣束松弛颅11余变量对偶价格 01. 00 16. 5€ 0.00 13.33 目标函数系数范園: 娈1下限当前值上限 XI 120. 30 200.00430. 00 X2 100. 0D 240.00400.00 常数【页范園; 的束T眼当前值上限 143.00120 00152.00 240.00 64.00 160.00 5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240 元. max z = 200x 240y; 约束条件:6x,12心2°, 8x +4y 兰64, x 一0, y -0. 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个

运筹学实验报告 运用EXCEL解线性规划 报告范文 让利益最大化 生产规划

让利益最大化 ——关于皇氏乳业加工奶制品的生产计划 摘要:如今乳制品的市场竞争越来越强,原料成本正在增加,为了提高皇氏乳业的竞争力,提高公司的利润,公司决定开发新产品,原料奶油及中老年奶粉。先对皇氏乳业的原料成本,生产时间,产品利润等做了一系列调查,建立了线性规划模型,在对模型求解并进行灵敏度分析后,给出具体的对策建议。 关键词:线性规划;生产成本;最优生产计划 一、问题的提出 经过调查,每一桶牛奶的生产成本和利润如下表: 每天至多加工50桶牛奶,机器最多使用480小时,至多加工100kg奶油A1。 (一)如何制定生产计划,使每天获利最大? (二) 35元可以买到一桶牛奶,买吗?若买,每天最多买多少? (三)可聘用临时工人,付出的工资最多是每小时几元? (四)奶油A1的获利增加到30元/公斤,是否改变生产计划? 1.问题分析 首先,工厂的经济效益主要取决于原料,劳动时间,产品利润等,至于劳动机械磨损,工人熟练程度等,均不予考虑。所以我们主要研究原料成本,劳动时间,产品利润与工厂经济效益的关系。 2.数据的收集整理 对于奶油A1、奶粉A2的产量,询问工厂管理人员得知。 对于加工时间,可以通人力资源管理部门查询。 对于利润,通过近期一个月的销售成绩,综合分析得出。 二、运筹模型 1、模型的建立 设X1桶牛奶生产奶油A1,X2桶牛奶生产奶粉A2。

Maxz=72X1+64X2 St. X1+X2<=50 12X1+8X2<=480 3X1<=100 X1,X2>=0 2、模型的求解 应用EXCEL软件进行求解。 3、灵敏度分析 包括对于目标系数(桶数)变化的灵敏度分析结果表和对于约束条件,如原料供应,劳动时间,加工能力等变化的灵敏度分析结果表。 4、结果分析

学生用-实验指导书-excel线性规划实验

实验指导书《管理决策模型与方法》

实验1 EXCEL 线性规划实验 一、实验目的 1、掌握应用Excel软件求解线性规划问题; 2、掌握应用Excel软件对线性规划问题进行灵敏度分析; 3、掌握应用Excel软件求解整数规划问题; 4、掌握应用Excel软件求解0-1整数规划问题。 二、实验设备、仪器及所需材料 配置在Pentium Ⅲ,内存128M以上的电脑;装有Microsoft Windows操作系统及Microsoft Office 2003工作软件。 三、实验原理 “规划求解”是Microsoft Excel 中的一个加载宏,借助它可以求解许多运筹学中的数学规划问题。 安装Office 2003 的时候,系统默认的安装方式不会安装该宏程序,需要用户自己选择安装。安装方法为:从Excel 菜单中选择“工具”→“加载宏”,打开如下对话框: 选择其中的“规划求解”后单击“确定”按钮,会出现提示:“这项功能目前尚未安装,是否现在安装?”,选择“是”,系统要你插入Office 的安装光盘,准备好后单击确定,很快就会安装完毕。于是,你会发现在“工具”菜单下多出一个名为“规划求解”的子菜单,说明“规划求解”功能已经成功安装。 在EXCEl2007版本中,通过点击“office按钮”,“EXCEL选项”→“加载项”→转到“EXCEL

加载项”,然后加载【规划求解加载项】便可以加载规划求解的宏。 在EXCEl2010版本中,通过点击“文件”选项卡打开“Excel选项”对话框,单击左侧 “加载项”标签,在右侧单击“转到”按钮,打开“加载宏”对话框,勾选“规划求解加载项”复选框,单击“确定”按钮,即可在工具栏的“数据”选项卡中出现 “分析”选项组,上面就有了“规划求解”按钮。 利用“规划求解”功能,就可以进行线性规划问题的求解。 例如:用EXCEL 求解数学规划问题 12121212maxZ 2328416..4120, 0 x x x x x s t x x x =++≤??≤?? ≤??≥≥? 步骤: 1. 将模型中的目标函数和约束条件的系数输入到单元格中;为了使我们在操作过程中看得 更清楚,可以附带输入相应的标识符,并给表格加上边框。如下图所示:

运筹学中线性规划实例汇总

实验报告 课程名称:运筹学导论 实验名称:线性规划问题实例分析专业名称:信息管理与信息系统 指导教师:刘珊 团队成员:邓欣(20112111 蒋青青(20114298 吴婷婷(20112124 邱子群(20112102 熊游(20112110 余文媛(20112125 日期:2013-10-25 成绩:___________

1.案例描述 南部联盟农场是由以色列三个农场组成的联合组织。该组织做出了一个关于农场农作物的种植计划,如下: 每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。数据见下表: 适合本地区种植的农作物包括糖用甜菜、棉花和高粱。这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表: 作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。 2.建立模型 决策变量为Xi(i=1,2,……,9,表示每个农场每种作物的种植量。 MAX Z=1000(X1+X2+X3+750(X4+X5+X6+250(X7+X8+X9 约束条件: (1)每一个农场使用的土地 X1+X4+X7≤400

X2+X5+X8≤600 X3+X6+X9≤300 (2每一个农场的水量分布 3X1+2X4+X7≤600 3X2+2X5+X8≤800 3X3+2X6+X9≤375 (3每一种作物的总种植量 X1+X2+X3≤600 X4+X5+X6≤500 X7+X8+X9≤325 非负约束Xi≥0 , i=1,2, (9) 3.计算机求解过程 步骤1.生成表格 步骤2.输入数据

线性规划实验举例

最优化算法实验指导书 1.线性规划求解 1.1 生产销售计划 问题 一奶制品加工厂用牛奶生产A 1、A 2两种普通奶制品,以及B 1、B 2两种高级奶制品,分别是由A 1、A 2深加工开发得到的,已知每1桶牛奶可以在甲类设备上用12h 加工成3kg A 1,或者在乙类设备上用8h 加工成4kg A 2;深加工时,用2h 并花1.5元加工费,可将1kg A 1加工成0.8kg B 1,也可将1kg A 2加工成0.75kg B 2,根据市场需求,生产的4种奶制品全部能售出,且每公斤A 1、A 2、 B 1、B 2获利分别为12元、8元、22元、16元。 现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间最多为480h ,并且乙类设备和深加工设备的加工能力没有限制,但甲类设备的数量相对较少,每天至多能加工100kg A 1,试为该厂制定一个生产销售计划,使每天的净利润最大,并讨论以下问题: (1)若投资15元可以增加供应1桶牛奶,应否作这项投资; (2)若可以聘用临时工人以增加劳动时间,支付给临时工人的工资最多是每小时几 元? (3)如果B 1、B 2的获利经常有10%的波动,波动后是否需要制定新的生产销售计划? 模型 这是一个有约束的优化问题,其模型应包含决策变量、目标函数和约束条件。 决策变量用以表述生产销售计划,它并不是唯一的,设A 1、A 2、 B 1、B 2每天的销售量分别为1234,,,x x x x (kg ),34,x x 也是B 1、B 2的产量,设工厂用5x (kg )A 1加工B 1,6x (kg )A 2加工B 2(增设决策变量5x 、6x 可以使模型表达更清晰)。 目标函数是工厂每天的净利润z ,即A 1、A 2、 B 1、B 2的获利之和扣除深加工费,容易写出1234561282216 1.5 1.5z x x x x x x =+++--(元)。 约束条件 原料供应:A 1每天的产量为15x x +(kg ),用牛奶13()/3x x +(桶),A 2的每天产量为26x x +(kg ),用牛奶26()/4x x +(桶),二者之和不得超过每天的供应量50(桶)。 劳动时间:每天生产A 1、A 2的时间分别为154()x x +和262()x x +,加工B 1、B 2的时间分别为52x 和62x ,二者之和不得超过总的劳动时间480h 。 设备能力:A 1每天的产量15x x +,不得超过甲类设备的加工能力100(kg )。 加工约束:1(kg )A 1加工成0.8(kg )B 1,故350.8x x =;类似的460.75x x =。 非负约束:123456,,,,,x x x x x x 均为非负。 由此得如下基本模型: 123456max 1282216 1.5 1.5z x x x x x x =+++--

运筹学实验一线性规划

实验项目一线性规划 实验学时:2 实验目的:线性规划(Linear Programming,简写LP)是运筹学中最成熟的一个分枝,而且是应用最为广泛的一个运筹学分枝,是解决最优化问题的重要工具。而目前 Lindo/lingo 是求解线性规划比较成熟的一个软 件,通过本实验,掌握线性规划模型在 Lindo/lingo 中的求解,并能达到灵活运用。 实验要求:1.掌握线性规划的建模步骤及方法; 2.掌握Lindo/lingo 的初步使用; 3.掌握线性规划模型在Lindo/lingo 建模及求解; 4.掌握线性规划的灵敏度分析 实验内容及步骤: 例:美佳公司计划制造I、II 两种家电产品。已知各制造一件时分别占用设备A、B 的台时、调试时间、调试工序每天可用于这种家电的能力、各售出一件时的获利情况,如表1-1 所示。 1.问该公司应制造两种家电各多少件,使其获取的利润最大。 2. 如果资源出租,资源出租的最低价格至少是多少(即每种资源的影子价格是多少)。 3.若家电I 的利润不变,家电II 的利润在什么范围内变化时,则该公司的最优生产计划将不发生变化。 4. 若设备A 和B 每天可用能力不变,则调试工序能力在什么范围内变化时,问题的最优基不变。 解:设x1表示产品I 的生产量; x2表示产品II 的生产量,所在该线性规划的模型为:

从此线性规划的模型中可以看出,第一个小问是典型的生产计划问题,第二小问是相应资源的影子价格,第三和第四个小问则是此问题的灵敏度分析。 现在我们利用lingo8.0 来教你求解线性规划问题。 第一步,启动lingo 进入初始界面如下图1-1 和图1-2 所示: 第二步,在进行线性规划模型求解时,先要对初始求解方法及参数要进行设置,首先选择ling o 菜单下的Option 菜单项,并切换在general solver(通用求解器)页面下,如下图1-3所示:

运筹学试验报告侯小洁-1

运筹学实验报告 学院:安全与环境工程学院 姓名:侯小洁 学号:1350940109 专业:物流工程 班级:1301班 实验时间:5月6、8日 5月13、15日 5月20、22日

湖南工学院安全与环境工程学院 2015年5月 实验一线性规划 一、实验目的 1、理解线性规划的概念。 2、对于一个问题,能够建立基本的线性规划模型。 3、会运用Excel解决线性规划电子表格模型。 二、实验内容 线性规划的一大应用适用于联邦航空公司的工作人员排程,为每年节省开支超过600万美元。 联邦航空公司正准备增加其中心机场的往来航班,因此需要雇佣更多的客户服务代理商,但是不知道到底要雇用多少数量的代理商。管理层意识到在向公司的客户提供令人满意的服务水平的同时必须进行成本控制,因此,必须寻找成本与收益之间合意的平衡。于是,要求管理团队研究如何规划人员才能以最小的成本提供令人满意的服务。 分析研究新的航班时间表,以确定一天之中不同时段为实现客户满意水平必须工作的代理商数目。在表1.1最后一栏显示了这些数目,其中第一列给出对应的时段。表中的其它数据反映了公司与客户服务代理商协会所定协议上的一项规定,这一规定要求每一代理商工作8小时为一班,各班的时间安排如下: 轮班1:6:00AM~2:00PM

轮班2:8:00AM~4:00PM 轮班3:中午~8:00PM 轮班4:4:00PM~午夜 轮班5:10:00PM~6:00AM 表中打勾的部分表示这段时间是有相应轮班的。因为轮班之间的重要程度有差异,所以协议中工资也因轮班所处的时间而不同。每一轮班对代理商的补偿(包括收益)如最低行所示。问题就是,在最低行数据的基础上,确定将多少代理商分派到一天之中的各个轮班中去,以使得人员费用最小,同时,必须保证最后一栏中所要求的服务水平的实现 表1.1联邦航空公司人员排程问题的数据 轮班的时段 时段 1 2 3 4 5 最少需要代理商的数量 6:00AM~8:00AM √ 48 8:00AM~10:00AM √ √ 79 10:00AM~中午√ √ 65 中午~2:00PM √ √ √ 87 2:00PM~4:00PM √ √ 64 4:00PM~6:00PM √ √ 73 6:00PM~8:00PM √ √ 82 8:00PM~10:00PM √ 43 10:00PM~午夜√ √ 52 午夜~6:00AM √15

(完整word版)第二章运筹学 线性规划

第二章 线性规划 主要内容:1、线性规划问题及数学模型 2、线性规划问题的解及其性质 3、图解法 4、单纯形法 5、大M 法和两阶段法 重点与难点:线性规划数学模型的建立:一般形成转化为标准型的方法:单纯形法的求解步骤。 要 求:理解本章内容,掌握本章重点与难点问题;深刻理解线性规划问题的基本概念、基本性质,熟练掌握 其求解技巧;培养解决实际问题的能力。 §1 线性规划的数学模型及解的性质 一、数学模型(一般形式) 例 1 已知某市有三种不同体系的建筑应予修建,其耗用资源数量及可用的资源限量如下表,问不同体系的面积应各建多少,才能使提供的住宅面积总数达到最大? 解:设三种体系的建筑面积依次为1x ,2x ,3x 万平方米, 则目标函数为 321max x x x z ++= 约束条件为 ?? ?? ???????=≥≤++≤≤++≤++≤++3,2,10 4005.335.41470021015000 180190110200025301211000 122137105 3211321321321j x x x x x x x x x x x x x x j 例2 某工厂要安排生产甲、乙两种产品。已知:

问:如何安排两种产品的生产数量,才能使总产值最高? 解:设 21,x x 分别为甲、乙两种产品的生产量: 则目标函数为 21127m ax x x z += 约束条件为??? ??? ?=≥≤+≤+≤+2,1,03001032005436049112121j x x x x x x x j 从以上两例可以看出,它们都属于一类优化问题。它们的共同特征: ①每一个问题都有一组决策变量(n x x x 21,)表示某一方案;这组决策变量的值就代表一个具体方案。一般这 些变量的取值是非负的。 ②存在一定的约束条件,这些约束条件可以用一组线性等式或不等式来表示。 ③都有一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示;按问题的不同,要求目标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。其一般形式为: 目标函数 n n x c x c x c z +++= 2211m ax (m in) 约束条件 ()()()????? ????=≥=≥≤+++=≥≤+++=≥≤+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,0,,,22112222212111212111 可行解:满足约束条件的一组决策变量,称为可行解。 最优解:使目标函数取得最大(小)值的可行解,称为最优解。 最优值:目标函数的最大(小)值,称为最优值。 二、标准型 (一)问题的标准形式: n n x c x c x c z +++= 2211ma x ????? ?? ??=≥=+++=+++=+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,022112222212111212111

数学实验——线性规划

实验5 线性规划 分1 黄浩 43 一、实验目的 1.掌握用MATLAB工具箱求解线性规划的方法 2.练习建立实际问题的线性规划模型 二、实验内容 1.《数学实验》第二版(问题6) 问题叙述: 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有如下限制: (1).政府及代办机构的证券总共至少要购进400万元; (2).所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (3).所购证券的平均到期年限不超过5年 I.若该经理有1000万元资金,该如何投资? II.如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? III.在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 模型转换及实验过程: I. 设经理对于上述五种证券A、B、C、D、E的投资额分别为:、、、、(万

元),全部到期后的总收益为z万元。 由题目中的已知条件,可以列出约束条件为: 而决策变量的上下界约束为: 目标函数 将上述条件转变为matlab的要求形式: 使用matlab解上述的线性规划问题(程序见四.1),并整理成表格: 得出结论: 当经理对A、B、C、D、E五种证券分别投资218.18、0、736.36、0、45.45万元时,在全部收回时可得到29.836万元的税后收益,而且这种投资方式所得收益是最大的。 讨论: 尝试输出该约束条件下的拉格朗日乘子: 该乘子表示,第一个约束条件对目标函数的取值不起作用,而剩余三个约束条件取严格等号的时候,目标函数达到最优解。下面验证之: 由解得的x值,代入四个约束条件中,得:

清华大学数学实验_实验9 非线性规划1

实验9 非线性规划 实验目的: 1)掌握用matlab优化工具箱解非线性规划的方法 2)练习建立实际问题的非线性规划模型 实验内容: 4.某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A,B).按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别于原料丙生产A,B.已知原料甲、乙、丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/t,16千元/t,10千元/t;产品A,B的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t,15千元/t.根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A,B的最大市场需求量分别为100t,200t. (1)应如何安排生产? (2)如果产品A的最大市场需求量增长为600t,应如何安排生产? (3)如果乙的进货价格下降为13千元/t,应如何安排生产?分别对(1)、(2)两种情况进行讨论. 解:(1) 问题的建模 设利用x1吨甲,x2吨乙,x3吨丙制造y1吨A;利用x2吨甲,x4吨乙,x6吨丙制造y2吨B;总收益是z千元。 则有以下方程与不等式: 质量守恒: y1=x1+x3+x5 y2=x2+x4+x6 总收益: z=9y1+15y2-6(x1+x2)-16(x3+x4)-10(x5+x6) 化简得: z=3x1+9x2+3x3+9x4-x5+5x6 含硫量约束: 3%x1+1%x3+2%x5≤2.5%y1 3%x2+1%x4+2%x6≤1.5%y2 化简得: 0.5 x1-1.5x3-0.5x5≤0 1.5x2-0.5x4+0.5x6≤0 供应量约束: (x1+x2),(x3+x4),(x5+x6)≤500 需求量约束: y1≤100;y2≤200 化简得:

运筹学线性规划实验报告材料

《管理运筹学》实验报告

5. 输出结果如下 5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 .0,0,6448, 120126; 240200 z max ≥≥≤+≤++=y x y x y x y x

(2)图中的对偶价格13.333的含义是什么? 答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。 (3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。 (4)若甲组合柜的利润变为300,最优解不变?为什么? 答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。 二、学号题 约束条件: 学号尾数:56 则: 约束条件: 无约束条件 (学号)学号43214321432143214321 0 0,30 9991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件43214321432143214321 0 0,30 99912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=??????? ???????-≥?-?-?-?-?-76061 65060~5154050~414 )30(40~313 )20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变 学号规则

运筹学_第1章_线性规划习题

第一章线性规划 习题1.1(生产计划问题)某企业利用A、B、C三种资源,在计划期内生产甲、乙两种产品,已知生产单位产品资源的消耗、单位产品利润等数据如下表,问如何安排生产计划使企业利润最大? 解:设x1、x2分别代表甲、乙两种产品的生产数量(件),z表示公司总利润。依题意,问题可转换成求变量x1、x2的值,使总利润最大,即 ma x z=50x1+100x2 且称z=50x1+100x2为目标函数。 同时满足甲、乙两种产品所消耗的A、B、C三种资源的数量不能超过它们的限量,即可分别表示为 x1 + x2≤300 2x1 + x2≤400 x2≤250 且称上述三式为约束条件。此外,一般实际问题都要满足非负条件,即x1≥0、x2≥0。 这样有 ma x z=50x1+100x2 x1 + x2≤300 2x1 + x2≤400 x2≤250 x1、x2≥0

习题1.2 靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。环保要求河流中工业污水含量不能大于0.2%。两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。 解:设x 1、x 2分别代表工厂1和工厂2处理污水的数量(万m 3)。则问题的目标可描述为 min z =1000x 1+800x 2 约束条件有 第一段河流(工厂1——工厂2之间)环保要求 (2-x 1)/500 ≤0.2% 第二段河流(工厂2以下河段)环保要求 [0.8(2-x 1) +(1.4-x 2)]/700≤0.2% 此外有 x 1≤2; x 2≤1.4 化简得到 min z =1000x 1+800x 2 x 1 ≥1 0.8x 1 + x 2 ≥1.6 x 1 ≤2 x 2≤1.4 x 1、x 2≥0 习题1.3 ma x z =50x 1+100x 2 x 1 + x 2≤300 2x 1 + x 2≤400 x 2≤250 图1—1 x 2

线性规划建模实验题

线性规划建模实验题 一、李四企业的生产经营规划问题 李四经营着一个小企业,这个企业最近出现了一些问题,资金周转出现困难。该企业一共生产经营着三种产品,当前有两种产品赔钱,一种产品赚钱。其中,第一种产品是每生产一件赔100元,第二种产品每生产一件赚300元,第三种产品每生产一件赔400元。 三种产品分别消耗(或附带产出)三种原料,其中第一种产品每生产一件附带产生100千克原料A,需要消耗100千克原料B和200千克原料C;第二种产品每生产一件需要消耗100千克原料A和100千克原料C,附带产生100千克原料B;第三种产品每生产一件需要消耗原料A、B、C各100千克。由于生产第一种产品的设备已经损坏,且企业也无能力筹集资金修复之,所以该企业现已无法组织生产第一种产品。 现在仓库里还存有A原料40000千克,后续货源供应难以得到保证;库存B原料20000千克,如果需要,后续容易从市场采购得到;库存C原料30000千克,如果需要,后续容易从市场采购得到。 李四想转行经营其他业务,但苦于仓库里还积压着90000千克原料,如果直接出售原料,则比生产后出售成品赔得更多。没有办法,李四只好向运筹学专家咨询,看看如何组织生产才能将损失降到最低。 请对李四企业的生产经营情况进行考查和分析,建立该问题的线性规划模型,并使用Excel软件和LINDO软件求解该问题(要求附带结果分析报告)。

二、王五管理的科研课题的经费使用规划问题 王五管理着一个科研课题,根据课题进展情况看,不久就要结题了。由于课题的管理采用经费与任务包干制,所以可以通过节约开支来预留课题完成后的产业推广经费。现王五需要制订出这样的一个方案:既按期完成科研任务,又要尽可能多地节省费用,人员的收入还不能减少。同时他还想知道这笔可节省的费用究竟是多少? 课题组的费用构成有两个部分:一是人员经费开支,二是试验消耗与器材采购费用开支。其中,由于出台了增收节支激励政策,所以人员经费开支与原计划相比每月可节省1万元,试验消耗与器材采购费用开支每月可节省4万元。 该课题由两个子课题构成。其中第一个子课题的开支情况为:每月人员经费为1万元,每月试验与器材经费的开支为10万元;第二个子课题的开支情况为:人员经费计划为1万元,实际上该子课题每月可通过边研制边推广应用的方式获得净收入1万元,这样就可以保证每月正常的人员经费开支,所节余的1万元可向课题组上缴,同时该子课题的试验与器材经费开支需求是每月8万元。 第一个子课题的总经费还剩20万元,但如果申请,还可以增加;第二个子课题的经费还有40万元,但即使申请也不可能再增加。 课题组研究后一致决定采用如下原则进行决策: (1)所节余的人员经费用于奖励,不计入节省费用的总额当中。 (2)在保证圆满完成课题任务的前提下,最大限度地积累课题应用性推广经费。 请建立该问题的线性规划模型,帮助王五制订最合理的科研结题周期以及可节省的费用(要求使用Excel软件和LINDO软件求解该问题,并附带结果分析报告)。

相关文档
最新文档