构件斜截面承载力

构件斜截面承载力
构件斜截面承载力

第八章混凝土构件的使用性能及结构的耐久性本章的意义和内容:通过本章的学习了解结构构件正常使用极限状态及耐久性方面的设计要求。了解钢筋混凝土结构构件裂缝控制的两个基本问题:根据结构构件的耐久性确定最大裂缝宽度允许值;裂缝的宽度计算。了解裂缝出现的原因,裂缝开展的过程及影响裂缝宽度的主要原因,掌握裂缝宽度的计算方法及控制裂缝宽度的主要措施。了解结构构件挠度的计算方法。了解为保证结构的耐久性所采取的技术措施和构造要求。

本章习题内容主要涉及:有关裂缝的形成及其影响,裂缝宽度的计算。确定构件纯弯段的平均刚度,根据最小刚度原则计算构件的挠度。为保证结构的耐久性所采取的技术措施和构造要求。

一、概念题

(一)填空题

1.混凝土构件裂缝开展宽度及变形验算属于极限状态的设计要求,验算时材料强度采用标准值,荷载采用标准值、准永久值。

2.是提高钢筋混凝土受弯构件抗弯刚度的最有效措施。

3.平均裂缝宽度计算公式中,σsk是指,其值是按荷载效应的组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度增大而,随纵筋配筋率增大而。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在弯矩范围内,假定其刚度为常数,并按截面处的最小刚度进行计算。

6.裂缝间纵向受拉钢筋应变不均匀系数ψ是指

之比,反映了裂缝间参与工作的程度。

7.结构构件正常使用极限状态的要求主要指在各种作用下的和不应超过规定的限值。

8.结构的耐久性设计要求是指结构构件应满足的要求。

9.混凝土结构应根据和进行耐久性设计。

10.在荷载作用下,截面受拉区混凝土中出现裂缝,裂缝宽度与几乎成正比。

11.钢筋混凝土和预应力混凝土构件,按和确定相应的裂缝控制等级及最大裂缝宽度限值。

12.平均裂缝间距与、、

及有关。

13. 轴心受拉构件的平均裂缝宽度为范围内

之差。

14.最大裂缝宽度等于平均裂缝宽度乘以扩大系数,这个系数是考虑裂缝宽度的

以及的影响。

(二)选择题

1.减少钢筋混凝土受弯构件的裂缝宽度,首先应考虑的措施是[ ]。

(a)采用细直径的钢筋或变形钢筋;

(b)增加钢筋面积;

(c)增加截面尺寸;

(d)提高混凝土的强度等级。

2.混凝土构件的平均裂缝间距与下列哪些因素无关。[ ]

(a)混凝土强度等级;

(b)混凝土保护层厚度;

(c)纵向受拉钢筋直径;

(d)纵向钢筋配筋率。

3.混凝土构件裂缝宽度的确定方法为[ ]。

(a)构件受拉区外表面上混凝土的裂缝宽度;

(b)受拉钢筋内侧构件侧表面上混凝土的裂缝宽度;

(c)受拉钢筋外侧构件侧表面上混凝土的裂缝宽度;

(d)受拉钢筋重心水平处构件侧表面上混凝土的裂缝宽度。

4.提高截面刚度的最有效措施是[ ]。

(a)提高混凝土强度等级;

(b)增大构件截面高度;

(c)增加钢筋配筋量;

(d)改变截面形状。

5.为了减小钢筋混凝土构件的裂缝宽度,可采用[ ]的方法来解决。

(a)减小构件截面尺寸;

(b)以等面积的粗钢筋代替细钢筋;

(c)以等面积细钢筋代替粗钢筋;

(d)以等面积Ⅰ级钢筋代替Ⅱ级钢筋。

(三)判断题

1.钢筋混凝土梁在受压区配置钢筋,将增大长期荷载作用下的挠度。[ ] 2.从对受弯构件裂缝出现的过程分析可以看出,裂缝的分布与粘结应力传递长度有很大关系。传递长度短,则裂缝分布稀;反之,则密。[ ] 3.在工形截面受弯构件中,构件截面刚度B s与受拉翼缘无关。 [ ] 4.钢筋与混凝土之间的粘结力越大,其平均裂缝间距越大,从而裂缝宽度也越大。 [ ] 5.结构构件按正常使用极限状态设计时的目标可靠指标[β]值应比按承载能力极限状态设计时的目标可靠指标[β]值大。[ ] 6.进行结构构件的变形验算时,采用荷载标准值、荷载准永久值和材料强度设计值。[ ] 7.由于构件的裂缝宽度和变形随时间而变化,因此进行裂缝宽度和变形验算时,除按荷载效应的基本组合,还应考虑长期作用的影响。[ ] 8.裂缝宽度是指构件受拉区外表面混凝土的裂缝宽度。[ ] 9.平均裂缝间距与混凝土轴心抗拉强度设计值呈正比,混凝土轴心抗拉强度设计值愈高,平均裂缝间距愈大。[ ]

(四)问答题

1.对结构构件进行设计时为何对裂缝宽度进行控制?

2.按“粘结滑移理论”,混凝土构件的平均裂缝宽度是如何定义的?

3.何谓“钢筋应变不均匀系数”,其物理意义是什么,与哪些因素有关?

4.什么是构件截面的弯曲刚度?它与材料力学中的弯曲刚度相比有何区别?

5.钢筋混凝土构件的弯曲刚度计算公式是怎样建立的?

6.什么是结构构件变形验算的“最小刚度原则”。

7.什么是结构的耐久性要求?

8.影响混凝土结构耐久性的主要因素有哪些?

9.什么是混凝土的碳化,混凝土的碳化对钢筋混凝土结构的耐久性有何影响?

10.我国《混凝土结构设计规范》是如何保证结构耐久性要求的?

11.怎样进行混凝土结构耐久性概念设计?

二、计算题 ×h =200mm×200mm, 轴心拉力N k =130kN ,有4根HRB335

C30,保护层厚度c=25mm , w lim =0.2mm , 验算裂缝?

, l 0=6m ,f b '=600mm ,b =200mm ,f h '=60mm, h =500mm , 混凝土强度等级为C20,纵筋和箍筋采用HPB235级。各种荷载在跨中截面所引起的弯矩标准值为:永久荷载43kNm ,可变荷载35kNm (准永久值系数ψq1=0.4),雪荷载8kNm (准永久值系数ψq2=0.2)。求:1)受弯正截面受拉钢筋面积,并选用钢筋直径(在18~22之间选择)及根数;2)验算挠度是否小于f lim =l 0/250;验算裂缝宽度是否小于w lim =0.3mm 。

第五章-受弯构件斜截面承载力计算

第五章受弯构件斜截面承载力计算 本章的意义和内容:通过本章的学习了解梁弯剪区出现斜裂缝的种类和原因,斜截面破坏的主要形态;了解影响受弯构件斜截面受剪承载力的主要因素及如何通过设计、计算防止斜截面破坏的发生。本章的主要内容有:斜截面破坏的主要形态,影响斜截面破坏的主要原因,影响受弯构件斜截面受剪承载力的主要因素,斜截面承载能力计算的方法和公式,防止斜截面破坏发生的设计方法。 本章习题内容主要涉及:受弯构件斜截面剪切破坏的主要形态,影响受弯构件斜截面受剪承载力的主要因素,防止受弯构件斜截面剪切破坏的方法及计算公式。 一、概念题 (一)填空题 1. 影响受弯构件斜截面受剪承载力的主要因素为:、、 、以及。 2. 无腹筋梁的抗剪承载力随剪跨比的增大而,随混凝土强度等级的提高而。 3. 防止板产生冲切破坏的措施包括:、、 、。 4. 梁的受剪性能与剪跨比有关,实质上是与和的相对比值有关。 5. 钢筋混凝土无腹筋梁发生斜拉破坏时,受剪承载力取决于;发生斜压破坏时,受剪承载力取决于;发生剪压破坏时,受剪承载力取决于 。 6. 受弯构件斜截面破坏的主要形态有、和。

7.区分受弯构件斜截面破坏形态为斜拉破坏、剪压破坏和斜压破坏的主要因素为和。 8. 梁中箍筋的配筋率ρsv的计算公式为:。 9. 有腹筋梁沿斜截面剪切破坏可能出现三种主要破坏形态。其中,斜压破坏是 而发生的;斜拉破坏是由于而引起的。 10. 规范规定,梁内应配置一定数量的箍筋,箍筋的间距不能超过规定的箍筋最大间距,是保证。 11. 在纵筋有弯起或截断的钢筋混凝土受弯梁中,梁的斜截面承载能力除应考虑斜截面抗剪承载力外,还应考虑。 12. 钢筋混凝土梁中,纵筋的弯起应满足的要求、 和的要求。 13. 为保证梁斜截面受弯承载力,梁弯起钢筋在受拉区的弯点应设在该钢筋的充分利用点以外,该弯点至充分利用点的距离。 14. 在配有箍筋和弯起钢筋梁(剪压破坏)的斜截面受剪承载力计算中,弯起钢筋只有在时才能屈服。同时,与临界相交的箍筋也能达到其抗拉屈服强度。 15. 对于相同截面及配筋的梁,承受集中荷载作用时的斜截面受剪承载力比承受均布荷载时的斜截面受剪承载力。 (二)选择题 1. 在梁的斜截面受剪承载力计算时,必须对梁的截面尺寸加以限制(不能过小),其目的是为了防止发生[ ]。 (a)斜拉破坏; (b)剪压破坏; (c)斜压破坏; (d)斜截面弯曲破坏。 2. 受弯构件斜截面破坏的主要形态中,就抗剪承载能力而言[ ]。 (a)斜拉破坏>剪压破坏>斜压破坏; (b)剪压破坏>斜拉破坏>斜压破坏; (c)斜压破坏>剪压破坏>斜拉破坏;

第04章 受弯构件斜截面承载力

第四章 受弯构件斜截面承载力 一、填空题 1、受弯构件的破坏形式有正截面受弯破坏、 斜截面受剪破坏 。 2、受弯构件的正截面破坏发生在梁的最大弯矩值处的截面,受弯构件的斜截面破坏发生在梁的支座附近(该处剪力较大),受弯构件内配置足够的受力纵筋是为了防止梁发生正截面破坏,配置足够的腹筋是为了防止梁发生斜截面破坏。 3、梁内配置了足够的抗弯受力纵筋和足够的抗剪箍筋、弯起筋后,该梁并不意味着安全,因为还有可能发生斜截面受弯破坏;支座锚固不足;支座负纵筋的截断位置不合理;这些都需要通过绘制材料图,满足一定的构造要求来加以解决。 4、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 复合主拉应力 超过了混凝土的极限抗拉强度而开裂的。 5、斜截面破坏的主要形态有 斜压 、 剪压 、 斜拉 ,其中属于材料未充分利用的是 斜拉 、 斜压 。 6、梁的斜截面承载力随着剪跨比的增大而 降低 。 7、梁的斜截面破坏主要形态有3种,其中,以 剪压 破坏的受力特征为依据建立斜截面承载力的计算公式。 8、随着混凝土强度等级的提高,其斜截面承载力 提高 。 9、随着纵向配筋率的提高,其斜截面承载力 提高 。 10、当梁上作用的剪力满足:V ≤ 001.750.7; 1.0t t f bh f bh λ????+?? 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力满足:V ≤ 001.75[;(0.24)]1.0 t t f bh f bh λ++ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪力满足: V ≥0[t f bh 01.75( 0.24)]1.0t f b h λ++ 时,则必须计算抗剪腹筋用量。 11、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 斜拉 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 斜压 。 12、对于T 形、工字形、倒T 形截面梁,当梁上作用着集中荷载时,需要考虑剪跨比影响的截面梁是 倒T 形截面梁 。 13、纵筋配筋率对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。

第7章受拉构件的截面承载力习题答案

第7章 受拉构件的截面承载力 7.1选择题 1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。 A. 截面破坏时,受拉钢筋是否屈服; B. 截面破坏时,受压钢筋是否屈服; C. 受压一侧混凝土是否压碎; D. 纵向拉力N 的作用点的位置; 2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。 A. 如果b ξξ>,说明是小偏心受拉破坏; B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担; C. 大偏心构件存在混凝土受压区; D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置; 7.2判断题 1. 如果b ξξ>,说明是小偏心受拉破坏。( × ) 2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。( ∨ ) 3. 大偏心构件存在混凝土受压区。( ∨ ) 4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。( ∨ ) 7.3问答题 1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同? 答:(1)当N 作用在纵向钢筋s A 合力点和' s A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和' s A 合力点范围之间时,为小偏心受拉; (2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。 2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同? 答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。 3.大偏心受拉构件为非对称配筋,如果计算中出现' 2s a x <或出现负值,怎么处理? 答:取' 2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩, ) (' 0' s y s a h f Ne A -= ,bh A s ' min 'ρ=

【混凝土习题集】—4—钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的极限抗拉强度而开裂的。 2、斜裂缝破坏的主要形态有: 、 、 ,其中属于材料充分利用的是 。 3、梁的斜截面承载力随着剪跨比的增大而 。 4、梁的斜截面破坏形态主要有三种,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。 5、随着混凝土强度的提高,其斜截面承载力 。 6、随着纵向配筋率的提高,其斜截面承载力 。 7、对于 情况下作用的简支梁,可以不考虑剪跨比的影响。对于 情况的简支梁,应考虑剪跨比的影响。 8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 9、 对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。 10、设置弯起筋的目的是 、 。 11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。 12、梁内设置鸭筋的目的是 ,它不能承担弯矩。 二、判断题: 1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是相同的。( ) 2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。( ) 3、梁内设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。( ) 4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。( ) 5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0 Vh M =λ( ) 6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承载力。( ) 7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。( )

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

斜截面承载力计算例题

斜截面承载力计算例题

1.一钢筋混凝土矩形截面简支梁,截面尺寸250mm ×500mm ,混凝土强度等级为C30,箍筋为热轧HPB300级钢筋,纵筋为325的HRB335级钢筋(f y =300 N/mm 2),支座处截面的剪力最大值为180kN 。 求:箍筋和弯起钢筋的数量。 解:486.1250 465 , 4650<====b h mm h h w w 属厚腹梁,混凝土强度等级为C30,故βc =1 N V N bh f c c 18000075.4155934652503.14125.025.0max 0=>=????=β截面 符合要求。 (2)验算是否需要计算配置箍筋 ), 180000(25.11636646525043.17.07.0max 0N V N bh f t =<=???= 故需要进行配箍计算。 (3)只配箍筋而不用弯起钢筋 01 07.0h s nA f bh f V sv yv t ?? += 则 mm mm s nA sv /507.021 = 若选用Φ8@180 ,实有 可以)(507.0559.0180 3 .5021>=?=s nA sv 配箍率%224.0180 2503 .5021=??== bs nA sv sv ρ 最小配箍率)(%127.0270 43 .124.024 .0min 可以sv yv t sv f f ρρ <=?==

2.钢筋混凝土矩形截面简支梁,如图5-27 ,截面尺寸250mm×500mm,混凝土强度等级为C30,箍筋为热轧HPB300级钢筋,纵筋为225和222的HRB400级钢筋。 求:只配箍筋 解:

第4章受弯构件斜截面承载力的计算

第4章 受弯构件斜截面承载力的计算 1.无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化如何? 答:无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化情况主要表现为:裂缝出现前,混凝土 可近似视为弹性体,裂缝出现后就不再是完好的匀质弹性梁了,材料力学的分析方法也不再适用。从应力变化看,斜裂缝出现前,剪力由全截面承担,斜裂缝出现后剪力由裂缝处的剪压面承担,因此,剪压区的剪应力会显著增大。第二是纵向受力钢筋的应力,在裂缝出现前,数值较小,裂缝出现后,其应力会显著增大。 2.有腹筋简支梁斜裂缝出现后的受力状态如何? 答:对于有腹筋梁,在开裂前,腹筋的作用并不明显,在荷载较小时,腹筋中的应力很小。但斜裂缝 出现后,与斜裂缝相交的腹筋中的应力会突然增大,腹筋的存在,使梁的斜截面受剪承载力大大高于无腹筋梁。 3.有腹筋简支梁斜裂缝出现后,腹筋的作用主要表现在哪几方面? 答:在斜裂缝出现后,腹筋的作用主要表现为以下几点:(1)腹筋将齿块(被斜裂缝分开的混凝土块)向上拉住,可避免纵筋周围混凝土撕裂裂缝的发生,从而使纵筋的销栓作用得以继续发挥。这样,便可更有效的发挥拱体传递主压应力的作用。(2)把齿块的斜向内力传递到拱体上,从而减轻了拱体拱顶处这一薄弱环节的受力,增加了整体抗剪承载力。(3)腹筋可有效地减小裂缝开展宽度,从而提高了裂缝处混凝土的骨料咬合力。 4.有腹筋梁与无腹筋梁的受力机制有何区别? 答:有腹筋梁与无腹筋梁的受力机制区别在于:①箍筋和弯起钢筋的作用明显;②斜裂缝间的混凝土 参加了抗剪。 5.什么是剪跨比、“广义剪跨比”与“狭义剪跨比”?它有何意义? 答:所谓剪跨比就是指某一截面上弯矩与该截面上剪力与截面有效高度乘积的比值。一般用m 来表 示。用公式表示即为0 Qh M m =。一般把m 的该表达式称为“广义剪跨比”。对于集中荷载作用下的简支梁,由于000h a Qh Qa Qh M m ===,其中a 为集中荷载作用点至梁最近支座之间的距离,称为“剪跨”。把0 h a m =,称为“狭义剪跨比”。 剪跨比是一个无量纲常数,它反映了截面所受弯矩和剪力的相对大小。 6.梁斜截面破坏有哪三种形态,其发生的条件如何,各有何破坏特征 答:梁斜截面破坏的三种形态为斜拉破坏、剪压破坏和斜压破坏。 斜拉破坏:当剪跨比较大(m >3)时,或箍筋配置过少时,常发生这种破坏。 剪压破坏:当剪跨比约为1~3,且腹筋配置适中时,常发生这种破坏。 斜压破坏:当剪跨比m 较小(m <1)时,或剪跨比适中(1

混凝土斜截面承载力

影响混凝土斜截面承载力的因素 及计算公式探讨 杜斌2011202100045 摘要:对于受弯构件,截面上除了作用有正应力外,通常还伴随着剪应力。绝大多数钢筋混凝土构件都无法避免抗剪的问题。剪力很少单独作用于结构构件,更多的是与弯矩、轴向力或者扭矩共同作用。因此,除了要确定剪力单独作用时的效应外,还需探讨它与结构上的其他作用之间可能存在的影响。 关键词:钢筋混凝土;斜截面;受剪承载力 引言:绝大多数钢筋混凝土构件都无法避免抗剪的问题。剪力很少单独作用于结构构件,更多的是与弯矩、轴向力或者扭矩共同作用。因此,除了要确定剪力单独作用时的效应外,还需探讨它与结构上的其他作用之间可能存在的影响。特别是对受弯构件,抗剪机理与混凝土与埋入钢筋之间的粘结力以及钢筋的锚固都是密切联系着的。钢筋混凝土梁中的剪力传递在很大程度上依赖于混凝土的抗拉和抗压强度,因此,受剪破坏通常都是非延性的,必须避免这种破坏。 1 斜截面承载力 钢筋混凝土梁在主要承受弯矩的区段内产生竖向裂缝,如果正截面受弯承载力不够,将沿着竖向裂缝发生正截面受弯破坏。另一方面,钢筋混凝土受弯构件还有可能在剪力和弯矩共同作用的支座附近区段内,沿斜裂缝发生斜截面受剪破坏或者受弯破坏。因此,在保证正截面受弯承载力的同时,还要保证斜截面承载力,即斜截面受剪承载力和斜截面受弯承载力。 混凝土构件的受弯承载力是指斜截面上的纵向受拉钢筋、弯起钢筋、箍筋等在斜截面破坏时,他们各自所提供的拉力对抵抗破坏的弯矩。通常单纯的斜截面受弯承载力是不用进行计算的。只需要将梁内纵向钢筋弯起、截断、锚固及箍筋的间距等构造措施来保证即可。 相比于斜截面的受弯承载力问题,受剪破坏的情况则要复杂的多。在实际的工程中,剪力很少单独作用于结构构件,大多数情况是剪力与弯矩,或者剪力和弯矩、轴力或扭矩共存于结构构件,构件因剪力发生斜截面发生斜裂缝破坏时必然受到弯矩作用的影响。

第5章受弯构件的斜截面承载力习题答案

第5章 受弯构件的斜截面承载力 5.1选择题 1.对于无腹筋梁,当31<<λ时,常发生什么破坏( B )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 2.对于无腹筋梁,当1<λ时,常发生什么破坏( A )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 3.对于无腹筋梁,当3>λ时,常发生什么破坏( C )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 4.受弯构件斜截面承载力计算公式的建立是依据( B )破坏形态建立的。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 5.为了避免斜压破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( C )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 6.为了避免斜拉破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( D )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 7.R M 图必须包住M 图,才能保证梁的( A )。 A . 正截面抗弯承载力; B . 斜截面抗弯承载力; C . 斜截面抗剪承载力; 8.《混凝土结构设计规范》规定,纵向钢筋弯起点的位置与按计算充分利用该钢筋截面之间的距离,不应小于( C )。 A .0.30h

h B.0.4 h C.0.5 h D.0.6 9.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于梁、板类构件,不宜大于( A )。 A.25%; B.50%; C.75%; D.100%; 10.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于柱类构件,不宜大于( B )。 A.25%; B.50%; C.75%; D.100%; 5.2判断题 1.梁侧边缘的纵向受拉钢筋是不可以弯起的。(∨) 2.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。(×)3.截面尺寸对于无腹筋梁和有腹筋梁的影响都很大。(×) 4.在集中荷载作用下,连续梁的抗剪承载力略高于相同条件下简支梁的抗剪承载力。 (×) 5.钢筋混凝土梁中纵筋的截断位置,在钢筋的理论不需要点处截断。(×)5.3问答题 1.斜截面破坏形态有几类?分别采用什么方法加以控制? 答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏 (2)斜压破坏通过限制最小截面尺寸来控制; 剪压破坏通过抗剪承载力计算来控制; 斜拉破坏通过限制最小配箍率来控制; 2.分析斜截面的受力和受力特点? 答:(1)斜截面的受力分析: 斜截面的外部剪力基本上由混凝土剪压区承担的剪力、纵向钢筋的销栓力、骨料咬合力以及腹筋抵抗的剪力来组成。 (2)受力特点: 斜裂缝出现后,引起了截面的应力重分布。 3.简述无腹筋梁和有腹筋梁斜截面的破坏形态。

4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算 1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式: 0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1) 式中 V ——构件斜截面上的最大剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值; A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1; n ——在同一截面内箍筋肢数; A sv1——单肢箍筋的截面面积; s ——沿构件长度方向的箍筋间距; f t ——混凝土轴心抗拉强度设计值; f yv ——箍筋抗拉强度设计值。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。 2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算: 00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2) 式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。 3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算: V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3) 式中 V ——在配置弯起钢筋处的剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承 载力设计值; f y ——弯起钢筋的抗拉强度设计值; A sb ——同一弯起平面内弯起钢筋的截面面积; αs ——弯起钢筋与构件纵轴线之间的夹角 一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。 4 上限值——最小截面尺寸 (1) 对矩形、T 形和I 形截面的一般受弯构件,应满足下列条件: 当 4/≤b h w 时 025.0bh f V c c β≤ (4-4a ) 4(2) 当 6/≥b h w 时 02.0bh f V c c β≤ (4-4b ) 式中:V ——构件斜截面上的最大剪力设计值 c β——为高强混凝土的强度折减系数,当混凝土强度等级不大于C50级时,取 1=c β;当混凝土强度等级为C80时,8.0=c β,其间按线性内插法取值; h w ——截面腹板高度。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。

受弯构件斜截面承载力计算

第三节受弯构件斜截面承载力计算 教学要求 1、掌握梁的斜截面破坏形态; 2、掌握斜截面抗剪的受力机理; 3、掌握影响斜截面抗剪承载力的主要因素; 4、掌握梁的斜截面抗剪承载力计算方法。 第一讲斜截面受剪破坏形态与机理 一、内容 (一)概述 1.受弯构件的破坏形态 (1)正截面受弯破坏:在主要承受弯矩的区段内产生垂直裂缝。 (2)斜截面破坏:钢筋混凝土梁在其剪力和弯矩共同作用的弯剪区段内,产生斜向裂缝而发生斜截面破坏,这种破坏通常来得较为突然,具有脆性性质。因此,在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力。受弯构件斜截面承载力主要是对梁及厚板而言的。 2.斜截面承载力 斜截面承载力包括斜截面受剪承载力与斜截面受弯承载力。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 3.斜裂缝的出现和发展 斜裂缝是因梁中弯矩和剪力产生的主拉应变超过混凝土极限拉应变而出现的,在斜裂缝出现前,梁中应力可以用一般材料力学公式来描述。 斜裂缝主要有两类: (1)腹剪斜裂缝 (2)弯剪斜裂缝 4.防止斜裂缝破坏的措施 (1)合理的截面尺寸; (2)沿梁长布置箍筋; (3)布置弯起钢筋 箍筋、弯起钢筋统称为腹筋,它们与纵筋、架立钢筋等构成梁的钢筋骨架。试验研究表明,箍筋对抑制斜裂缝开展的效果比弯起钢筋好,所以工程设计中,优先选用箍筋,然后再考虑采用弯起钢筋。 (二)剪跨比及斜截面受剪的破坏形态

1. 剪跨比: 2.斜截面受剪的三种主要破坏形态 (1)无腹筋梁的斜截面受剪破坏形态 1) 斜压破坏 当剪跨比较小时(λ<1时),发生斜压破坏。这种破坏多数发生在剪力大而弯矩小的区段,以及梁腹板很薄的T形或Ⅰ形截面梁内。此破坏系由梁中主压应力所致,破坏时,混凝土被腹剪斜裂缝分割成若干个斜向短柱而压坏。受剪承载力取决于混凝土的抗压强度。 2)剪压破坏 31≤≤λ时,常发生此种破坏。此破坏系由梁中剪压区压应力和剪应力联合作用所致。破坏特征通常是,在剪弯区段的受拉区边缘先出现一些垂直裂缝,它们沿竖向延伸一小段长度后,就斜向延伸形成一些斜裂缝,而后又产生一条贯穿的较宽的主要斜裂缝,称为临界斜裂缝,临界斜裂缝出现后迅速延伸,使斜截面剪压区的高度缩小,最后导致剪压区的混凝土破坏,使斜截面丧失承载力。 3)斜拉破坏 当剪跨比较大(λ>3时),常发生这种破坏。此破坏系由梁中主拉应力所致,其特点是斜裂缝一出现梁即破坏,破坏呈明显脆性,其承载力取决于混凝土的抗拉强度。 三种破坏形态的斜截面承载力比较:对同样的构件,斜压>剪压>斜拉; 三种破坏性质:均属脆性破坏,但脆性程度不同,斜拉破坏最脆,斜压破坏次之。(2)有腹筋梁的斜截面受剪破坏形态 与无腹筋梁类似,有腹筋梁的斜截面受剪破坏形态主要有三种:斜压破坏、剪压破坏、斜拉破坏。 当λ>3且箍筋数量过少时,将发生斜拉破坏;如果λ>3,箍筋的配置数量适当,则可避免斜拉破坏而发生剪压破坏;当剪跨比较小或箍筋配置数量过多,会发生斜压破坏。

第四章受弯构件斜截面受剪承载力计算

第4章 受弯构件的斜截面承载力 教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。 2熟练掌握梁的斜截面受剪承载力计算。 3理解梁内纵向钢筋弯起和截断的构造要求。 4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。 4.1 概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 图4-1 箍筋和弯起钢筋 图4-2 钢筋弯起处劈裂裂缝 工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。弯起钢筋的弯起角宜取45°或60° 4.2 斜裂缝、剪跨比及斜截面受剪破坏形态 4.2.1 腹剪斜裂缝与弯剪斜裂缝 钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。 主拉应力:22 42τσσ σ++=tp ,

主压应力22 42τσσ σ+-=cp 主应力的作用方向与构件纵向轴线的夹角a 可按下式确定: στ α22-=tg 图4-3 主应力轨迹线 图4-4 斜裂缝 (a)腹剪斜裂缝;(b)弯剪斜裂缝 这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。 4.2.2 剪跨比 在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

第六章 受构件斜截面承载力答案

第六章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、梁的斜截面承载力随着剪跨比的增大而 。 降低 2、梁的斜截面破坏形态主要 、 、 ,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。 斜拉破坏 斜压破坏 剪压破坏 剪压破坏 3、随着混凝土强度的提高,其斜截面承载力 。 提高 4、影响梁斜截面抗剪强度的主要因素是混凝土强度、配箍率、 剪跨比 和纵筋配筋率以及截面形式。 5、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 斜拉破坏 斜压破坏 6、设置弯起筋的目的是 、 。 承担剪力 承担支座负弯矩 7、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。 025.0bh f V c c β≤ min ρρ≥,max s s ≤, min d d ≥ 二、判断题: 1. 钢筋混凝土梁纵筋弯起后要求弯起点到充分利用点之间距离大于0.5h 0,其主要原因是为了保证纵筋弯起后弯起点处斜截面的受剪承载力要求。( × ) 2.剪跨比0/h a 愈大,无腹筋梁的抗剪强度低,但当3/0>h a 后,梁的极限抗剪强度变化不大。 (√ ) 3.对有腹筋梁,虽剪跨比大于1,只要超配筋,同样会斜压破坏( √ ) 4、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。( )× 5、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )× 6、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对抗震设计尤其重要。( )√ 7、为了节约钢筋,跨中和支座负纵筋均可在不需要位置处截断。( )× 8、斜拉、斜压、剪压破坏均属于脆性破坏,但剪压破坏时,材料能得到充分利用,所以斜截面承载力计算公式是依据剪压破坏的受力特征建立起来的。( )√ 三、选择题: 1、梁内纵向钢筋弯起时,可以通过( C )保证斜截面的受弯承载力。 A .从支座边缘到第1排弯起钢筋上弯起点的距离,以及前一排弯起钢筋的下弯点到次一排弯起钢筋的上弯点距离s ≤s max B .使材料的抵抗弯矩图包在设计弯矩图的外面 C .弯起点的位置在钢筋充分利用点以外大于0.5h 0 D .斜截面受弯承载力和正截面受弯承载力相同,必须通过理论计算才能得到保证 2、设计受弯构件时,如果出现025.0bh f V c c βφ的情况,应采取的最有效的措施是( )。A A 加大截面尺寸 B 增加受力纵筋 C 提高混凝土强度等级 D 增设弯起筋 3、受弯构件中配置一定量的箍筋,其箍筋的作用( )是不正确的。 D A 提高斜截面抗剪承载力 B 形成稳定的钢筋骨架 C 固定纵筋的位置 D 防止发生斜截面抗弯不足。

第四章钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的 极限抗拉强度而开裂的。 2、斜裂缝破坏的主要形态有: 、 、 ,其中属于材料充分利用的 是 。 3、梁的斜截面承载力随着剪跨比的增大而 。 4、梁的斜截面破坏形态主要有三种,其中,以 破坏的受力特征为依据建立斜截面承载力 的计算公式。 5、随着混凝土强度的提高,其斜截面承载力 。 6、随着纵向配筋率的提高,其斜截面承载力 。 7、对于 情况下作用的简支梁,可以不考虑剪跨比的影响。对于 情况的简支梁, 应考虑剪跨比的影响。 8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配 箍率过大或剪跨比较小时,发生的破坏形式为 。 9、 对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。 10、设置弯起筋的目的是 、 。 11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配 置的箍筋应满足 。 12、梁内设置鸭筋的目的是 ,它不能承担弯矩。 二、判断题: 1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是相同的。( ) 2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属 于塑性破坏。( ) 3、梁内设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。( ) 4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。 ( ) 5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0Vh M =λ( ) 6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承 载力。( ) 7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。( ) 8、当梁支座处设置弯起筋充当支座负筋时,当不满足斜截面抗弯承载力要求时,应加密箍筋。( ) 9、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点 之距满足:max s s ≤( ) 10、由于梁上的最大剪力值发生在支座边缘处,则各排弯起筋的用量应按支座边缘处的剪力值计算。 ( ) 11、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

第 6 章 受压构件的截面承载力

第6 章受压构件的截面承载力 思考题 6.1 轴心受压普通钢筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数? 如何确定?轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。l s l s 《混凝土结构设计规范》采用稳定系数? 来表示长柱承载力的降低程度,即? =N u / N u ,N u 和N u 分别为长柱和短柱的承载力。根据试验结果及数理统计可得? 的经验计算公式:当l0/b=8~34 时,? =1.177-0.021l0/b;当l0/b=35~50 时,? =0.87-0.012l0/b。《混凝土结构设计规范》中,对于长细比l0/b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,的? 取值比按经验公式所得到的? 值还要降低一些,以保证安全。对于长细比l0/b 小于20 的构件,考虑到过去使用经验,? 的取值略微抬高一些,以使计算用钢量不致增加过多。 6.2 简述偏心受压短柱的破坏形态。偏心受压构件如何分类? 钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。 受拉破坏形态又称大偏心受压破坏,它发生于轴向力N 的相对偏心距较大,且受拉钢筋配置得不太多时。随着荷载的增加,首先在受拉区产生横向裂缝;荷载再增加,拉区的裂缝随之不断地开裂,在破坏前主裂缝逐渐明显,受拉钢筋的应力达到屈服强度,进入流幅阶段,受拉变形的发展大于受压变形,中和轴上升,使混凝土压区高度迅速减小,最后压区边缘混凝土达到极限压应变值,出现纵向裂缝而混凝土被压碎,构件即告破坏,破坏时压区的纵筋也能达到受压屈服强度,这种破坏属于延性破坏类型,其特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于轴向压力的相对偏心距较小或偏心距虽然较大,但配置了较多的受拉钢筋的情况,此时构件截面全部受压或大部分受压。破坏时,受压应力较大一侧的混凝土被压碎,达到极限应变值,同侧受压钢筋的应力也达到抗压屈服强度,而远测钢筋可能受拉可能受压,但都达不到屈服。破坏时无明显预兆,压碎区段较大,混凝土强度越高,破坏越带突然性,这种破坏属于脆性破坏类型,其特点是混凝土先被压碎,远测钢筋可能受拉也可能受压,但都不屈服。偏心受压构件按受力情况可分为单向偏心受压构件和双向偏心受压构件;按破坏形态可分为大偏心受压构件和小偏心受压构件;按长细比可分为短柱、长柱和细长柱。 6.3 长柱的正截面受压破坏与短柱的破坏有何异同?什么是偏心受压长柱的二阶弯矩?偏心受压长柱的正截面受压破坏有两种形态,当柱长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏” ,它不同于短柱所发生的“材料破坏” ;当柱长细比在一定范围内时,虽然在承受偏心受压荷载后,偏心距由ei 增加到ei+f,使柱的承载能力比同样截面的短柱减小,但就其破坏本质来讲,与短柱破坏相同,均属于“材料破坏” ,即为截面材料强度耗尽的破坏。轴心受压长柱所承受的轴向压力N 与其纵向弯曲后产生的侧向最大挠度值 f 的乘积就是偏心受压长柱由纵向弯曲引起的最大的二阶弯矩,简称二阶弯矩。

斜截面承载力计算例题

500mm ,混凝土强度等级为 C30,箍筋为热轧 HPB300 级钢筋,纵筋为325的HRB335 级钢筋(fy=300 N/mm 2), 支座处截面的剪力最大值为 180kN 。 求:箍筋和弯起钢筋的数量。 h w 465 解:h w h 0 465mm,一 1.86 4 b 250 属厚腹梁,混凝土强度等级为 C30,故3c =1 0.25 c f c bh 。 0.25 1 14.3 250 465 415593.75N V max 180000N 截面符合要 求。 (2) 验算是否需要计算配置箍筋 0.7f t bh 0 0.7 1.43 250 465 116366.25N V max ( 180000N), 故需要进行配箍计算。 (3) 只配箍筋而不用弯起钢筋 n A sv1 V 0.7f t bh 。 f y V 型 h 。 s 则 sv1 0.507mm 2 / mm s 若选用①8@180 ,实有 nA sv1 2 50.3 0.559 0.507(可 以) s 180 配箍率 sv nA sv1 2 50.3 0.224% bs 250 180 最小配箍率 svmin 0.24- f t 1 43 0.24 0.127% sv (可 以) f yv 270 1 .一钢筋混凝土矩形截面简支梁,截面尺寸 250mm X

154800 89512.5 270 nA sv1 2 .钢筋混凝土矩形截面简支梁,如图 5 - 27 ,截面尺寸250mm x 500mm,混凝土强度等级为C30,箍筋为热轧HPB300级钢筋,纵筋为225和222的HRB400级钢筋。求:只配箍筋 1 1 V max— qln — 60 (5.4 0.24) 154.8KN 2 2 (2 )验算截面尺寸 h w h0 465 mm,^4651.86 4 b 250 属厚腹梁,混凝土强度等级为C20 , f cuk=20N/mm 2<50 N/mm 2故伦=1 0.25 c f c bh00.25 1 14.3 250 465 4155937.5N V max 截面符合要求。 (3)验算是否需要计算配置箍筋 0.7f t bh。0.7 1.43 250 465 116366.25N V max,故需要进行配箍计算。 (4) 只配箍筋而不用弯起钢筋 V 0.7f t bh0 nA sv1 f yv h0 s (1)求剪力设计值 支座边缘处截面的剪力值最大 465

相关文档
最新文档