苏里格气井水平井钻井液技术方案

苏里格气井水平井钻井液技术方案
苏里格气井水平井钻井液技术方案

苏里格气井水平井钻井液技术方案苏里格气井水平井钻井液最关键的技术是井眼净化、大斜度井段“双石层”和水平段泥岩的垮塌、预防PDC钻头的泥包、润滑性、产层保护等。

1 基本情况

直井段:保持了本区块直井、定向井钻井液方案。

斜井段: 继续采用强抑制无土相复合盐钻井液体系。

水平段:采用无土相酸溶暂堵钻井液体系。

2 技术难点

2.1 苏里格区块直井段安定底直罗组、延长底部纸纺组顶部易垮塌。

2.2 苏里格区块刘家沟组与石盒子组地层承压能力低,普遍存在渗透性漏失和压差性漏失。

尤其是苏5区块漏失最为频繁。

2.3“双石层”、煤层和水平段泥岩的垮塌,是导致水平井易发生复杂和故障的致命的因素。

2.4如何优化钻井液体系、性能、组分,通过钻头选型,水力参数优化,是预防PDC钻头泥包和提高斜井段机械钻速的关键。

2.5 如何通过改善泥饼质量,提高钻井液的润滑性是水平井钻井液防卡润滑的关键。

3 技术方案

3.1表层技术方案

3.1.1表层钻井液配方

表层及导管钻进严格按《苏里格气田表层钻井液技术》执行,打导管采用白土浆小循环,导管打完后固定、找正、坐实、水泥回填,侯凝2-3小时,开钻过程中监控导管情况。

若流砂层未封住(流沙层50米以上),采用白土浆钻井,0.1%CMC+5-6%白土,密度:1.03---1.05g/cm3,粘度:40-50s ;钻穿流沙层50-80米之后,采用低固相钻井液体系,密度:1.01---1.03g/cm3,粘度:31-35s。

若流砂层已完全封住,用清水聚合物钻井液体系,配方为0.2%CMP +0.2%ZNP-1。钻井液性能:密度:1.00---1.02g/cm3,粘度:31-32s。

3.1.2下表层表套前技术措施

打完表层后配白土浆(约40-50方)密度:1.03-1.05g/cm3,粘度:40-50s,采用地面小循环清扫井底后打入井里封固裸眼井段,起钻连续灌白土浆,确保井口流沙层段为白土浆,防止下表套过程中流沙垮塌。

3.2二开直井段技术措施

3.2.1二开提前预水化聚合物胶液

利用候凝搞井口期间提前预配聚合物胶液300方,0.1%K-PAM +0.2%ZNP-1 +0.2%CMP。

3.2.2二开进入安定组前50米钻井液上罐钻进,根据粘度高低适量加入K-PAM、ZNP-1,每钻进50-70米清洗1次锥形罐,性能达到:粘度≥31s,密度≤1.02g/cm3,钻进中分2-3次加入0.5吨XL-007,钻穿直罗100米后下罐采用大池子循环,在延长组底部100米钻井液再次上罐钻进,分2-3次加入0.5吨XL-007及其它化工,进入纸纺组100米后下罐采用大池子循环(主要针对苏里格)。

3.2.3每班随时开振动筛观察返出岩屑,判断井下情况,及时作出处理,

3.2.4补充新浆配方0.1%K-PAM+0.2%ZNP-1+0.2%CMP,缓慢、分次混入,做好泵压变化记录,防止误判断井下、钻具故障。

3.2.5每天或起钻前稠浆、大排量清扫。

3.3斜井段技术措施

3.3.1斜井段钻井液配方及维护

3.3.1.1直井段钻完后根据井下情况,可用稠浆清扫,保证井筒清洁,有利于滑动定向。

3.3.1.2掌握转化时机。井斜达到15°左右转化钻井液体系(根据井下情况和井队加药品快慢),转化时加入抗盐、抗高温处理剂,严禁加入不抗盐、不抗高温的其他处理剂,转化主处理剂为: GD-K、JT-1、PAC(CMC)、SFT-1、SMP-2、ZDS、WT-1及工业盐等。

3.3.1.3钻井液体系转化配方:原浆+0.2-0.3%PAC +2-3% GD-K +0.2-0.3%JT-1 +1.5-2%SFT-1+3-4%ZDS +0.1%NaOH +5-10%工业盐+3-4%有机盐

3.3.1.4控制性能:密度:1.08-1.10g/cm3,粘度:38-42s ,FL:6-4ml,PH:8-9,动切:

5-10 Pa

3.3.1.5加药顺序:按上述配方以循环周先后交替加入PAC 、GD-K、JT-1、SFT-1、ZDS,打钻6-8小时再加入NaOH,WT-1及工业盐。在井斜30°的时加入2-3吨SMP-2(加入SMP-2,可适当减少GD-K、JT-1等降失水剂的含量)。

3.3.1.6苏5井区和桃7井区刘家沟钻穿必须做承压试验。

由于延长、刘家沟组易漏地层与“双石层”等易塌地层处在同一裸眼井段,解决好易塌层垮塌和易漏层承压能力是技术的关键。

为提高地层承压能力,做地层承压试验,做承压试验要求:(1)钻穿刘家沟组50-100米;(2)转化为强抑制无土相复合盐钻井液体系;(3)井斜达到15°左右,钻井液密度大于1.10g/cm3以上;(4)钻井液当量密度大于1.25g/cm3;(5)配量:封刘家沟井段+10 m3;(6)加量:5-8%DF-A(适用苏5、桃7区块,其它区块暂不做要求。)

3.3.1.7斜井段根据井斜提高钻井液密度:

(1)在井斜30°时密度达到1.15-1.18 g/cm3。

(2)在井斜45°时将密度达到1.25-1.28 g/cm3,(苏5及苏47、苏48等易漏的区块,,钻井液密度走下线,加入SFT-1及目数更小的超细碳酸钙提高封堵性能,同时加入5-7%KCL、0.2-0.3%CWD-1、0.1%K-PAM,增加该体系的防塌抑制能力)。在斜井段不加入原油的情况下可加入XCS-3增加体系的防塌润滑性。

(3)在井斜达60°以上时将密度达到1.28 g/cm3以上,(苏5及苏47、48等易漏的区块,钻井液密度走下线);穿越下古煤层时要将钻井液密度提高到1.30 g/cm3以上。

(4)井斜小于30°时尽可能采用工业盐、有机盐等提密度,以提高滑动增斜效率。

3.3.1.8钻头泥包的原因分析及对策

(1)PDC钻头泥包分析

钻井液性能:性能差,如抑制性、润滑性能差、失水大、滤饼厚、黏土含量高等。

地质因素:泥岩地层、易吸水膨胀的地层或软硬交错的地层,易形成泥包。

钻井参数:钻进中排量较小,未能将钻屑及时带离井底,造成重复切削。钻进中钻压不均匀,钻时变慢后,盲目加大钻压。

钻头选型:选用中心孔流道较小的PDC 钻头,导致钻屑滞留在底部。

(2)预防PDC钻头泥包的技术对策

预防PDC钻头泥包的钻井液维护的核心是:一是通过无机盐、有机盐等强抑制剂的含量,提高钻井液的抑制性,抑制泥岩地层分散、造浆。二是保持无土相、低活性固相含量。(3)复合盐钻井液防PDC泥包的维护。

首先确保体系中有足够的抑制剂含量,主要通过观测钻屑和钻井液的性能来掌握。具体的:一是泥岩段的砂样成型好,不粘筛布。二是钻井液的性能在泥岩段钻进变化不大,密度、粘度、固含不升,性能稳定。

其次加强固控设备的使用,保持钻井液中低固相。

再次工程措施:一是 PDC 钻头钻速快、钻屑多,必须要有足够的排量,避免钻屑重复切削会形成淤泥而泥包钻头。要求环空上返速度达到1.00m/s;二是钻压合理,送钻均匀,速度太快时要适当控制钻压;三是尽量避免长时间、长井段的滑动钻进,四是下钻分段循环。

3.3.1.9防煤层垮塌的钻井液措施

(1)泥浆措施:

由于煤层遇水极易分散,防煤层垮塌的泥浆技术措施应从提高泥浆密度和控制泥浆API及HTHP失水入手。

进入山西组煤层前用密度为1.30-1.35 g/cm3。

采用GD-K、JT-1、超细目碳酸钙粉等处理剂,使泥浆API失水控制在4ml以下,HTHP失水控制在15ml以下,并且可形成薄而韧、渗透率低的泥饼。

采用高粘度钻井液、粘度控制在60s以上,防止水力对煤层的冲刷、工程在满足携砂的前提下采用较低的排量钻进。

(2)工程技术措施

在煤层钻进中,禁止采用滑动钻进方式,禁止在煤层段强增斜扭方位作业。

煤层段严禁长时间循环,井下要出现遇阻要避开煤层循环。

3.3.2斜井段完钻电测及下套管前的钻井液处理

3.3.2.1完钻后配稠浆清扫,再大排量充分循环钻井液2-3周,确保洗井彻底。

3.3.2.2短程起下钻至造斜点附近,确保井眼畅通后把预配置25方封闭润滑液(原浆中加入1吨GD-2、1吨XCS-3),封闭大斜度井段。起钻过程中连续灌浆,确保井筒内液柱压力

足够。

3.3.2.3电测期间,每测完一趟灌浆一次,确保钻井液液面在井口。

3.3.2.4电测完按设计钻具组合、双扶正器通井,到底后大排量充分循环钻井液2-3周,确保洗井彻底;若下钻遇阻,及时接方钻杆建立循环划眼,并根据井下情况处理好钻井液,直到上提下方无遇阻,短起下无遇阻后打入预配的20-25方封闭润滑液(原浆中加入1吨GD-2、1吨XCS-3),封闭大斜度井段方可起钻下套管。起钻过程中连续灌浆,确保井筒内液柱压力足够。

3.4水平段技术方案

3.4.1水平段钻井液配方及维护

3.4.1.1钻塞时用大池子泥浆循环。其他循环罐预配钻井液,利用斜井段泥浆最多不超过60方(下完套管后利用离心机降低斜井段钻井液密度,配置水平段钻井液时可加入30方左右,钻进过程中分多次加入30方),以免使用过多影响钻井液性能,造成钻头泥包和钻进中托压。

3.4.1. 2转化过程中控制泥浆总量在200方左右,具体加量为:3-4%GD-K+ 4-5%ZDS +0.1% PAC(CMC) +0.1%烧碱+甲醛适量(0.1%左右)+工业盐15吨+15吨甲酸钠(保证体系的抑制性),循环2周后测初始性能:密度1.15-1.18g/cm3,漏斗粘度38-42S,失水6-4ml,PH=8-9。必须勤观察振动筛砂样返出情况及时维护,钻进一定进尺可适量补充K-PAM、XCS-3、原油增强体系的抑制能力和润滑性。

3.4.1.3砂岩地层钻进,钻时较快,每钻进400-500米进尺进行短起下钻,气层显示很好(气测值出现高于50万ppm),可将密度提高到1.25 g/cm3以上,长时间滑动钻进后,复合钻进时可适当提高转盘转速,破坏岩屑床,滑动钻进时,如长时间没有进尺,必须上提活动钻具,防止发生粘卡。

3.4.1.4出现泥岩时的要求

(1)出现泥岩时要及时给技术办进行汇报,并以甲酸钠、NaCL为主,BaSO4(石灰石)为辅提高密度;

(2)若伽玛值大于180(此值作为参考,当伽玛值大于120时,要勤观察振动筛上返出砂子以否为泥岩),钻遇泥岩到30m时,必须将密度提至1.25 g/cm3以上(若密度未达到要求,必须循环加重);KCL含量达到5-7%;

(3)若伽玛值大于180,钻遇泥岩达50m时,密度必须提至1.30g/cm3 (若密度未达到要求,必须循环加重) 以上;提密度出现渗漏时继续加入KCL,总含量达到7-9%, CWD-1(或KPAM)达到0.3-0.4%;

(4)若伽玛值大于180,钻遇泥岩段到80m时,密度必须提至1.35g/cm3(若密度未达到要求,必须循环加重),同时CWD-1(或K-PAM)总量达到0.4-0.5%等。若伽玛值大于180,钻遇泥岩段到150m时,密度必须提至1.40g/cm3 (若密度未达到要求,必须循环加重) 。

3.4.1.5水平段提密度要求:

每次提密度要仔细观察漏失量,提密度时一个循环周不超过0.02g/cm3(低密度时一个循环周可提高0.03-0.05g/cm3),防止加量过快压漏地层,若出现漏失的迹象停止加重,循环观察;已知井漏区块以化学防塌为主,物理防塌为辅,提密度时要更为慎重,原则上一个循环周不超过0.02g/cm3,防止加量过快压漏地层,并随钻加入DF-A进行随钻防漏。3.4.1.6随着水平段进尺的增加,携砂也变的相对困难。控制动塑比在0.30-0.35,3转的度数>3,可适量的在原浆中加入适量XCD和ZDS,提高粘切清扫井眼,保证井眼清洁,减小岩屑床的形成。

3.4.1.7强化四级固控设备的使用:进入斜井段要合理使用四级固控设备,严格控制钻井液中的有害固相,含砂量小于0.3%。振动筛选用波浪筛布,筛布要求在100-120目,要求钻井液要100%的过筛。钻进时,不间断的开启除砂、除泥器(筛布选用150目)、离心机清除调整钻井液中的固相比例。井斜达到30°以后时每班必须开离心机4--6小时,除砂、除泥器不小于8小时,密度降低时要及时加重,通过清除-加重-清除-再加重的办法来调整钻井液中的固相比例。

3.4.1.8做好防淀粉发酵的工作,转化时加入0.1%的甲醛,体系气泡过多或有异样气味,有发酵的前兆可再加入适量甲醛及烧碱。

3.4.2水平段完钻电测前及下工具前钻井液处理

3.4.2.1完钻后配稠浆清扫,大排量充分循环钻井液2-3周,确保洗井彻底。

3.4.2.2短程起下钻至套管脚近,再下钻至井底,正常后配置20方封闭润滑液(原浆中加入1吨GD-2、1吨XCS-3),封闭水平井段。

3.4.2.3起钻过程中连续灌浆,确保井筒内液柱压力足够。

3.4.2.4电测期间,每测完一趟灌浆一次,确保钻井液液面在井口。

3.4.2.5电测完按设计钻具组合通井,到底后大排量充分循环钻井液2-3周;若下钻遇阻,及时接方钻杆建立循环划眼,并根据井下情况处理好钻井液,上提下方无遇阻方可下钻,到底后仍需短起下作业进行验证,短起下正常后方可打入预配置20方(1000米水平段)封闭浆(原浆中加入1吨GD-2、1吨XCS-3),封闭水平井段。

4.化工储备:

(备注:仅适应于水平段长800米以内,没出现泥岩,没出现漏失的井,化工消耗总量控制在100万元以内;水平段大于800米的井,按系数计算;出现井漏和大段泥岩的按实际消耗计算)

水平井钻井技术经验概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然 石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

(表一)

10.井眼尺寸不受限制 11.可以测井及取芯 12.从一口直井可以钻多口水平分枝井 13.可实现有选择的完井方案 (4).短曲率半径水平井的优缺点 优点缺点 1.井眼曲线段最短1.非常规的井下工具 2.侧钻容易2.非常规的完井方法 3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制

5.直井段与油层距离最小5.起下钻次数多 6.可用于浅油层6.要求使用顶部驱动系或动力水龙头 7.全井斜深最小7.井眼方位控制受到限制 8.不受地表条件的影响8.目前还不能进行电测 第三节定向井的基本术语解释 1)井深:指井口(转盘面)至测点的井 眼实际长度,人们常称为斜深。国外 称为测量深度(MeasureDepth)。 2)测深:测点的井深,是以测量装置 率是井斜角度(α)对井深(L?)的一阶导数。 dα Kα=─── dL 井斜变化率的单位常以每100米度表示。 8)井深方位变化率:实际应用中简称方位变化率,?是指井斜方位角随井深变化的快慢程度,常用KΦ表示。计算公式如下: dΦ KΦ=─── dL

间31井钻井液技术

间31井泥浆技术报告 1概况 间31井地理位置:河北省河间市时村乡李安庄村;构造位置:冀中坳陷饶阳凹陷马西洼槽间31断块;钻探目的:预探马西洼槽间31断块沙1段含油气性;井型为直井;设计井深:2600米;实际井深:2600米;目的层:Ed、Es1段。间31井钻井周期19天9:30小时,建井周期26天15:00小时,平均机械钻速9.58M/H,固井质量、井身质量全部合格,符合甲方要求。 2工程简况 一开: Φ444.5mm×184.6m+Φ339.7mm×183.33m 二开:φ215.9mm×2600m 3泥浆措施 本井一开用般土浆开钻,泥浆性能为:比重1.05,粘度28秒。二开预处理采用大、中、小分子复配的方法,加入K-PAM和NPAN,控制泥浆粘度和失水。二开后,随着井深的增加及时补充K-PAM和NPAN,保持其在泥浆中的含量。进入馆陶组前加入一定量的SMP和FT-103改善泥饼质量,同时加足K-PAM和NPAN以控制造浆和失水,保证了第一趟钻的起下顺利, 并且为转型做好了基浆准备。馆陶组底部加入足量SMP和FT-103,将聚合物泥浆转型为聚磺泥浆。进入东营段后,每班将K-PAM和NPAN按1:2的比例配成胶液以细水长流的方式补充,同时加足SMP和FT-103,以控制造浆、中压失水和高温高压失水,提高泥饼质量。本井沙一段有一段油页岩,为了防止油页岩垮

塌,根据设计在打开油页岩前加入一定量的HY-212。在以后钻进过程中,及时补充SMP、FT-103、NPAN、K-PAM等处理剂,确保了全井泥浆性能稳定,特别是泥浆的失水得到了很好的控制,进入油层的中压失水、高温高压失水都在设计范围内,从而保证了钻进顺利和井下的安全。完钻后,调整好泥浆,首先进行了短起下,到底后大排量充分循环钻井液,直至振动筛没有砂子,打入一段重塞对油页岩段进行了封堵以后,方起钻电测,电测一次成功。 4电测情况 本井泥浆性能符合设计要求,全井没有因泥浆性能引起的井下复杂和井下事故,起钻电测前,首先进行了短起下,反复刮拉井壁,到底后采用大排量充分循环钻井液,用重塞对油页岩段进行封堵后,起钻电测,电测一次到底。 5小结 本井泥浆性能较好,各项性能符合设计要求,进入油层段后的失水特别是高温高压失水控制得较好,有效的降低了井下事故发生的可能性。每次起下钻都很顺利,钻进周期相对缩短,减少了泥浆对油层的浸泡时间。全井没有因泥浆性能而引起的井下事故和井下复杂。值得注意的是该地区明化镇和东营段的严重造浆,以及沙一段的特殊岩性。在明化镇和东营段必须把大分子的量加足,用好固控设备,降低泥浆的固相含量;进入沙一前把失水控制好。

647.2-2013_页岩气水平井钻井作业技术规范_第_2_部分:钻井作业(出版稿)

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 647.2—2013 页岩气水平井钻井作业技术规范 第2部分:钻井作业 2013-12-22发布2014-01-22实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻井工程设计 (1) 4 井眼轨迹控制 (2) 5 防碰作业 (3) 6 水平段安全钻井 (3)

前言 《页岩气水平井钻井作业技术规范》分为五个部分: ——第 1 部分:丛式井组井场布置; ——第 2 部分:钻井作业; ——第 3 部分:油基钻井液; ——第 4 部分:水平段油基钻井液固井; ——第 5 部分:井控。 本部分为第 2 部分。 本标准按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写规则》进行编写和表述。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准起草单位:川庆钻探工程有限公司钻采工程技术研究院、川庆钻探工程有限公司川东钻探公司、川庆钻探工程有限公司川西钻探公司 本标准主要起草人:张德军、赵晗、卓云、叶长文。

页岩气水平井钻井作业技术规范第2部分:钻井作业 1 范围 本标准规定了页岩气丛式井组钻井工程设计、井眼轨迹控制、防碰作业、水平段安全钻井等内容和要求。 本标准适用于川渝地区页岩气井的钻井作业。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SY/T 1296 密集丛式井上部井段防碰设计与施工技术规范 SY/T 5088-2008 钻井井身质量控制规范 SY/T 5416 定向井测量仪器测量及检验 SY/T 5435-2003 定向井井眼轨迹设计与轨迹计算 SY/T 5547 螺杆钻具使用、维修和管理 SY/T 5619 定向井下部钻具组合设计方法 SY/T 6332-2004 定向井轨迹控制 SY/T 6396 钻井井眼防碰技术要求 Q/SYCQZ 001 钻井技术操作规程 Q/SYCQZ 372-2011 丛式井井眼防碰技术规程 3 钻井工程设计 3.1 井身结构 3.1.1 表层套管应封隔地表漏层和垮塌层,相邻两井表层套管下深错开20 m以上。 3.1.2 水平井技术套管下入位置井斜应不低于60°,若井下出现严重垮塌、钻遇高压油气,可提前下入技术套管。 3.1.3 油层套管尺寸不小于 11 4.3 mm,抗内压强度与增产改造施工压力之比>1.25。 3.1.4 水平段长度宜控制在800 m ~ 1400 m。 3.2 靶区 3.2.1 靶区半径设计符合SY/T 5088-2008的规定,且满足井眼轨迹控制要求。 3.2.2 水平段井眼方向与地层最小主应力方向的夹角不小于 15°。 3.3 井眼轨道 3.3.1 每口井地下靶心与井口位置连线相互之间不宜空间交叉。

苏里格气井水平井钻井液技术方案设计

里格气井水平井钻井液技术案 里格气井水平井钻井液最关键的技术是井眼净化、大斜度井段“双层”和水平段泥岩的垮塌、预防PDC钻头的泥包、润滑性、产层保护等。 1 基本情况 直井段:保持了本区块直井、定向井钻井液案。 斜井段: 继续采用强抑制无土相复合盐钻井液体系。 水平段:采用无土相酸溶暂堵钻井液体系。 2 技术难点 2.1 里格区块直井段安定底直罗组、延长底部纸纺组顶部易垮塌。 2.2 里格区块家沟组与盒子组地层承压能力低,普遍存在渗透性漏失和压差性漏失。尤其是 5区块漏失最为频繁。 2.3“双层”、煤层和水平段泥岩的垮塌,是导致水平井易发生复杂和故障的致命的因素。 2.4如优化钻井液体系、性能、组分,通过钻头选型,水力参数优化,是预防PDC钻头泥包和提高斜井段机械钻速的关键。 2.5 如通过改善泥饼质量,提高钻井液的润滑性是水平井钻井液防卡润滑的关键。 3 技术案 3.1表层技术案 3.1.1表层钻井液配 表层及导管钻进格按《里格气田表层钻井液技术》执行,打导管采用白土浆小循环,导管打完后固定、找正、坐实、水泥回填,侯凝2-3小时,开钻过程中监控导管情况。 若流砂层未封住(流沙层50米以上),采用白土浆钻井,0.1%CMC+5-6%白土,密度:1.03---1.05g/cm3,粘度:40-50s ;钻穿流沙层50-80米之后,采用低固相钻井液体系,密度:1.01---1.03g/cm3,粘度:31-35s。 若流砂层已完全封住,用清水聚合物钻井液体系,配为0.2%CMP +0.2%ZNP-1。钻井液性能:密度:1.00---1.02g/cm3,粘度:31-32s。 3.1.2下表层表套前技术措施 打完表层后配白土浆(约40-50)密度:1.03-1.05g/cm3,粘度:40-50s,采用地面小循环清扫井底后打入井里封固裸眼井段,起钻连续灌白土浆,确保井口流沙层段为白土浆,防止下表套过程中流沙垮塌。

第6章钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 8.1 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介[16]: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较

钻井液技术规范

附件 钻井液技术规范 (试行) 中国石油天然气集团公司 二○一○年八月

目录 第一章总则┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3第二章钻井液设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3第一节设计的主要依据和内容┄┄┄┄┄┄┄┄┄┄┄┄3 第二节钻井液体系选择┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 第三节钻井液性能设计项目┄┄┄┄┄┄┄┄┄┄┄┄┄5 第四节水基钻井液主要性能参数设计┄┄┄┄┄┄┄┄┄7 第五节油基钻井液基油选择和主要性能参数设计┄┄┄11 第六节油气层保护设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 第七节钻井液原材料和处理剂┄┄┄┄┄┄┄┄┄┄┄13 第八节钻井液设计的管理┄┄┄┄┄┄┄┄┄┄┄┄┄13 第三章钻井液现场作业┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14第一节施工准备┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14 第二节预水化膨润土钻井液与处理剂胶液的配制┄┄┄14 第三节淡水钻井液的配制┄┄┄┄┄┄┄┄┄┄┄┄┄15 第四节盐水钻井液的配制┄┄┄┄┄┄┄┄┄┄┄┄┄15 第五节水包油钻井液的配制┄┄┄┄┄┄┄┄┄┄┄┄16 第六节油基钻井液的配制┄┄┄┄┄┄┄┄┄┄┄┄┄16 第七节钻井液性能检测┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 第八节现场检测仪器┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 第九节现场钻井液维护与处理的基本原则┄┄┄┄┄┄20 第十节水基钻井液性能维护与处理┄┄┄┄┄┄┄┄┄20 —1 —

第十一节油基钻井液性能维护与处理┄┄┄┄┄┄┄┄23 第四章油气层保护┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 第五章循环净化系统┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 第一节设备的配套、安装与维护┄┄┄┄┄┄┄┄┄┄25 第二节钻井液净化设备的使用┄┄┄┄┄┄┄┄┄┄┄27 第六章泡沫钻井流体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 第一节一次性泡沫钻井流体┄┄┄┄┄┄┄┄┄┄┄┄28 第二节可循环泡沫钻井流体┄┄┄┄┄┄┄┄┄┄┄┄29 第三节压井液和压井材料的储备┄┄┄┄┄┄┄┄┄┄31 第七章井下复杂事故的预防和处理┄┄┄┄┄┄┄┄┄┄31 第一节井壁失稳的预防与处理┄┄┄┄┄┄┄┄┄┄┄31 第二节井漏的预防与处理┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 第三节卡钻的预防和处理┄┄┄┄┄┄┄┄┄┄┄┄┄35 第八章废弃钻井液处理与环境保护┄┄┄┄┄┄┄┄┄┄37 第九章钻井液原材料和处理剂的性能评价与储存┄┄┄┄37 第一节技术标准与性能评价┄┄┄┄┄┄┄┄┄┄┄┄38 第二节钻井液原材料和处理剂的储存┄┄┄┄┄┄┄┄38 第十章钻井液资料收集┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39第十一章附则┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄40 —2 —

苏里格气井水平井钻井液技术方案

苏里格气井水平井钻井液技术方案苏里格气井水平井钻井液最关键的技术是井眼净化、大斜度井段“双石层”和水平段泥岩的垮塌、预防PDC钻头的泥包、润滑性、产层保护等。 1 基本情况 直井段:保持了本区块直井、定向井钻井液方案。 斜井段: 继续采用强抑制无土相复合盐钻井液体系。 水平段:采用无土相酸溶暂堵钻井液体系。 2 技术难点 2.1 苏里格区块直井段安定底直罗组、延长底部纸纺组顶部易垮塌。 2.2苏里格区块刘家沟组与石盒子组地层承压能力低,普遍存在渗透性漏失和压差性漏失。 尤其是苏5区块漏失最为频繁。 2.3“双石层”、煤层和水平段泥岩的垮塌,是导致水平井易发生复杂和故障的致命的因素。 2.4如何优化钻井液体系、性能、组分,通过钻头选型,水力参数优化,是预防PDC钻头泥包和提高斜井段机械钻速的关键。 2.5 如何通过改善泥饼质量,提高钻井液的润滑性是水平井钻井液防卡润滑的关键。 3 技术方案 3.1表层技术方案 3.1.1表层钻井液配方 表层及导管钻进严格按《苏里格气田表层钻井液技术》执行,打导管采用白土浆小循环,导管打完后固定、找正、坐实、水泥回填,侯凝2-3小时,开钻过程中监控导管情况。 若流砂层未封住(流沙层50米以上),采用白土浆钻井,0.1%CMC+5-6%白土,密度:1.03---1.05g/cm3,粘度:40-50s ;钻穿流沙层50-80米之后,采用低固相钻井液体系,密度:1.01---1.03g/cm3,粘度:31-35s。 若流砂层已完全封住,用清水聚合物钻井液体系,配方为0.2%CMP +0.2%ZNP-1。钻井液性能:密度:1.00---1.02g/cm3,粘度:31-32s。 3.1.2下表层表套前技术措施 打完表层后配白土浆(约40-50方)密度:1.03-1.05g/cm3,粘度:40-50s,采用地面小循环清扫井底后打入井里封固裸眼井段,起钻连续灌白土浆,确保井口流沙层段为白土浆,防止下表套过程中流沙垮塌。

伊犁盆地伊3井煤层气井钻井液设计与应用

伊犁盆地伊3井煤层气井钻井液设计与应用摘要:对伊3井煤层气井钻井液的设计、技术思路、现场应用及复杂情况处理进行了论述和分析。钾基两性离子聚磺防塌钻井液对井眼清洁、井眼稳定、减阻防卡、防漏堵漏、防塌等性能进行了总结。 【关键词】煤层气, 粉煤层, 聚磺防塌, 伊3井 abstract: iraq 3 cbm well drilling fluid design, technical ideas, the application situation and the complicated treatment were discussed and analyzed. potassium base zwitterion together the collapse of well drilling fluid sulfonylurea eye cleaning, borehole stable friction reduction, the card, plugging, prevent the collapse, such as performance was summarized. 【 key words 】 cbm, adding layer, and gather the sulfonylurea collapse, the iraq 3 wells 中图分类号: p618.11文献标识码:a文章编号: 随着煤层气勘探开发的领域不断扩展,煤层气钻井过程中遇到的地层越来越复杂、储层越来越深,出现的井内复杂情况更加难以预料,处理的难度也在不断增加。因此需要我们对煤层气井钻井液技术要不断研究、完善。 一、地质与井身结构概况

冀东油田水平井钻井液技术重点

第22卷第4期钻井液与完井液Vol.22No.4 2005年7月DRILLINGFLUID&COMPLETIONFLUIDJul12005 文章编号:100125620(2005)0420072202 冀东油田水平井钻井液技术 邓增库左洪国夏景刚杨文权赵增春蒋平 (华北石油管理局第三钻井工程公司,河北河间) 摘要针对水平井钻井要求和冀东油田的地层特点,采用强包被、、,定向井段和水平井段采用聚磺硅氟乳化原油钻井液。该钻井液中PMHA与JJ能力;GT298、KJ21与NPAN,L21与JGWJ复配使用可以提高钻井液的封堵能力,。现场应用表明,该钻井液具有较强的防塌能力、,解决了上部地层和水平井段砂岩储层的井塌以及大斜度井段、水平井段的携砂、,完全满足了冀东地区垂深小于3000m水平井的钻井需要。 关键词聚磺硅氟钻井液井眼净化井眼稳定防止地层损害水平钻井冀东油田中图分类号:TE254.3 文献标识码:A 钻井液性能优良是水平井井下安全的重要保证。为满足水平井钻井要求,对水平井钻井液技术进行了调研,结合冀东油田的地层特点,从钻井液的抑制防塌能力、流变性、润滑性、油层保护等方面进行室内评价,优选出了聚磺硅氟乳化原油钻井液配方,并首次在G362P4井进行试验,获得了成功。随着水平井钻井液技术的不断完善,22口水平井实践表明,聚磺硅氟乳化原油钻井液具有较强的防塌能力、良好的流变性和润滑性,油层保护效果好,满足了冀东油田垂深小于3000m的水平井钻井需要。 砂带来困难;水平段处于砂岩产层,钻速快(钻时为0.8~2min/m),钻井液中岩屑浓度大;一般水平井段的井径比常规井径大,同时钻具不能居中,在重力作用下,岩屑在运移过程中产生沉降,在钻具周边淤积。如果钻井液携砂能力较弱,或工程措施不当,极易形成岩屑床,造成卡钻。113润滑防卡 由于油层埋深较浅,井眼轨迹半径较小,造斜率有时达30°/100m以上,大斜度井段地层较软,地层与钻具接触面大,固相润滑作用小,主要依赖液相润滑,增加了润滑防卡难度。114油层保护 1技术难点 111井壁稳定 该油田馆陶组下部地层存在不同厚度的玄武 岩,胶结物少,地层破碎,表现为大块塌落;东营组泥页岩地层易吸水造成不均质剥落坍塌;储层砂岩胶结性差,返出岩屑类似流砂,储层砂岩裸露段长达几百米,上层井壁

钻井设计基本原则

钻井设计基本原则 1.钻井的目的:是为勘探和开发油气田服务。 2.钻井设计必须国家及政府有关机构的规定和要求,保证钻井设计的合法性。 3.钻井设计的主要依据: 3.1.地质设计是钻井设计必须遵循的主要依据。地质部门至少应在开始钻井作业前75 天,向钻井部门提供地质设计,并应在该设计中尽可能地提供所钻之井的地质情况(包括地层孔隙压力、破裂压力等),以及提出地质上要求的资料。 3.2.井场调查资料和邻井的钻井资料,也是进行钻井设计的主要依据。地质部门至少应 在钻井作业开始前45天做完井场调查,并将获得的各有关资料(包括井位自然环境、土壤情况、浅层气等)尽快交给钻井部门;同时,还应收集全邻井的钻井资料(包括复杂情况的处理、钻井液密度的使用情况等)。 3.3.钻井部门应根据地质部门提供的资料和邻井资料,认真分析,作好钻井设计。如存 在由于目前技术水平、设备的限制,保证不了钻井作业在安全情况下进行,或钻井作业结果达不到地质设计的要求,应尽早明确提出,以便地质部门修改地质要求或调整井位位置。 4.钻井设计应体现安全第一的原则。大到井身结构,小到每一项作业程序,都要重视安全, 既要重视井下安全,也要重视地面安全,把安全第一的原则贯穿到整个设计中。对于重大的作业和风险大的作业,还应制定相应的安全应急程序。 5.设计钻井液密度的原则。钻井液密度必须大于地层孔隙压力当量密度,小于地层破裂压 力当量密度。钻井液密度对地层孔隙压力的安全附加值,用压力表示,油井为 1.5~3.5MPa,气井为3.0~5.0MPa。 6.井身结构的设计,是钻井设计的关键内容,必须遵循下述几点: 6.1.保证井眼系统压力平衡,不出现喷漏同在一裸眼中,即钻下部高压地层时用的较高 密度的钻井液产生的液柱压力,不会压漏上部裸露的地层。 6.2.井内钻井液液柱压力和地层压力之间的压差不宜过大,以免发生压差卡钻。 6.3.为保证安全钻进,必须用套管封住复杂地层井段,如易漏、易垮塌、易缩径和易卡 钻等井段。 6.4.探井,特别是地层压力还没有被掌握的井,应设计一层套管作为备用,以保证井眼 能够钻到设计的深度。 6.5.对钻探多套压力系统的井,应采用多层套管程序,以保护油气层不受钻井液污染和 损害。

水平井工艺技术措施

水平井技术措施 1. 侧钻 1) 直井段要保证钻直,钻进至造斜点测ESS,及时计算出井身轨迹数据,以此为依据计算设计下部施工的井眼轨道; 2) 侧钻井段要选择在井径规则、钻时较快的井段,最好是砂岩段; 3) 水泥塞要保证打实,候凝48小时以上,检查水泥塞质量。检查方法:修水泥面,试钻钻压50~80千牛,钻时不高于5~8分/单根,水泥塞质量达到上述要求后钻至侧钻点井深; 4) 侧钻用直马达加弯接头,使用MWD监测井身轨迹的变化情况,判断是否侧钻成功; 5) 严格按照推荐上扣扭矩紧扣; 6) 控制起下钻速度在15柱/小时以下; 7) 开泵前要确保已安放了钻杆泥浆滤清器; 8) 钻井参数服从马达参数,轻压,根据钻进直井段时的钻时选择控制好侧钻钻时; 9) 随时注意钻进时的返砂情况,根据返砂情况及时调整钻井参数,确认新井眼与老井眼偏离2米,新砂样达90%,可确定出新井眼,方可起钻; 10) 起钻前,充分循环至振动筛上无砂子返出; 11) 起钻后采用导向系统钻进。 2. 导向钻进 1) 严格按照推荐上扣扭矩紧扣; 2) 控制起下钻速度在15柱/小时以下; 3) 若下钻遇阻,划眼时应保证工具面是钻进该井段时使用的工具面; 4) 开泵前要确保已安放了钻杆泥浆滤清器; 5) 钻井参数参考马达使用参数; 6) 如果造斜率偏高,马达角度在2度以下可考虑采用10-30转/分以下的转速启动转盘导向钻进; 7) 如果造斜率偏低,起钻换高角度马达; 8) 工具造斜率应稍高于设计造斜率,避免因造斜率不足而起钻; 9) 实际施工过程中,应使实钻轨道尽量靠近设计轨道; 10) 根据现场实际情况,分段循环,及时短起下,保证井眼清洁; 11) 钻具倒装,原则是井斜30度以深井段采用18锥度钻杆,加重钻杆

水平井钻井液技术

水平井钻井液技术 水平井钻井液技术 水平井技术是当代油气资源勘探开发的重点技术之一.从80十九 世纪末期开始,为了勘探提高钻探开发综合经济效益,全世界各油公 司掀起了水平井的热潮,在生产中所取得了重大经济效益,断定了水 平井“少井高产”的突出优点,取得了减少油田勘查勘探开发费用, 加快资金回收,少占土地减少和环境污染等一系列经济效益和社会效益。 由于水平井催化裂化在钻井过程中井转角从0°~90°变化,因而 水平井与直井钻井工艺有较大的差别,为了确保水平井的钻成井保护 好油气层,对水平井的钻井液完井液提出了特殊要求,必须解决井眼 净化、井壁稳定、摩阻控制、防漏堵漏和保护储层堵漏等症结。 一、井眼净化 井眼净化是水平井钻井工程的一个主要组成部分,井眼雾化不好 会导致摩阻和扭矩增加、卡钻;下能影响下套管和固井作业正常进行。 (一)影响井眼净化的因素 1、井斜角:环空岩屑或临界流速随井斜角的增加而变大,而清洁 率则随之下降 2、环空返速:其大小直接影响环空岩屑的运移方式、状态和环空 岩屑浓度。提高环的空运速: 环空岩屑浓度降低,井眼减低净化状况得以改善;岩屑侵蚀床厚 度降低或被破坏,井眼下侧不形成明显的岩屑床。 3、环空流型:完全一致态的携屑效果基本相同。通过调整钻井液 流变性能,改变层流速度剖面的平板程度来取代紊流,使钻井液在环

空处于平板型层流,从而达到改善井眼净化旌善线的目的;55°~90°紊流比层流携屑效果好 4、钻井液密度:钻井液电阻率的提高,这有利于钻屑的携带 5、钻柱尺寸:当井身结构中已确定,随着钻杆尺寸柱塞的增大环空返速增加,有利于携屑 6、转速:钻柱的旋转,对沉积的岩床起搅动指导作用,有利于床面岩屑的离去;转动钻柱可以限制钻柱的偏心效应,从而改善井眼净化;提高转速可防止钻井液在井壁周围形成不流动,从而不断提高井眼净化;钻柱除了自转外,还围绕井眼周界作圆周运动,因而利于岩屑的携带 7、钻柱的偏心度:随着井斜角的增大,钻校的偏心度对环空岩屑的影响较大;环空岩屑浓度随钻柱偏心度的增大而增大8、钻井速度和岩屑尺寸:当钻速过高时,会造成环空钻屑浓度过大,岩屑床内径增加;岩屑尺寸大小亦会对井眼净化效果带来影响(二)技术措施 水平井的井眼清洗在现场经常采用机械清洗和水力清洗相结合的措施来解决,实现水平井净化的技术措施可归纳为以下几个方面: 1、增强环空返速; 2、选用合理流型与钻井液流变参数; 3、改变下部钻具组合 4、适当增加钻井液密度; 5、转动钻具或上下大范围活动; 6、使用钻杆扶正器; 7、压制钻进速度; 8、采改采高转速金刚石钻头; 9、倒划眼二、井壁稳定 井壁稳定是钻井工程中最常见的井下复杂情况之一。酿成井壁不稳定的原因可归纳为力学因素与物理化学因素,但最终均归结为井壁岩石所受的应力超过其自身强度风速造成岩石发生捏切破坏,井眼钻开前,地下岩石在上覆地层压力、水平地应力及地层孔隙压力的作用下,继续保持应力平衡状态,井眼被钻开后,井筒内的钻井液柱压力取代了所钻岩石对井壁的支撑,惹起引起井壁邻近的应力重新分布,当井筒的液柱压力小于地层坍塌压力时,井壁周围的岩石所受的远远

水平井钻井液

水平井钻井液 前言 水平井钻井是钻井技术发展的必然产物,和钻直井相比涉及到新的工艺和新的技术措施,它对钻井液技术提出了更高的要求,因此在水平井钻井液的设计和施工中,必须把握好钻井液的特性、分优钻井液性能、钻井液参数的优选,这样才能安全、顺利的完成钻井任务,才可能取得更高的经济效益。从胜利油田钻水平井的发展历史来看,套管结构在不断的简化,钻井周期在不断的降低,成本在不断的减少,当初钻二千来米的水平井需三开完钻,现在钻将近五千米的水平井也只下两层套管,所取得的技术和经济效益是相当可观的。所钻地层也由当初的较稳定的地层到现在的低压易漏失地层;钻井液的发展经历了水基、油基到现在的泡沫钻井液,水平井钻井液技术的持续、稳定发展,使我油田目前能钻各种类型、各种难度、不同井深的水平井。 一、水平井钻井液的发展 为提高水平井钻井液的携岩洗井效果,只有提高钻井液粘度和动切力,降低钻屑的下滑速度,避免岩屑床的形成,但粘度太高不利于钻井的施工,提高动切力是有效的方法。为达到这个目的,胜利油田在最初的几口水平井用聚腐粉JFF来改善钻井液这方面的性能,但JFF有它的局限性,作用时间不能持续长久,处理量大时易使粘度迅速上升,在此基础上采用正电胶MMH来改善钻井液流变参数,可以大大地提高动切力,施工方便、快捷。这两者处理剂实际上都是改善钻井液中粘土的性质,不同的只是JFF在施工时就已对粘土进行了处理,加入时同时会增加泥浆中的般土含量;而MMH是在施工之中进行,不可能增加钻井中的般土含量,且作用时间长。润滑剂的种类可根据地质需要而选择不同的类型。 二、钻屑在井下的运移状态 分析钻屑的运移情况,必须从钻井液的流变参数,当动切力越小,流型越显尖峰型,动切力越大,则呈现平板型层流,以宾汉模式计算,钻井液的临界环空返速 321.49 (Do+Di)(PV+(PV2+YP(Do-Di)2D) 1/2 Qc= D 7716 式中:Do井眼直径(米) Di 钻杆内径(米) D 钻井液密度(Kg/m3) PV 钻井液塑性粘度(PaS) YP 钻井液动切力(Pa)

元坝272-1H井超深水平井钻井技术教学内容

元坝272-1H井超深水平井钻井技术

元坝272-1H井长水平段超深水平井钻井技术 董志辉,孙连坡,汪海波,仇恒彬 (中石化石油工程公司钻井工艺研究院山东东营 257000) 摘要:元坝272-1H井是位于元坝区块的一口超深长水平段水平井,存在地质情况复杂、多套压力体系并存、气藏埋深超过6500m、井底温度高达156℃等技术难题。施工中通过钻井提速技术、井眼轨迹控制技术、高温定向工具使用技术、井眼清洁技术、摩阻扭矩监测控制技术、高温钻井液技术、安全钻井技术等先进技术,克服了裸眼段长、摩阻扭矩大、岩屑清洁效率低、井眼轨迹控制困难、工具仪器耐高温高压挑战性高等难点,创造了元坝区块水平井水平位移最长、水平段最长、钻遇含气储层最长三项纪录,为同类超深水平井的施工积累了丰富经验。 关键词:元坝272-1H井;超深水平井;钻井技术;长水平段; 1元坝272-1H井概况 元坝272-1H井是中石化西南油气分公司部署在四川盆地川东北巴中低缓构造上的一口超深水平井,以长兴组顶部礁盖(顶)储层为主要目的层,该井位于元坝区块长兴组4号礁带。完钻井深7788.00m,完钻垂深6549.66m,造斜点位于6050.00m,水平位移1501.65m,水平段长1073.30m,钻穿气层长度820.00m,创造了元坝区块水平井水平位移最长、水平段最长、钻遇含气储层最长三项纪录。井身结构采用五开制,实钻井身结构与设计井身结构对比如下。 表1 实钻井身结构与设计井身结构对比 开次 井眼套管 备注井眼尺 寸/mm 设计井 深/m 实钻井 深/m 套管尺寸/mm设计下深/m实际下深/m 导管914.4 32 32 720.0 0-30 0-31.75 根据需要设置1 660.4 502 504 508.0 0-500 0-501.45 封上部易漏层和 水层 2 444.5 3050 2992 346.1 0-3048 0-2990.01 封上沙以浅地层 3 314.1 4922 4978 273.1/282.6 0-4920 0-4292.3 4 封雷三水层以浅 地层 4 241.3 6580 6580 193.7/206.4 0-6578 3593.96-6580 封长兴组顶界以 浅地层

井控设计规范

井控设计规范 第八条井控设计是钻井地质和钻井工程设计的重要组成部分,大港油田地质、工程设计部门要严格按照井控设计的有关要求进行井控设计。 第九条进行地质设计前应对井场周围2000米范围内的居民住宅、学校、厂矿(包括开采地下资源的矿业单位)、国防设施、高压电线、水资源情况和风向变化等进行勘察和调查,并在地质设计中标注说明;特别需标注清楚诸如煤矿等采掘矿井坑道的分布、走向、长度和距地表深度;江河、干渠周围钻井应标明河道、干渠的位置和走向等。 第十条地质设计书中应明确所提供井位符合以下条件: 油气井井口距离高压线及其它永久性设施不小于75m;距民宅不小于100m;距铁路、高速公路不小于200m;距学校、医院、油库、河流、水库、人口密集及高危场所等不小于500m。若安全距离不能满足上述规定,由油田公司与油田集团公司安全主管部门组织相关单位进行安全和环境评估,按其评估意见处置。含硫油气井的应急撤离措施,执行SY/T 5087《含硫油气井安全钻井推荐作法》有关规定。 第十一条地质设计书应根据物探资料及本构造邻近井和邻构造的钻探情况,提供本井全井段预测的地层孔隙压力和地层破裂压力剖面(裂缝性碳酸盐岩地层可不作地层破

裂压力曲线,但应提供邻近已钻井地层承压检验资料)、浅气层资料、油气水显示和复杂情况。 第十二条在已开发调整区钻井,地质设计书中应明确提供注水、注气(汽)井分布及注水、注气(汽)情况,提供分层动态压力数据。 第十三条在可能含硫化氢等有毒有害气体的地区钻井,地质设计应对其层位、埋藏深度及含量进行预测,并在工程设计书中明确应采取的相应的安全和技术措施。 第十四条工程设计书应根据地质设计提供的资料进行钻井液设计,钻井液密度以各裸眼井段中的最高地层孔隙压力当量钻井液密度值为基准,另加一个安全附加值: 一、油井、水井为0.05g/cm3~0.10g/cm3或增加井底压差1.5MPa~3.5MPa; 二、气井为0.07g/cm3~0.15g/cm3或增加井底压差 3.0MPa~5.0MPa。 具体选择钻井液密度安全附加值时,应考虑地层孔隙压力预测精度、油气水层的埋藏深度及预测油气水层的产能、地层油气中硫化氢含量、地应力和地层破裂压力、井控装置配套情况等因素。含硫化氢等有害气体的油气层钻井液密度设计,其安全附加值或安全附加压力值应取最大值。 第十五条工程设计书应根据地层孔隙压力梯度、地层破裂压力梯度、岩性剖面及保护油气层的需要,设计合理的

长深5井抗高温钻井液技术_赵秀全

第35卷第6期2007年11月 石 油 钻 探 技 术 P ET RO L EUM D RIL LI NG T ECHN IQ U ES Vo l.35,N o.6 N ov.,2007     收稿日期:2007-04-26;改回日期:2007-10-10 作者简介:赵秀全(1973—),男,1996年毕业于石油大学(华 东)石油工程专业,钻井队平台经理,工程师。 联系电话:(0438)6291142 固井与泥浆 长深5井抗高温钻井液技术 赵秀全 李伟平 王中义 (吉林石油集团有限责任公司第二钻井工程公司,吉林松原 138000) 摘 要:长深5井所在松辽盆地的地温梯度较高,据已完钻的长深1井的地温梯度推算,长深5井完钻井底温度可能超过200℃,普通钻井液难以满足如此高温条件下的钻进及长时间空井的要求,因此该井需要采用抗高温钻井液。首先在室内评价了所选抗高温钻井液的性能,结果表明,该钻井液具有长时间抗温稳定性,悬浮岩屑、携带岩屑能力强,能抑制泥页岩水化膨胀,具有较强的封堵能力,滤失量低,对储层伤害小,能满足长深5井三开钻进的需要;接着进行了室内转化试验,结果表明,采用向井浆中逐步加入新配制抗高温钻井液转化成抗高温钻井液的方法可行。现场采用该方法将井浆转化成抗高温钻井液,通过采取维护措施顺利钻至完钻井深5321m,并且也顺利完成测井。抗高温钻井液在该井的成功应用,为松辽盆地深井钻井液的优选积累了经验。 关键词:高温钻井液;钻井液性能;钻井液添加剂;防止地层损害;长深5井;吉林油田 中图分类号:T E254+.1 文献标识码:B 文章编号:1001-0890(2007)06-0069-04 长深5井是吉林油田部署在松辽盆地南部长岭断陷北部洼陷带乾安北1号火山岩顶面构造高部位的一口风险探井,设计井深5400m,从上向下依次钻遇了大安组、明水组、四方台组、嫩江组、姚家组、青山口组、泉头组、登娄库组和营城组地层,目的层为登娄库组和营城组。该井设计井身结构及套管程序为:一开,444.5mm钻头×1225m,339.7 mm套管×1223m;二开,311.1mm钻头×4400 m,244.5mm套管×4398m;三开, 215.9m m钻头×5400m,139.7mm套管×5397m。松辽盆地的地温梯度较高,根据已完钻的长深1井的地温梯度推算,长深5井完钻井底温度可能超过200℃,如果使用普通三磺钻井液则难以满足如此高温条件下的钻进及长时间空井的要求,因此需要采用抗高温钻井液体系。 1 室内试验 长深5井采用的抗高温钻井液的配方为:4.0%膨润土+1.0%高温保护剂+3.0%降滤失剂Ⅰ型+4.0%降滤失剂Ⅱ型+3.0%防塌剂+0.2%增粘剂+2.0%储层保护剂。 1.1 抗温性能评价 在不加入储层保护剂的情况下加入不同量的重晶石配制不同密度的抗高温钻井液,高速搅拌10 min后测其流变性能和API滤失量。然后装入老化罐中,在不同的温度下热滚16h,冷却至室温,移入搅拌罐中高速搅拌5min,测其流变性能、API滤失量和高温高压滤失量。试验结果见表1~2。 从表1~2可看出:1)抗高温钻井液老化后具有较好的流变性,无稠化和胶凝现象,表观粘度和塑性粘度随着老化温度的升高略有增加;2)随温度升高动切力增大,动塑比增大,携岩能力增强;3)触变性好,悬浮岩屑能力强。 1.2 热稳定性能评价 在深井超深井钻井过程中,经常会由于各种原因使钻井液长时间停止循环,因此需要考察钻井液长时间老化后的流变性,以避免钻井液长时间在井下高温条件下发生稠化、胶凝等现象。密度1.15 kg/L抗高温钻井液在220℃下连续热滚112h,在不同时间取出冷却后,测其流变性,结果如图1所示。 从图1可以看出,随着热滚时间的增加,表观粘度、塑性粘度、动切力、静切力都缓慢下降,变化幅度较小,钻井液没有出现稠化、胶凝等现象,说明该钻井液具有长时间抗温稳定性。 1.3 抑制性能评价 称取10.00g处理过的膨润土制成样品片,用20m L密度为1.15和1.35kg/L抗高温钻井液浸

第一章 定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 定向井、水平井的基本概念 定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平

羽状水平井钻井工艺

定向羽状水平井钻井工艺 定向羽状水平井技术适合于开采低渗透储层的煤层气,集钻井、完井与增产措施于一体。其主要机理在于多分支井眼在煤层中形成网状通道,促进微裂隙的扩展,又能连通微裂隙和裂缝系统,提高单位面积内的气液两相流的导流能力,大幅度提高了井眼波及面积,降低煤层气和游离水的渗流阻力,提高气液两相流的流动速度,进而提高煤层气产量和采出程度。 一、钻井设备: 1.钻机、钻塔、钻铤和钻具。 2.造斜工具 中、长半径造斜工具(包括P5LZ165、PSLZ197、P5LZ120三种尺寸系列、多种结构规格的固定弯壳体造斜马达)和短半径造斜工具。 3.水平井测井仪器。包括钻杆输送式、泵送式两种测井仪器和下井工具,以及湿式接头和锁紧装置等。 4.射孔工具。包括旋转弹架和旋转枪身等2种高强度定向射孔枪和传爆接头。 5.完井工具。包括金属棉筛管、新型套管扶正器及其它9种完井工具 6.铰接式钻具 羽状分支水平井的井眼轨迹是空间弯曲线,既有井斜的变化又有方位的变化,通常需要在钻铤或钻杆连接处加装一个具有柔性连接的铰接式接头。这种接头具有万向节的功能,在一定角锥度范围内可以任意方向转动,同时具有密封功能。此外,采用铰接式钻具组合,最大限度降低扭矩、摩阻和弯曲应力。 7.可回收式裸眼封隔器/斜向器

斜向器是分支井钻井的关键技术工具,对分支井的钻井起着至关重要的作用,它在分支点处引导钻头偏离原井眼按预定方向进行分支井眼的钻进。煤层气钻进中的斜向器是可回收式带裸眼封隔器的,它由斜向器和封隔器两部分组成,斜向器的斜面上开有送入和回收的孔眼,用于施工作业中送入和回收斜向器,可膨胀式封隔器用于固定和支撑斜向器。 8.井眼轨道控制 由于煤层可钻性好,钻速快,单层厚度薄(3~6m),井眼轨迹控制难度大。为将井眼轨迹控制在煤层内,可采用“LWD+泥浆动力马达”或地质导向钻井技术。实现连续控制,滑动钻进,提高轨迹控制精度,加快钻进速度。同时要避免井眼轨迹出现较大的曲率波动。钻进中尽量避免大幅度变动下部钻具组合结构、尺寸和钻进参数,并控制机械钻速在一定范围内变化,防止井眼出现小台肩现象。 9.其它工具和装备。例如专用取心工具、无磁钻挺、纺锤形稳定器等多种工具和装备。 二、材料: 钻井液:油基钻井液、水基钻井液、无土相钻井液和气基钻井液。 套管等。 三、工艺流程: 1.煤层气羽状水平井完井方法 分支井作为水平井与定向井的集成与发展,其技术难点不再是钻井工艺技术而是完井技术。同水平井及直井相比,分支井完井要复杂的多,主要是分支井根部的连接密封以及分支井眼能否再次进入的问题。目前,国外分支水平井的完井方法主要有三种:裸眼完井、割缝衬管完井和侧向回接系统完井。裸眼完井较为常见,但易出现井壁坍塌等问题。割缝衬管完井虽然能克服这一缺陷,但安装比较困难。如果水平段的岩性比较硬可用裸眼完井或割缝衬管完井,一般较软岩石可用水平井回接系统完井。实际操作中,可根据具体情况进行设计对于煤层气定向羽状分支水平井的完井方式,工艺较简单。如要采用裸眼完井,直接投产。2.钻出工艺 目前国外主要采用以下四种方法钻出分支井: 1)开窗侧钻

相关文档
最新文档