典型主接线下变压器中性点接地控制装置动作条件及动作过程

典型主接线下变压器中性点接地控制装置动作条件及动作过程
典型主接线下变压器中性点接地控制装置动作条件及动作过程

附录A

(资料性附录)

典型主接线下变压器中性点接地控制装置动作条件及动作过程

A.1 两台变压器运行方式

两台变压器运行方式下的典型主接线示意如图A.1所示,以110kV电压等级为例,对变压器中性点接地控制装置的动作条件及动作过程进行说明,220kV电压等级逻辑类似。

图A.1 两台变压器运行主接线示意图

正常运行时充电条件:

a)2QF、3QF在合位;

b)1QF在合位或者“中侧单母”硬压板投入;

c)5QS在合位、6QS在分位或“无接地刀闸位置接入”控制字投入。

动作条件及动作过程:

(1)“无接地刀闸位置接入”控制字退出时

a)充电完成情况下,#1B的断路器2QF跳开,经合闸延时合#2B变中性点接地刀闸6QS。

b)充电完成情况下,“中侧单母”硬压板退出时,中侧母线联络开关1QF跳开,经合闸延时

合#2B变中性点接地刀闸6QS。

7

c)充电完成情况下,#2B的断路器3QF跳开,不出口,且装置放电。

(2)“无接地刀闸位置接入”控制字投入时

a)充电完成情况下,#1B的断路器2QF跳开,经合闸延时合#2B变中性点接地刀闸6QS。

b)充电完成情况下,#2B的断路器3QF跳开,经合闸延时合#1B变中性点接地刀闸5QS。

c)充电完成情况下,“中侧单母”硬压板退出时,中侧母线联络开关1QF跳开,经合闸延时

合非动作变压器的中性点接地刀闸(如#1B动作则合#2B变中性点接地刀闸6QS;如#2B

动作则合#1B变中性点接地刀闸5QS)。

A.2 三台变压器运行方式

三台变压器运行方式下的主接线示意如图A.2所示,三台变压器运行工况下,中性点接地刀闸位置要求全部接入。以110kV电压等级为例,对变压器中性点接地控制装置的动作条件及动作过程进行说明,220kV电压等级逻辑类似。

图A.2 三台变压器运行主接线示意图

正常运行时充电条件:

a)2QF、3QF、4QF在合位;

b)1QF在合位或者“中侧单母”硬压板投入或者“中压侧分列”硬压板投入;

c)7QS、8QS、9QS有一个或者两个在合位。

动作条件及动作过程:

(1)一台变压器中性点接地刀闸位置处于合位:

以7QS在合位,8QS、9QS在分位为例。

7

a)充电完成情况下,#1B的断路器2QF跳闸,经合闸延时合#2B变中性点接地刀闸8QS或

#3B变中性点接地刀闸9QS。经延时判断8QS或9QS是否合闸成功,若未合成功,则全

合#2B变中性点接地刀闸8QS与#3B变中性点接地刀闸9QS。

b)充电完成情况下,“中侧单母”硬压板退出时,中侧母线联络开关1QF跳开,为了确保#1B

变不在的有源系统具有变压器中性点接地,经合闸延时全合#2B变中性点接地刀闸8QS

与#3B变中性点接地刀闸9QS。

c)充电完成情况下,#2B的断路器3QF跳闸或者#3B的断路器4QF跳闸,不出口。一台变

开关跳开后,变为两台变处理;两台非接地变开关跳开后,装置放电。

(2)两台变压器中性点接地刀闸处于合位:

以7QS、8QS在合位, 9QS在分位,1QS、4QS在合位,2QS、3QS在分位为例:

a)充电完成情况下,“中侧单母”硬压板退出且“中侧分列”硬压板退出时,中侧母线联络

开关1QF跳开,经合闸延时合#3B变中性点接地刀闸9QS。

b)充电完成情况下,#1B的断路器2QF跳闸,经合闸延时合#3B变中性点接地刀闸9QS。

c)充电完成情况下,#2B的断路器3QF跳闸,经合闸延时合#3B变中性点接地刀闸9QS。

d)充电完成情况下,#3B的断路器4QF跳闸,不出口,变为两台变运行方式处理,三台变

运行逻辑放电。

7

变压器中性点接地方式分析与探讨

变压器中性点接地方式分析与探讨 [摘要] 概述目前电网中变压器中性点接地方式,进行分析与探讨,提出看法和发展方向 [关键词] 中性点方式优点缺点发展方向 1.概述 中压电网以35KV、10KV、6KV三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV电网如果单相接地电容电流大于10A,3KV —10KV电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式原因是美国在历史上过高的估计了弧光接地过电压的危害性而采用此种方式用以泄放线路上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度可以

变压器接法详解

变压器接法详解 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 (一)变压器接线组别 变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“?”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。 变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载损耗Dyn11接线比Yyn0接线可减少10%。

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

变压器中性点接地方式分析与探讨(7)

筑龙网W W W .Z H U L O N G .C O M 变压器中性点接地方式分析与探讨 周志敏 1.概 述 中压电网以35KV、10KV、6KV 三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV 电网如果单相接地电容电流大于10A,3KV—10KV 电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV 城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界 也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式 原因是美国在历史上过高的估计了弧光接地过电压的危害性 而采用此种方式用以泄放线路 上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A 左右,也有的控制在100A 左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度

三相变压器的工作原理及接线方法

三相变压器 三相变压器原理 三相变压器是3个相同的容量单相变压器的组合.它有三个铁芯柱,每个铁芯柱都绕着同一相的2个线圈,一个是高压线圈,另一个是低压线圈. 三相变压器是电力工业常用的变压器. 变压器接法与联结组 用于国内变压器的高压绕组一般联成Y接法,中压绕组与低压绕组的接法要视系统情况而决定。所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。 1).国内的500、330、220与110kV的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°电气角。 500/220/LVkV─YN,yn0,yn0或YN,yn0,d11 220/110/LVkV─YN,yn0,yn0或YN,yn0,d11 330/220/LVkV─YN,yn0,yn0或YN,yn0,d11 330/110/LVkV─YN,yn0,yn0或YN,yn0,d11 2).国内60与35kV的输电系统电压有二种不同相位角。 如220/60kV变压器采用YNd11接法,与220/69/10kV变压器用YN,yn0,d11接法,这二个60kV输电系统相差30°电气角。 当220/110/35kV变压器采用YN,yn0,d11接法,110/35/10kV变压器采用YN,

yn0,d11接法,以上两个35kV输电系统电压相量也差30°电气角。 所以,决定60与35kV级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。根据电压相量的相对关系决定60与35kV级绕组的接法。否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。 3).国内10、6、3与0.4kV输电与配电系统相量也有两种相位。在上海地区,有一种10kV与110kV输电系统电压相量差60°电气角,此时可采用110/35/10kV电压比与YN,yn0,y10接法的三相三绕组电力变压器,但限用三相三铁心柱式铁心。 4).但要注意:单相变压器在联成三相组接法时,不能采用YNy0接法的三相组。三相壳式变压器也不能采用YNy0接法。 三相五柱式铁心变压器必须采用YN,yn0,yn0接法时,在变压器内要有接成角形接法的第四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。 5).不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。 6).配电变压器用于多雷地区时,可采用Yzn11接法,当采用z接法时,阻抗电压算法与Yyn0接法不同,同时z接法绕组的耗铜量要多些。Yzn11接法配电变压器的防雷性能较好。 7).三相变压器采用四个卷铁心框时也不能采用YNy0接法。 8).以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号。 9).一般在高压绕组内都有分接头与分接开关相联。因此,选择分接开关时(包括有载调压分接开关与无励磁调压分接开关),必须注意变压器接法与分接开关接法相配合(包括接法、试验电压、额定电流、每级电压、调压范围等)。对YN接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出。

变压器的接线方式

变压器的接线方式、过载能力等介绍 接线方式 1、短接变压器的“输入”与“输出”接线端子用兆欧表测试其与地线的绝缘电阻。1000V兆欧表测量时,阻值大于2M欧姆。 2、变压器输入、输出电源线截面配线应满足其电流值大小的要求;按照 2-2.5A/min2电流密度配置为宜。 3、输入、输出三相电源线应按变压器接线板母线颜色黄、绿、红分别接A 相、 B 相、 C 相,中性零线应与变压器压器中性零线相接,接地线与变压器外壳(如变压器有机箱应与箱体地线标志对应相连接)。检查输入输出线,确认正确无误。 4、先空载通电,观察测试输入输出电压符合要求。同时观察机器内部是否有异响、打火、异味等非正常现象,若有异常,请立即断开输入电源。 5、当空载测试完成且正常后,方可接入负载。 过载能力 干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况和发热时间常数等有关,若有需要,可向生产厂索取干变的过负荷曲线。如何利用其过载能力呢?这里有两点供参考:(1)选择计算变压器容量时可适当减小:充分考虑某些轧钢、焊接等设备短时冲击过负荷的可能性--尽量利用干式变压器的较强过载能力而减小变压器容量;对某些不均匀负荷的场所,如供夜间照明等为主的居民区、文化娱乐设施以及空调和白天照明为主的商场等,可充分利用其过载能力,适当减小变压器容量,使其主运行时间处于满载或短时过载。(2)可减少备用容量或台数:在某些场所,对变压器的备用系数要求较高,使得工程选配的变压器容量大、台数多。而利用干变的过载能力,在考虑其备用容量时可予以压缩;在确定备用台数时亦可减少。变压器处于过载运行时,一定要注意监测其运行温度:若温度上升达155℃(有报警发出)即应采取减载措施(减去某些次要负荷),以确保对主要负荷的安全供电。 选型 干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的。 (1)风机自动控制:通过预埋在低压绕组最热处的Pt100热敏测温电阻测取温度信号。变压器负荷增大,运行温度上升,当绕组温度达110℃时,系统自动启动风机冷却;当绕组温度低至90℃时,系统自动停止风机。

接地变压器的作用

接地变压器的作用 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果; 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。 该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长时空载,短时过载。 总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 变电站内现在一般采用的接地变压器有两个用途,1.供给变电站使用的低压交流电源,2.在10kV侧形成人为的中性点,同消弧线圈相结合,用于10kV发生接地时补偿接地电容电流,消除接地点电弧,其原理如下: - 1 -

变压器接线组别详细介绍

变压器接线组别详细介绍 - 全文 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感效应,变换电压,电流和阻抗的器件。 变压器接线组别 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 下面是变压器接线组别的向量图及原、副边绕组的接线示意图。 六种单数组

变压器中性点接地与不接地系统

变压器中性点接地与不接地系统 1.1变压器中性点接地系统的优缺点: (1)优点: 对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。 (2)缺点: 对电源中性点接地系统,由于单相短路电流Is很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2变压器中性点不接地系统的优、缺点: (1)优点: 对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。 (2)缺点: 对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3电气设备的保护接地 3.1保护接地 将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。保护接地,适应于变压器中性点不接地的供电系统中。但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。 电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。 3.2保护接地时应注意问题 由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。 这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。 4电气设备保护接零 4.1保护接零

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

变压器的接线方式及钟点数

变压器的接线方式及钟点数的确定 判断变压器的联接组别方法 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。 三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题。变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握。而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组,更显示出它的优越性。下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法。 1 用相电压矢量图画出Y/△接法的接线图 首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组。 如图1所示,Y/△-11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢量,此a相相电压矢量在原边A相与B相反方向-B的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和引出线就不会弄错。因此根据原次边相电压矢量便可画出Y/△-11组接线图,如图2所示。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保 护的构成 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图E-127所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;

变压器中性点接地系统的简答分析

变压器中性点接地系统的简答分析 上海益护电气设备有限公司刘文中https://www.360docs.net/doc/8a10306596.html, 1.1 变压器中性点接地系统的优缺点: (1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。 (2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2 变压器中性点不接地系统的优、缺点: (1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可靠性。 (2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2 各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可靠性,对通讯干扰小等优点。在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3 电气设备的保护接地 3.1 保护接地

变压器的几种常用检测接线方式

变压器绕组变形测试仪主要是由主测量单元和笔记本电脑构成,并行三根专用测量电缆以及测量夹子和接地线组成。 主测量单元系统与试品之间采用50高频同轴电缆联接,扫频信号经输出端口(激励输出),通过连接电缆将信号夹子(黄色)向被试品注入信号;由信号测量夹子(绿色)从被试品获取信号,经电缆传输到(响应输入);由信号测量从被试品注入点获取同步参考信号,经电缆传输到输入(参考输入)。被试品外壳与测试电缆的屏蔽层必须可靠连接并接地,大型变压器一般以铁芯接地套管引出线与油箱的连接点,作为公共接地点,变压器外壳点接地。 一、三相Yn形测量接线 1.黄色夹子(输入)钳在变压器的O点上,绿色夹子(测量)钳在变压器的A相上,及代表、三相Yn型A相的测量。

2.黄色夹子(输入)钳在变压器的O点上,绿色夹子(测量)钳在变压器的B上,及代表三相Yn型B的测量。 3.夹子(输入)钳在变压器的O点上,绿色夹子(测量)钳在变压器的C,及代表三相Yn型C的测量。

二、三相Y形测量接线 1.黄色夹子(输入)钳在变压器的A相上,绿色夹子(测量)钳在变压器的B上,及代表三相Y型AB的测量。 2.色夹子(输入)钳在变压器的B相上,绿色夹子(测量)钳在变压器的C上,及代表三相Y 型BC的测量。

3.黄色夹子(输入)钳在变压器的C相上,绿色夹子(测量)钳在变压器的A上,及代表三相Y型CA的测量。 三、三相△形测量接线 1.黄色夹子(输入)钳在变压器的A相上,绿色夹子(测量)钳在变压器的B上,及代表三相△型AB的测量。

2.黄色夹子(输入)钳在变压器的B相上,绿色夹子(测量)钳在变压器的C上,及代表三相△型BC的测量。 3.黄色夹子(输入)钳在变压器的C相上,绿色夹子(测量)钳在变压器的A上,及代表三相△型CA的测量。

变压器的各类中性点接地知识

变压器的各类中性点接地知识 变压器的各类中性点接地知识? 1、变压器停送电操作时,其中性点为什么一定要接地? 答:这主要是为防止过电压损坏被投退变压器而采取的一种措施。 对一侧有电源的受电变压器,当其断路器非全相断、合时,若其中性点不接地有以下危险:(1)变压器电源侧中性对地电压最大可达相电压,这可能损坏变压器绝缘。 (2)当变压器高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”。(3)当变压器高低压绕组之间电容耦合,低压侧会有电压达到谐振条件时,可能会出现谐振过电压,损坏绝缘。 对于低压侧有电源的送电变压器: (1)由于低压侧有电源,在并入系统前,变压器高压侧发生单相接地,若中性点未接地,则其中性点对地电压将是相电压,这可能损坏变压器绝缘。 (2)非全相并入系统时,在一相与系统相连时,由于发电机和系统的频率不同,变压器中性点又未接地,该变压器中性点对地电压最高将是二倍相电压,未合相的电压最高可达2.73倍相电压,将造成绝缘损坏事故。: 2、变压器中性点间隙接地保护是怎样构成的? 变压器中性点间隙接地保护采用零序电流继电器与零序电压继电器并联方式,带有0.5S 的限时构成。 当系统发生接地故障时,在放电间隙放电时有零序电流,则使设在放电间隙接地一端的专用电流互感器的零序电流继电器动作;若放电间隙不放电,则利用零序电压继电器动作。当发生间隙性弧光接地时,间隙保护共用的时间元件不得中途返回,以保证间隙接地保护的可靠动作。 3、对空载变压器送电时,变压器中性点必须接地。 答案电力系统的暂态稳定是指电力系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达到新的稳定运行状态或回到原来的稳定状态。 答:对空载变压器送电时,若中性点不接地会有以下危险: ⑴变压器电源侧中性点对地电压最大可达相电压,这可能损坏变压器绝缘; ⑵变压器的高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”; ⑶当变压器高、低压绕组之间电容耦合,可能会出现谐振过电压,损坏绝缘。 因此,对空载变压器送电时,变压器中性点必须接地。 4、变压器中性点接地方式的安排一般如何考虑? 变压器中性点接地方式的安排应尽量保持变电所的零序阻抗阻抗基本不变。遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理。 变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地 5、切换变压器中性点接地开关如何操作?

三相变压器的接线方式20120216

三相变压器的接线方式 三相变压器的一、二次侧可根据需要接成星形或三角形,常见的连结方式是Y/Y(原边和副边均为星形连结)或Y/△(原边为星形连结,副边为三角形连结)。 下面讨论变压器连结方式与线电压角度问题(即副边与原边的相角): 下面图一为12点钟接法,即原边的线电压U AB与副边的线电压Uab的夹角是0°,A 点与a点重合,AB为分针方向,在电势矢量图里一般恒为12点钟方向,ab为时针方向,12点钟接法由下面两种接法(Y/Y和△/△)均可以接出。图二为6点钟接法,原边的接法和12点钟是一致的,但是副边的接法不同—— 1、图一Y/Y的副边接线方式为:线圈abc与原边ABC的同名侧连结至负载,而非同名侧连结至一点; 2、图一△/△的副边接线方式为:线圈abc与原边ABC的同名侧连结至负载,且a1b2,b1c2,c1a2; 3、图二Y/Y的副边接线方式为:线圈abc与原边ABC的非名侧连结至负载,而同名侧连结至一点; 4、图二△/△的副边接线方式为:线圈abc与原边ABC的非同名侧连结至负载。 注:原边和副边的同名侧在线圈的一端有一个点。连结组别、原副边对应线电压电动势的相 位差、电势矢量图、端子标志及连结方式这四条,任意知道一条即可知道其他3 个。 图一图二

下面讨论变压器连结方式对变压器变比的影响(不讨论角度): 同理可证△/Y 的变比为2 1N 3N ,△/△的变比为 2 1N N 。 图三为Y/Y 接法,即一次侧(原边)和二次侧(副边)均为星形 连结,O 为一次侧中性点(A 2、B 2、C 2与O 共点),o 为二次侧中性点(a 2、b 2、c 2与o 共点)。其中原边3个线圈的A 1B 1C 1端与副边线圈的a 1b 1c 1端为同名端。原边线电压U A1B1即U l1,大小为 3U A1A2即U p1,副边线电压U a1b1即U l2,大小为 3U a1a2即U p2,故变压器做Y/Y 连结时变比(原边与副边电压比)为a1b1 A1B1U U = U U l2 l1= U U 2 p 133P = U U 2 12133 a a A A = 2 1N N =K 注: U U a1a2 21A A =2 1N N =K 图三 图四 图四为Y/△接法,即一次侧(原边)为星形连结和二次侧(副边)为三角形连结,O 为一次侧中性点(A 2、B 2、C 2与O 共点)。其中原边3个线圈的A 1B 1C 1端与副边线圈的a 1b 1c 1端为同名端。原边线电压U A1B1即U l1,大小为 3U A1A2即U p1,副边线电压Ua1b1即U l2,大小为 U a1a2即U p2,故变压器做Y/△连结时变比(原边与副边电压比)为a1b1 A1B1U U =U U l2 l1= U U 2 p 1 3 P = U U 2 12 13 a a A A =3 2 1N N =3K 注: U U a1a2 21A A = 2 1N N =K

相关文档
最新文档