紧固件防松措施及防松试验方法拧紧试验方法

紧固件防松措施及防松试验方法拧紧试验方法
紧固件防松措施及防松试验方法拧紧试验方法

紧固件防松措施及防松试验方法、拧紧试验方法 针对螺纹紧固件松动的问题,人们采取各种积极有效的措施,为螺纹紧固件的发展注入新的活力。从各种标准和文献中可以看到,螺纹紧固件防松技术和防松结构很多,总结起来主要包括摩擦防松、直接锁紧、破坏运动副关系和粘结等几类方法。

(一)摩擦防松

1.控制预紧力

控制安装预紧力是防止螺纹紧固件松动的经济有效措施之一,这种方法利用螺纹的自锁条件,不需要对螺栓、螺母结构做任何改动,通过保证合适的预紧力来防松。对于安装控制要求特别高的使用场合,采用直接控制的方法,在安装过程中测量预紧力,并加以控制,目前常用的方法有采用带测力装置的安装机,如液压安装机,对螺栓施加规定的轴向负荷,使其产生弹性变形,在旋紧螺母,完成装配。也有采用测量螺栓应力或应变形的方法测定预紧力,据此进行安装控制。一般情况下,直接控制安装预紧力需要使用专门的装置或掌握专门的技术,难予推广。为了以经济的方法获得满意的预紧力,更多的采取间接测量和控制预紧力的方法,即扭矩控制法。扭矩控制法通过扭矩系数将预紧力换算成装配扭矩,使用定扭矩或测扭矩装配机或扳手控制装配扭矩,或利用紧固件自身结构保证拧紧扭矩(如扭剪型螺栓连接副),间接达到控制预紧力的目的。为了达到预期的目的,要求连接副的扭矩系数能预先准确测定,并保证同批零件的扭矩系数离散性不大。如,

GB/T1231-1991中明确规定同批连接副的扭矩系数平均值为 0.110-0.150,扭矩系数标准偏差应小于或乖于 0.001%。在工程实践中,也有采用转角法、屈服点拧紧法等控制方法的。

2.有效力矩型紧固件

有效力矩型紧固件是在普通紧固件结构基础上增加了有效力矩部分,其作用是在连接副中增加一个不随外力变化的阻力矩。有效力矩部分主要是加在螺母上,在外螺纹上加有效力矩部分的产品比较少见。

全金属有效力矩型锁紧螺母,一类是利用螺母体上螺纹加工完成后螺母体变形,使螺纹发生轴向或径向变形,造成装配时内外螺纹局部出现干涉产生有效力矩,由于受变形量和变形前毛坯变形阻力和几何精度的影响,对加工工艺要求高,有效力矩控制难度大;另一类是将有效力矩部分减薄,收口或开槽后收口,目前国内主要在军工行业使用较多;第三类是在螺母体内嵌入金属弹性元件,装配时外螺纹迫使弹性元件变形,产生有效力矩,这类螺母对弹性元件弹性及嵌件的位置的要求较高,有时会划伤外螺纹表面。

非金属嵌件有效力矩型锁螺母的有效力矩部分为无螺纹的尼龙环,装配时靠外螺纹在尼龙环上攻出螺纹,靠嵌件的弹性变形产生有效力矩,防松性能优良,可用于冲击、振动较恶劣的工况条件,可重复使用,使用温度在100℃以内,尼龙易老化。

带尼龙嵌件的防松螺钉是在螺钉杆部横向孔内嵌入尼龙柱,装配时尼龙柱受内螺纹挤压产生变形,其弹性使之与内螺纹紧密配合,产生有效力矩,防松效果良好,使用中须保证尼龙柱在内螺纹内处于合适的位置。

3.使用垫圈

目前使用的垫圈主要有平势圈、弹簧垫圈、弹性垫圈。平垫圈主要用于改善支承面的接触状态,保证支承面的摩擦系数稳定,对防松有一定的作用;弹簧垫圈利用其弹性产生轴向力,提高连接的弹性,横向振动试验结果表明其在这种试验条件下防松效果较差;弹性垫圈的扭曲的齿被拧紧的螺母压平,使螺纹副轴身压紧,同时局部嵌入支承面,弹性均匀,防松效果较好,会划伤零件表面。在某些特定的场合下,划伤零件表面正是人们所希望的,如用于表面涂漆的零件上的接线柱,可以划破漆皮,保证导电性能。

(二)直接锁住

在拧紧螺母后使用锁紧(止动)元件将螺母和螺栓锁住,防止它们相对转动。最常用

的是使用开口销、串联钢丝和止动垫圈等。开口销与末端带孔螺栓及开槽螺母配套使用,防松可靠,一般螺母开槽夹角为60°,安装时必须保证槽孔对正,装配不便;用低碳钢丝穿入螺栓头部或螺母的金属丝孔内,使几个螺栓或螺母串联一起相互制约,防松可靠;止动垫圈靠垫圈塑性变形卡住螺母,拆卸时要先将垫圈压平复原再拧松螺母,用于不经常拆卸的重型、动载荷连接,如飞轮螺母。

(三)破坏运动副关系

使用冲头使螺栓和螺母的螺纹局部变形,偏离原牙型轮廓,使其局部不能与正常螺纹

向啮合,破坏原运动副的运动关系,形成不可重复使用的连接,如欲拆卸,须使用较大的扭矩将螺母拧出或将其破坏,这种方法目前已很少使用。

(四)粘结

粘结是将螺栓和螺母或与被连接件粘结在一起,达到防松的目的。用于大批量生产的粘结螺栓,一般是在紧固件制造厂将厌氧胶涂在零件上并经干燥处理,形成微胶囊,这种微胶囊表面干燥,没有粘感,装配时,微胶囊受挤压破裂,胶液溢出,将螺栓和螺母粘结牢固。拆卸时只要施加足够的力矩即可,一般情况下,在一定的期限内,可以重复使用有限次数。

3 / 4

防松性能试验方法

用于评价紧固件的防松性能的试验方法主要有三种,包括地脚螺栓试验法、套筒横向冲击法和横向振动试验法,其中横向振动法是上世纪八十年代以来公认的效果较理想的方法,已被制定为国际标准DIN 65151,我国也发布实施了国家标准GB/T10431-2008。

地脚螺栓试验法的原理是将被试零件安装在试验机上,其连接结构类似于地脚螺栓,在试件上做出位置标记,利用试验机的偏心机构给试验螺纹连接副施加机械振动,定时停机记录试件位置变化情况,以连接副相对位置变化的大小来判断试件防松性能的优劣。这种试验方法被认为是第一代防松性能试验方法,没有实现标准化,没有通用的设备,试验周期长,试验结果不尽如人意,已很少使用。

套筒横向冲击法将试件拧紧在试验套筒内,并在零件和套筒上做出位置标记,然后将套筒置于摇架的导槽内随摇架运动,套筒可以在导槽内横向移动。开机后,遥架往复摆动,冲击套筒在导槽内往复冲击导槽的两端,产生较大的冲击力,致使试件松动。在试验过程中定时停机记录试件位置变化,并据此判定试件的防松性能。这是第二代防松性能试验方法,国内在航天系统仍有使用。上述两种方法都是用试件位置的变化来判定防松效果,而且是定时记录,得到不连续的结果,给应用带来不便。

横向振动试验是在FPL系列紧固件横向振动试验机上进行。将被试紧固件拧紧在试验装置上,使之产生一定的夹紧力。借助于试验机在被夹紧的两金属板之间产生的交变横向位移,使连接运动,导致夹紧力减小甚至完全丧失。连续记录夹紧力,根据记录数据的对此可以判定紧固件防松性能。在试验过程中,夹紧力减小得越漫,防松性能越好;反之,夹紧力减小得越快,防松性能越差。这是采用百若仪器的FPL-600型紧固件横向振动疲劳试验机上所进行的螺栓横向振动试验的典型轴向预紧力变化曲线。

的紧便选结论发新备注小以小。的扭转角这些

效果根据目前的紧固方法、不选择合适的、论 紧固件防松新的防松技术注: 防松其实与以及所采用的所以,在拧紧扭矩系数、总角、极限夹紧些数据我们再

果。 设备状况,我不同牙形的紧经济的防松松技术及防松术和防松紧固与拧紧工艺的的紧固件的润紧过程中采用总摩擦系数、紧力和极限扭矩

再研究拧紧工我们可以设计紧固件、不同轴松结构。 松效果的评价件产品是从研究也是有滑情况、接触用百若仪器生螺纹摩擦系矩等紧固特性工艺,

确认扭矩 4 / 4 计很多组紧固轴向预紧力等日益得到人们事紧固件研究很大关系的,触面的表面状生产的NZA-3数、支撑面摩性值等数据的矩、

轴向力这固方法,然后等各种情况,们的重视,为究、生产和使,紧固件在拧状况,这些因3000型多功能摩擦系数、屈的检测,保证这些指标,

保后根据这些数对于防松效为此,通过试使用者的重要拧紧过程中所因素都会影响能螺栓紧固分屈服夹紧力、证了试验数据

保证紧固件联数据去分析不效果的验证,试验和实践不要任务。 所采取的扭矩响轴向预紧力分析系统,对、屈服紧固扭据的可靠性,

联结有较好的 不同以不断开矩的大的大对螺纹扭矩、通过

防松

+紧固件常用防松方法

224 第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

紧固件表面处理九大选择

1、电镀锌 电镀锌是商业紧固件最常用的镀层。它比较便宜,外观也较好看,可以有黑色、军绿色。然而,它的防腐性能一般,其防腐性能是锌镀(涂)层中最低的。一般电镀锌中性盐雾试验在72小时之内,也有采用特殊封闭剂,使得中性盐雾试验达200小时以上,但价格贵,是一般镀锌的5~8倍。 电镀锌加工过程易产生氢脆,所以10.9级以上的螺栓一般不采用镀锌的处理.虽然镀后可以用烘箱去氢,但因钝化膜在60℃以上时将遭破坏,因此去氢必须在电镀后钝化前进行。如此可操作性差,加工成本高。在现实中,一般生产厂不会主动去氢,除非特定客户的强制要求。 电镀锌的紧固件扭矩—预紧力一致性较差,且不稳定,一般不用于于重要部位的连接。为了改善扭矩—预紧力一致性,也可采用镀后涂覆润滑物质的方法改善和提高扭矩—预紧力一致性。 2、磷化 磷化相对镀锌便宜,耐腐蚀性能比镀锌差。磷化后应涂油,其耐腐蚀性能的高低与所涂油的性能有很大的关系。例如,磷化后涂一般的防锈油,中性盐雾试验也只有10~20小时。涂高档的防锈油,则可达72~96小时。但其价格是一般磷化涂油的2~3倍。 固件磷化常用的两种,锌系磷化和锰系磷化。锌系磷化润滑性能比锰系磷化好,锰系磷化抗腐蚀性,耐磨性镀锌较好。它的使用温度可达华氏225度到400度(107~204℃)。 工业用紧固件很多用磷化涂油处理。因为它扭矩—预紧力一致性很好,装配时能保证达到设计所预期的紧固要求,所以在工业中使用较多。特别是一些重要零部件的连接。如,钢结构连接副,发动机的连杆螺栓、螺母,缸盖、主轴承、飞轮螺栓,车轮螺栓螺母等。 高强度螺栓采用磷化,还可以避免氢脆问题,所以在工业领域10.9级以上的螺栓一般采用磷化表面处理。 3、氧化(发黑) 发黑+涂油是工业紧固件很流行的镀层,因为它最便宜,并且在油耗尽之前看起来不错。由于发黑几乎无防锈能力,所以无油后它很快就会生锈。就是在有油状态下,其中性盐雾试验也只能达到3~5小时。 发黑的紧固件扭矩—预紧力一致性也很差。如需提高,可以在装配时在内处螺纹上涂抹油脂后再旋合。 4、电镀镉 镉镀层耐腐蚀性能很好,特别是在海洋性大气环境下的耐腐蚀性较其他表面处理好。电镀镉的加工过程中的废液处理费用大,成本高,其价格约是电镀锌的15~20倍。所以在一般行

+紧固件常用防松方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ +紧固件常用防松方法 第 21 章螺纹紧固件连接的防松一、松动机理螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。 在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。 在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。 螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。 如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。 当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩 M1 为:M1 ?Qd 2 tg ?? ? ? ? ……………………………(公式 21-1)2式中:Q——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d2——螺纹中径;ρ ——摩擦角,对于三角形螺纹, tg? ?M1 ,M1 是螺纹接触面之间的摩擦系数,β cos ?是牙型半角; 1/ 34

α ——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩 M2 为:M2 ?Q? 2 D 2 …………………………(公式 21-2)2式中:?2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D2 的精确值是:D2 ?3 3 ? ? Rn 2 ? R? ? ? 2 2 ? ,Rω 和Rn 分别是支承面的外半径和内半径,如果支承面 3? R ? R n ? ? ?不平或接触压力不均匀,D2 就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩 M 为:? D ? ?d M ? M 1 ? M 2 ? Q ? 2 tg ?? ? ? ? ? 2 2 ? …………………(公式 21-3)2 ? ?2分析公式 21-3 可知,仅在总力矩 M 等于或小于零的情况下,螺纹紧固件才开始自行松转。 对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ >α ,即满足螺纹的自锁条件,使公式 21-3 括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。 但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。 此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松

轨道交通装备螺栓紧固防松标识操作规程

轨道交通装备螺栓紧固防松标识操作规程 1 / 9文档可自由编辑

轨道交通装备螺栓紧固防松标识操作规程 1 目的 为防止轨道交通装备螺栓紧固防松标识漏划、错划,防松标识线条不规范等现象,本规程规定了各型轨道交通装备螺栓紧固防松标识的具体划法,做到能够明确辨别螺栓连接结构是否发生松动,确保各型轨道交通装备螺栓连接组装达到设计和制造工艺、质量要求和运营安全。 2 适用范围 本操作规程适用于各型轨道交通装备的螺栓、螺钉等紧固件防松、防脱的紧固标识划法及标识工具的使用。 3 基本要求 3.1 螺栓紧固防松标识工具 螺栓紧固防松标识工具主要有油漆记号笔、洁净抹布、清洗剂等。油漆记号笔的颜色应能与被标识部分颜色明显区分开来,一般情况下自检选用红色油漆记号笔,互检选用黑色油漆记号笔,特殊情况按照该产品组装工艺文件规定执行。 3.2 螺栓紧固防松标识流程 螺栓紧固操作者使用扭矩工具将螺栓、螺钉、螺母紧固到位后,先用洁净抹布将防松标识部位(螺栓、螺母及安装面)进行清洁,随后用规定的油漆记号笔涂打防松标识。 产品返修(紧固件需拆卸或松动的情况),产品返修前应先用抹布蘸取少量清洗剂去除原有的防松标识,然后进行返修,返修完成后重新涂打防松标识。 特殊情况下需要标识双线的具体按照该产品组装工艺文件规定执行。3.3 螺栓紧固防松标识准则 3.3.1 产品图样上有明确扭矩要求的部位一般都需要进行防松标识。 3.3.2 当被紧固部位的螺栓、螺母都可进行防松标识时,防松标识原则上涂

打在螺母端。 3.3.3 工序中的可视部位最好能在整车时看到,如果整车时确不能看到的,以本工序的可视面为准。 3.3.4 整车完工状态时观察,螺栓紧固为竖直方向时,防松标识位置为视觉正前方且标识线为竖直线;螺栓紧固为水平方向时标识线为水平线,无法在以上两个位置进行防松标识或有特殊要求的以该产品组装工艺文件为准。3.3.5 所有防松标识的可追溯性,包括自检和互检,在产品质量确认表中以实名制体现。 3.3.6 同一产品的相同部位防松标识应一致,相邻或成组螺栓(螺钉)、螺母的防松标识应一致,其中圆形布置的螺栓标识线呈辐射状朝外(见图1) 图1 3.3.7 从螺母端紧固的,防松标识应从工件的表面划到螺母的侧面并延长到

螺栓常用的防松方法有三种之令狐文艳创作

常用的防松方法有三种:摩擦防松、机械防松和永久防松。 令狐文艳 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松

螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。 2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹

紧固件安装力矩要求和防松线涂打规范(可编辑最新版)

紧固件安装和防松线涂打规范 1.目的:规范紧固件安装规范,保证产品质量 2.适用范围:本公司所有产品(有特殊要求的产品除外) 3.引用标准:GB/T 93-1987 标准型弹簧垫圈 4.紧固件安装力矩及互检力矩: 紧固件有力矩要求的,用力矩工具紧固,互检时使用工具确认后再做互检标识,互检力矩F2应为0.85F1≤F2<F1(F1为安装力矩); 5.检验标准 5.1自检和互检应在相同条件下的情况下进行。 5.2自检和互检都要确认紧固件是否旋紧到位,目测弹簧垫片要压平,压平后开口m应为m≤S/2平垫也要保证压平,无变形。 弹垫压平后开口如下表所示

6.涂打防松线 6.1 使用工具:油漆记号笔 6.2 线条宽度:1.5~2mm 6.3 涂打说明及要求 6.3.1 以下所指基材的表面均指距平垫外沿5~10mm处:紧固件中无平垫的,基材的表面是指距螺栓、螺钉或螺母侧面5~10mm处: 6.3.2 需在螺母端画防松线的,对于露出螺丝长度为5mm以内的,防松线涂满整个螺丝,对于露出螺纹长度大于5mm 的螺栓,螺丝上的防松线长度在5~15mm范围内; 6.3.3 涂打防松线以前,须将溢流到紧固件外的螺纹锁固剂、二硫化钼等油脂擦拭干净; 6.3.4 同一部件、批次的防松线要保持一致、美观。 6.4 涂打方法 6.4.1 紧固件为M8及M8以上的,用红黑平行线条表示,自检时用黑笔涂打,互检时用红笔涂打;两条平行线间距为2-3mm。 图片一在可视部位从螺母的侧面及螺纹处打到基材的表面; 图片二在可视部位从螺栓的头部中心位置附近打到基材的表面; 图片三在可视部位从圆螺钉的头部中心位置附近打到基材的表面。 6.4.2 紧固件为M8以下的,用一条黑线和一个红点表示,自检时用黑笔涂打,互检时用红笔涂打; 图片一在可视部位黑线从螺母的侧面及螺纹处打到基材的表面,红点在螺母上邻近黑线的可视部位涂打; 图片二在可视部位黑线从螺栓的头部中心位置附近打到基材的表面,红点在螺栓上邻近黑线的可视部位涂打; 图片三在可视部位黑线从螺钉头部位置打到固件的表面,红点在螺钉头上邻近黑线的可视部位涂打。

十二种经典的螺栓防松设计

十二种经典的螺栓防松设计 常用的防松方法有三种:摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等,这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。常见摩擦防松有:利用垫片、自锁螺母及双螺母等。常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 今天咱们分享12种比较流行或者说在网上分享比较多的防松设计,希望这些设计能给大家提供选择或者带来帮助。

1. 双螺母 对顶防松螺母原理:双螺母防松时产生两个摩擦力面,第一摩擦力面是螺母与被紧固件之间,第二摩擦力面是螺母与螺母之间。安装时,第一摩擦力面的预紧力为第二摩擦力面的80%。在冲击和振动载荷作用时,第一摩擦力面的摩擦力会减小和消失,但同时,第一螺母会被压缩导致第二摩擦力面的摩擦力进一步加大。螺母松退必须克服第一摩擦力和第二摩擦力,由于第一摩擦力减小的同时第二摩擦力会增大。这样防松效果就会比较好。

唐氏螺纹防松原理:唐氏螺纹紧固件也是采用双螺母防松,但是,两个螺母的旋转方向相反。在冲击和振动载荷作用时,第一摩摩擦力面的摩擦力会减小和消失, 第一螺母(图中右旋)会产生松退趋势,即螺母向左旋转。但是第二螺母(图中左旋)的旋向与第一螺母的旋向相反,因此第一螺母的松退力直接转换成第二螺母的拧紧力。这样,螺母万万不会松退。

2. 30°楔形螺纹防松技术 在30°楔形阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在阴螺纹的楔形斜面上,从而产生了很大的锁紧力。

由于牙形的角度改变,使施加在螺纹间接触所产生的法向力与螺栓轴成60度角,而不是像普通螺纹那样的30度角。显然30°楔形螺纹法向压力远远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。 施必牢螺纹结构示意图 从下面的图可以看到二个箭头所表示的力均为Pɑ,传统的60度角螺纹的法向压力P=1.15Pɑ;而30°楔形螺纹由于牙底有一个30度角的楔形斜面,其法向压力的角度、大小均有改变,法向压力P=2Pɑ。 这样,30°楔形螺纹与传统60度螺纹,二者的法向压力之比≈12∶7,防松摩擦力相应地增加了。30°楔形螺纹的楔形面还可以消除普通螺纹受力不均匀、脱扣咬死等问题。 3. 自锁螺母 自锁螺母一般是靠摩擦力自锁,咱们上面提到的30°楔形螺纹防松应该属于自锁螺母的范畴。

紧固件常用防松方法

紧固件常用防松方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-=tg Qd M 2 21……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1M tg =,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 222D Q M μ=…………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是:??? ? ??--=2233232n n R R R R D ωω,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的 内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,

机构设计--锁紧与防松Word版

在一个论坛上看到的,忘了作者是谁,向作者致谢. 机构设计——锁紧与防松 此处所讲的锁紧与防松仅适于可拆结构。对不不可拆结构,一般从配合上或用不可拆联接达到要求。锁紧机构主要工作原理相关是力学上的死点、压力角和摩擦角。其实际机构非常多,常用的有螺纹锁紧、偏心轮锁紧、斜面锁紧、四杆机构锁紧。 螺纹锁紧是最常用的,其产品已经标准化。在一般情况下推荐使用。使用螺纹锁紧时应注意配合的螺纹长度。一般说来,超过八个牙后多余的配合长度意义不大,少于三个牙则联接不可靠。螺纹锁紧的一个最大优点是行程长,全行程均可作为有效作用点,且各处增力均匀。其缺陷是当工作行程要求较长时,操作起来较麻烦。一般情况下均可采用,但在要求快换的情况下不宜单独使用。 偏心轮锁紧机构能快速锁紧,但其锁紧作用点较为固定且行程很小,对零件精度有一定的要求。对于塑胶件来说,因其容易产生蠕变而影响锁紧效果。对于锁紧点常作小范围变动的情况,可能偏心轮与螺纹锁紧配合使用。 斜面锁紧增力较小,行程较小,但行程有一定的调节能力,一般以斜锲的方式使用。在实际设计中,常利用塑胶的弹性在较小的锁紧力情况下使用。另外,也常用于调节零件间的间隙。一般不用于较大锁紧力的情况。 四杆机构锁紧行程可设计得很大,锁紧点较为固定。对于精度较高的机构可单独使用。除行程可以设计得较大外其它情况与偏心轮相似。一般与螺纹锁紧配合使用。其结构较为复杂,应用于经常使用的快换机构。 除以上常用的锁紧机构外,还有一类机构没有锁紧作用,但能在作用点附近自锁。这类机构常与锁紧机构配合,扩展锁紧机构的功能。这类机构除棘轮外没有固定的方式,一般是临时设计。压力角是机构中不考虑构件的惯性力和不计运动副的摩擦力的情况下,机构运动时从动件所受到的驱动力的作用线与该力作用点处运动的绝对速度方向线之间所夹的锐角。压力角越大,驱动越困难。当压力角的余角小于接触面间的摩擦角时,机构就能自锁。在设计自锁机构时,对摩擦角的取值应是机构工作所有可能环境的最小值。除此之外,此类机构还要求能在一定情况下能方便的解锁。此类机构与锁紧机构配合使用时可先解除锁紧,在没有锁紧力时一般可过改变驱动力的作用点的方式轻松解锁。在做自锁与锁紧机构设计时,一定要注意零件的刚度问题。如机构零件在作用过程中产生较大的变形,则很可能会达不到设计效果。 防松不仅对锁紧机构重要,对较恶劣环境下工作的联接也很重要。对于一般情况下的螺纹防松在《机械设计手册》上有所介绍,此处只考虑复杂受力环境下的机构防松。 防松的重要原理一个是固定;一个是弹性;还有一个是隔离作用力。对于固定防松的方式较为极端,也最有较。比如,一些狙击手用盐水将瞄准器与枪上的固定座浸泡,使之生锈。这种方式可使联接在受枪强大的反冲力的情况下仍不松动。在设计上,有用胶水固定,甚至在机构锁紧后直接焊接固定的极端情况。在要求可拆的情况下,也有附加一固定机构将锁紧部分固定起来的情况。但对于要求有一定调节量的情况这些方案就不适用了,这时一般利用弹性来达到防松的目的。机构(包括锁紧机构、联接机构、自锁机构)之所以在复杂受力情况下会松驰,主要原因是机构在复杂受力情况下产生少量的位移(这很正常,除用极端方式固定外不可避免)后,因其在锁紧方向的力要大于解锁方向的作用力,所以机构返回原位置较偏移原位置困难。在多次作用积累下,就会产生较大的位移,从而产使机构松驰,达不到预定设计效果。而在锁紧机构中加处弹性元件,则可起到两个作用。一是弹性元件可起到复位的作用,将产生的位移以弹性形变的方式出现。当外力情况变化时,弹性元件则以相应的弹性形变应对。在这种情况下,机构中的元件并无实质

紧固件防松措施及防松试验方法拧紧试验方法

紧固件防松措施及防松试验方法、拧紧试验方法 针对螺纹紧固件松动的问题,人们采取各种积极有效的措施,为螺纹紧固件的发展注入新的活力。从各种标准和文献中可以看到,螺纹紧固件防松技术和防松结构很多,总结起来主要包括摩擦防松、直接锁紧、破坏运动副关系和粘结等几类方法。 (一)摩擦防松 1.控制预紧力 控制安装预紧力是防止螺纹紧固件松动的经济有效措施之一,这种方法利用螺纹的自锁条件,不需要对螺栓、螺母结构做任何改动,通过保证合适的预紧力来防松。对于安装控制要求特别高的使用场合,采用直接控制的方法,在安装过程中测量预紧力,并加以控制,目前常用的方法有采用带测力装置的安装机,如液压安装机,对螺栓施加规定的轴向负荷,使其产生弹性变形,在旋紧螺母,完成装配。也有采用测量螺栓应力或应变形的方法测定预紧力,据此进行安装控制。一般情况下,直接控制安装预紧力需要使用专门的装置或掌握专门的技术,难予推广。为了以经济的方法获得满意的预紧力,更多的采取间接测量和控制预紧力的方法,即扭矩控制法。扭矩控制法通过扭矩系数将预紧力换算成装配扭矩,使用定扭矩或测扭矩装配机或扳手控制装配扭矩,或利用紧固件自身结构保证拧紧扭矩(如扭剪型螺栓连接副),间接达到控制预紧力的目的。为了达到预期的目的,要求连接副的扭矩系数能预先准确测定,并保证同批零件的扭矩系数离散性不大。如, GB/T1231-1991中明确规定同批连接副的扭矩系数平均值为 0.110-0.150,扭矩系数标准偏差应小于或乖于 0.001%。在工程实践中,也有采用转角法、屈服点拧紧法等控制方法的。 2.有效力矩型紧固件 有效力矩型紧固件是在普通紧固件结构基础上增加了有效力矩部分,其作用是在连接副中增加一个不随外力变化的阻力矩。有效力矩部分主要是加在螺母上,在外螺纹上加有效力矩部分的产品比较少见。 全金属有效力矩型锁紧螺母,一类是利用螺母体上螺纹加工完成后螺母体变形,使螺纹发生轴向或径向变形,造成装配时内外螺纹局部出现干涉产生有效力矩,由于受变形量和变形前毛坯变形阻力和几何精度的影响,对加工工艺要求高,有效力矩控制难度大;另一类是将有效力矩部分减薄,收口或开槽后收口,目前国内主要在军工行业使用较多;第三类是在螺母体内嵌入金属弹性元件,装配时外螺纹迫使弹性元件变形,产生有效力矩,这类螺母对弹性元件弹性及嵌件的位置的要求较高,有时会划伤外螺纹表面。

螺纹防松结构

螺纹防松方法 生产和生活中,应用到的螺纹防松方法有多种形式,但归纳以来,一般就 有四种。 第一种是摩擦防松,主要依靠增加摩擦力; 第二种是机械防松,主要是用销、垫片、钢丝将螺母卡死; 而是防脱落。 拆御力矩是预紧力矩的80%,说明螺栓的松比紧要容易。 常见的螺纹连接防松方法如下表所示: 在常见的螺母放松结构中,还有很多禁忌。如下图所示:对于要求比较高一些的防松,更有细节的禁忌。如下图所示: 以上介绍的各种相关防松方式,其根本一点是依靠第三者力的防松。第三

者力有多大,防松效果就有多好。其效果,无非是通过增加摩擦力,直至焊死 而已。 能不能不依靠第三者而突破传统螺纹防松方式呢? 答案就是第四种防松方式,即结构防松方式:唐氏螺纹防松。 实际上,螺纹的防松原理大家能认可,关键是对强度的担心。我们一般想象受力面积减小了,强度一定也会减小。唐氏螺纹的受力面积减小了,强度肯 定会很差,事实不是这样的。 33.1%,第二圈受力为22.5%,最后一圈受力为1~ 增加30%;悬置螺母,受力面积增加, 40%。 环槽螺母强度增加的原因是因为其下部螺母结构变软,前几圈螺纹易于变形;内斜螺母强度增加的原因是下部螺纹受力面积减小,前几圈螺纹易于变形;悬置螺母强度增加的原因是改变了受力点,前几圈螺纹由受压变成受拉,与螺

栓变形一致。 唐氏螺纹受力面积小,螺纹易于变形,各螺纹段受力较普通螺纹均匀,强度不象我们想向的那小。唐氏螺纹的强度可达普通螺纹强度的90%以上。 唐氏螺纹防松 1.唐氏螺纹的作用和意义 螺纹发明一千多年了,谁是发明者已经无法考证了。 而唐氏螺纹是由我国唐宗才先生发明的。 螺纹结构“单旋向、连续、等截面” 而是独立的形成了第四种防松方式。 成锁紧螺母的拧紧力。它完全依靠螺纹自身结构,而不依靠第三者力,是一种 纯结构式的防松形式。 唐氏螺纹紧固件利用螺纹自身矛盾,以松动制约松动,起到“以毒攻毒”的效果。它的发明标志着紧固件领域振松问题得到突破性的进展。这是螺纹防松领域的一场革命,它开创了螺纹结构防松的新时代。

《螺栓常用的防松方法介绍》

《螺栓常用的防松方法介绍》螺栓常用的防松方法有三种。摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松方法有。点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。下面分述如下:(1)摩擦防松①弹簧垫片防松: 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松。 ②对顶螺母(双螺母)防松: 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经很少使用了。③自锁螺母防松: 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松: 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。

(2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向,原则就是:当一个螺栓有松动的趋势,它应该拉动铁丝,让临近的螺栓有旋紧的趋势。见下图所示: (3)永久防松①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。 第二篇:常用的自我介绍常用的自我介绍 尊敬的领导,你好。我叫xx,来自美丽的贵州,毕业于上海xx

紧固件常用防松方法

紧固件常用防松方法 The document was finally revised on 2021

第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-=tg Qd M 2 21……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2222D Q M μ=…………………………(公式21-2)

式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是:??? ? ??--=2233232n n R R R R D ωω,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面 的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹件,轴向外力使螺母在靠近支承面的部位产生径向弹性膨胀,引起螺纹面和支承面上的微观滑移;对于承受横向动载荷的螺纹件,横向外力使螺栓在螺母内摇摆而产生微观滑移,或者说螺母在螺栓上摇摆而产生微观滑移。试验证明,横向外力比轴向外力能引起更大的微观滑移。因此,横向外力是更危险的因素,而且垂直于螺纹轴线的纯横向外力比起与螺纹轴线成各种角度的横向外力,对螺纹连接的松动能产生最苛刻的条件。实际的使用经验

常见的螺栓螺母连接防松方法

常见的螺栓螺母连接防松方法 常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

紧固件防松方法

224 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

紧固件的拆除和特殊拆除方法

▋紧固件的拆除和特殊拆除方法 一、普通螺纹紧固件的拆除 在拆装作业中,遇到最多的是螺纹联接,在机械结构中大约占全部联接件的50%~60%。 螺纹分圆柱螺纹和圆锥螺纹。按牙形分为三角形,矩形,梯形等形状。螺纹按螺纹线方向,又分左旋螺纹和右旋螺纹,没有特殊说明的情况下,一般采用右旋螺纹。 螺纹的规格和各种尺寸均已标准化;有公制和英制之分。我国采用公制,在欧美的航空器上多采用英制。 螺纹联接的零件包括螺栓、螺钉、紧定螺钉、螺母、垫圈及防松零件(如开口销、止动垫片等)。联接的主要类型有螺栓联接、双头螺柱联接、螺钉联接和紧定螺钉联接等几种。 拆装螺纹联接的工具分手动和机动两类。近年来,机动工具发展很快,有效地提高了拆装作业的劳动效率,改善了劳动条件。但机动工具并不能完全替代手动工具。 手动工具主要有固定扳手(梅花)、活动扳手、套筒扳手、卡拉、加长杆、力矩扳手、螺丝刀、弯钩、剔针、大力钳、螺钉拆卸压板等。这些工具的使用,要根据螺母、螺拴的六方尺寸,拧紧力矩,所在位置的回转空间等具体条件来选择。一般情况下,为了避免损坏螺栓、螺母的六方棱角,缩短作业时间,减轻劳动强度,能用固定扳手的不用活动扳手;能用梅花扳手的不用呆扳手;能用套筒扳手的不用固定扳手。 对于螺栓、螺钉,有安装力矩技术要求的,要按要求操作,没有具体要求的要按照以下要求操作: 1)在金属盖板上,螺钉的拧紧力矩是15-50in-lbs; 2)在复合材料、蜂窝结构等松散材料上,螺钉的拧紧力矩是15-25in-lbs; 3 1. 螺纹连接拆卸的技术要领及注意事项有: 1) 用扳手拆装螺纹(母)时,扳手的开口尺寸要适合螺拴头或螺母的六方尺寸,不能过松。旋转时,使扳手开口与六方表面尽量靠合。要用一只手握住扳手开口处,避免扳手因用力脱

螺纹紧固件连接的防松分析

龙源期刊网 https://www.360docs.net/doc/8a13849326.html, 螺纹紧固件连接的防松分析 作者:曹向权陈铄魏庆 来源:《中国科技博览》2013年第16期 [摘要]目前基本上所有的现在的机械产品均采用了螺纹连接方式,机械产品的经济性和可靠性也与螺纹有着密切的关系。本文从汽车的实际应用的角度出发研究螺纹紧固件连接的防松问题,发现松动原因,给出放松措施和预紧方法,有利于提高螺纹紧固件的连接效果。 [关键词]螺纹紧固件;螺纹连接;防松;预紧 中图分类号:TH113 .1 文献标识码:A 文章编号:1009-914X(2013)16-0013-01 1.前言 易拆卸、易安装、能重复使用是螺纹紧固件的突出特点,同时也是螺纹获得广泛应用的重要原因之一。但是螺纹紧固件的使用缺点也是显而易见的,即,处于长期工作状态时或者是处于多温差变动、高低荷载变化、多冲击、多振动的工作环境时,螺纹紧固件容易出现松动情况,直接影响机械的运转性能并降低其安全可靠性。螺纹紧固件是将若干个功能元件连接成为一个机械整体的重点节点,如果紧固件出现脱落的情况,则势必会直接影响整个机械设备的正常运转;即便是紧固件不脱落,而是出现不紧也不落的状态,一旦持续时间过长,则会导致紧固件和连接件出现机械疲劳问题,最终影响整个机械设备的正常运转。有鉴于此,笔者在本文中以汽车的实际应用效果作为研究出发点,重点分析并探讨了螺纹紧固件连接的防松措施和方法。 2.各种螺纹紧固件连接防松方法在汽车生产中的应用分析 2.1 增大摩擦力 所谓的增加摩擦力,主要是指增加螺栓或者螺纹间与螺母支承面的摩擦力。通过增大摩擦力的方式来达到螺纹紧固件连接防松的目的,这种做法的可靠性相对较差,但是因为该种做法的最大优势在于没有使用空间的束缚,并且能够进行频繁的拆卸与安装,因而得到了最广泛的应用。常见的增加摩擦力的方法主要包括以下几个方面: 第一,两螺母对顶拧紧。采用两螺母对顶拧紧的方式,能够让两个旋紧的螺母之间始终受到摩擦力和压力的作用,降低螺母松动的几率。具体的装配方法是,首先以4/5的安装扭矩旋紧内侧的螺母,而后以全部的安装扭矩旋紧外侧的螺母。如此一来,两个螺母能够非常紧密的贴合在一起,防松摩擦力也会因此显著增大。虽然采用两个螺母会增加一定的重量并占用一定的空间,但是由于防松效果较好,装配容易、结构简单,也颇受人们亲睐。

螺栓常用的防松方法有三种

螺栓常用的防松方法有三 种 The Standardization Office was revised on the afternoon of December 13, 2020

常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。

2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。

相关文档
最新文档