电学元件的伏安特性

电学元件的伏安特性
电学元件的伏安特性

电学元件伏安特性的测量

内容1 线性电阻器伏安特性测量及测试电路设计

1、 实验目的

按被测电阻大小、电压表和电流表内阻大小,掌握线性电阻元件伏安特性测量的基本方法。 2、 伏安特性

在电阻器两端施加一直流电压,在电阻器内就有电流通过。根据欧姆定律,

电阻器电阻值为:I

U

R = 1-1

上式中 R —电阻器在两端电压为U ,通过的电流为I 时的电阻值,单位Ω;

U —电阻器两端电压,单位V ; I —电阻器内通过的电流,单位A 。

欧姆定律公式1-1表述成下式:

R

U

I =

以U 为自变量,I 为函数,作出 电压电流关系曲线,称为该元件的

伏安特性曲线。

对于线绕电阻、金属膜电阻等电 阻器,其电阻值比较稳定不变,其 伏安特性曲线是一条通过原点的直 线,即电阻器内通过的电流与两端施 加的电压成正比,这种电阻器也称为

线性电阻器。 图1-1 线性元件伏安特性 3、 线性电阻的伏安特性测量电路的设计

当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路都不会带来附加测量误差。

图1-2 电流表外接测量电路 图1-3 电流表内接测量电路

被测电阻 I

U

R = 。

实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为

R U 因为R I 和R U 的存在,如果简单地用I

U

R =公式计算电阻器电阻值,必然带

来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

A. 当R U >>R ,R I 和R 相差不大时,宜选用电流表外接电路,此时R 为估计值;

B. 当R>>R I ,R U 和R 相差不大时,宜选用电流表内接电路,

C. 当R>>R I ,R U >>R 时,必须先用电流表内接和外接电路作测试而定。 方法如下:先按电流表外接电路接好测试电路,调节直流稳压电源电压,使数字表显示较大的数字,保持电源电压不变,记下两表值为U 1,I 1;将电路改成电流表内接式测量电路,记下两表值为U 2,I 2。

将U 1,U 2和I 1,I 2 比较,如果电压值变化不大,而I 2较I 1有显著的减少,说明R 是高值电阻。此时选择电流表内接式测试电路为好;反之电流值变化不大,而U 2较U 1有显著的减少,说明R 为低值电阻,此时选择电流表外接测试电路为好。

当电压值和电流值均变化不大,此时两种测试电路均可选择(思考:什么情况下会出现如此情况?)

如果要得到测量准确值,就必须按下1-2,1-3两式,予以修正。

即电流表内接测量时,I R I U

R -= 1-2

电流表外接测量时,U

R 1

U I R 1-= 1-3

上两式中:R —被测电阻阻值,Ω; U —电压表读数值,V ;

I—电流表读数值,A;

R I—电流表内阻值,Ω;

R U—电压表内阻值,Ω。

4、实验设计及实验

1)被测电阻器:选择1KΩ电阻器,误差≤±0.5%

2)线路设计:见图1-4

图1-4 实验电路接线图

3)实验内容

A.电流表外接测试

B.电流表内接测试

C.测试电路优选方法验证

D.按1-2式,1-3式修正计算结果

4)实验记录见表1-1

表1-1 1KΩ电阻器伏安曲线测试数据表

电流表内接测试电流表外接测试

U(V)I(A)R直算

值(Ω)

R修正

值(Ω)

U(V)I(A)

R直算

值(Ω)

R修正

值(Ω)

5

1)电阻器伏安特性概述

2)电流表内接外接两种测试方法,根据R=1KΩ,R U=1MΩ,R I= 10Ω和测试误差,讨论两种测试方式优劣。

内容2 二极管伏安特性曲线的研究

1、实验目的

通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础

2、伏安特性描述

对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。

对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。

二极管伏安特性示意图2-1,2-2

图2-1锗二极管伏安特性示意图图2-2硅二极管伏安特性示意图

3、实验设计

1)反向特性测试电路

二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如下图,变阻器设置700Ω

图2-3 二极管反向特性测试电路

2)正向特性测试电路

二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置700Ω,调节电源电压,以得到所需电流值。

图2-4 二极管正向特性测试电路

4、数据记录格式见表2-1,2-2

U(V)

I(A

u)

电阻计算值(KΩ)

正向伏安曲线测

试数据I(A

m)

U(V)

电阻直算值(KΩ)

电阻修正值(Ω)

注:1)、电阻修正值按电流表外接修正公式1-3式计算所得。 2)、实验时二极管正向电流不得超过20mA 。 5、就下述提示可实验讨论

1)、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2)、在制定表2-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表2-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

内容3 稳压二极管反向伏安特性实验

1、实验目的

通过稳压二极管反向伏安特性非线性的强烈反差,进一步熟悉掌握电子元件伏安特性的测试技巧;通过本实验,掌握二端式稳压二极管的使用方法。 2、稳压二极管伏安特性描述

2CW56属硅半导体稳压二极管,其正向伏安特性类似于1N4007型二极管,其反向特性变化甚大。当2CW56二端电压反向偏置,其电阻值很大,反向电流极小,据手册资料称其值≤0.5A μ。随着反向偏置电压的进一步增加,大约到7-8.8V 时,出现了反向击穿(有意掺杂而成),产生雪崩效应,其电流迅速增加,电压稍许变化,将引起电流巨大变化。只要在线路中,对“雪崩”产生的电流进行有效的限流措施,其电流有小许一些变化,二极管二端电压仍然是稳

定的(变化很小)。这就是稳压二极管的使用基础,其应用电路见图3-1。 图中,E —供电电源,如果二极管

稳压值为7~8.8V ,则要求E 为10V 左右;R —限流电阻,2CW56,工作电流选择8mA ,考虑负载电流2 mA ,通过R 的电流为10 mA ,计算R 值:

R=

I Uz E -=01

.08

10-=200Ω 图3-1稳压二极管应用电路 C —电解电容,对稳压二极管产生的噪声进行平滑滤波。 U Z —稳压输出电压。 3、实验设计

1)、2CW56反向偏置0~7V 左右时阻抗很大,拟采用电流表内接测试电路为

宜;反向偏置电压进入击穿段,稳压二极管内阻较小(估计为R=

008

.08

=1K Ω),这时拟采用电流表外接测试电路。结合图3-1,测试电路图见图3-2。 2)实验过程:

电源电压调至零,按图3-2接线,开始按电流表内接法,将电压表+端接于电流表+端;变阻器旋到1100Ω后,慢慢地增加电源电压,记下电压表对应数据。

当观察到电流开始增加,并有迅速加快表现时,说明2CW56已开始进入反向击穿过程,这时将电流表改为外接式,(电压表“+”端由接电流表“+”端该接电流表“—”端)慢慢地将电源电压增加至10V 。为了继续增加2CW56工作电流,可以逐步地减少变阻器电阻,为了得到整数电流值,可以辅助微调电源电压。

图3-2 稳压二极管反向伏安特性测试电路

4、实验记录

表 3-1 2CW56 硅稳压二极管反向伏安特性测试数据表 电流表接法 数 据 内接式

U (V ) I (A μ) 外接式

I (mA )

U (V )

时,在老师指导下,利用计算机作图。

图3-3 2CW56伏安曲线参考图

5、思考题

1)在测试稳压二极管反向伏安特性时,为什么会分二段分别采用电流表内接电路和外接电路?

2)稳压二极管的限流电阻值如何确定?(提示:根据要求的稳压二极管动态内阻确定工作电流,由工作电流再计算限流电阻大小)

3)选择工作电流为8mA,供电电压10V时,限流电阻大小是多少?供电电压为12V时,限流电阻又多大?

内容4 钨丝灯伏安特性的测试试验

1、实验目的

通过本实验了解钨丝灯电阻随施加电压增加而增加,并了解钨丝灯的使用。 2、钨丝灯特性描述

实验仪用灯泡中钨丝和家用白炽灯泡中钨丝同属一种材料,但丝的粗细和长短不同,就做成了不同规格的灯泡。

本实验仪用钨丝灯泡规格为12V 0.1A 。只要控制好两端电压,使用就是安

全的,金属钨的电阻温度系数为48×10-4/℃,系正温度系数,当灯泡两端施加电压后,钨丝上就有电流流过,产生功耗,灯丝温度上升,致使灯泡电阻增加。灯泡不加电时电阻称为冷态电阻。施加额定电压时测得的电阻称为热态电阻。由于正温度系数的关系,冷态电阻小于热态电阻。在一定的电流范围内,电压和电流的关系为:

U=KI n 4-1

式中U — 灯泡二端电压,V I — 灯泡流过的电流,A K — 与灯泡有关的常数 N — 与灯泡有关的常数

为了求得常数K 和n ,可以通过二次测量所得U 1、I 1和U 2、I 2,得到:

U 1=KI 1n 4-2 U 2=KI 2n 4-3

将4-2除以4-3式可得

n=2

1

2

1

I I

lg U U lg

4-4

将4-4式代入4-2式可以得到:

K=U 1I 1–n 4-5 3、实验设计

灯泡电阻在端电压12V 范围内,大约为几欧到一百多欧姆,电压表在20V 档内阻为3M Ω,远大于灯泡电阻,而电流表在200mA 档时内阻为100Ω,和灯泡电阻相比,小的不多,宜采用电流表外接法测量,电路图见4-1。变阻器置100Ω,按表4-1规定的过程,逐步增加电源电压,记下相应的电流表数据。

图4-1 钨丝灯泡伏安特性测试电路

4、实验记录

钨丝灯泡伏安特性测试数据表

灯泡电压V(V)

灯泡电流A(mA)

灯泡电阻计算值( )

标注在坐标图上。

选择二对数据(如U1=2V,U2=8V,及相应的I1、I2),按4-4和4-5式计算出K、n两系数值。由此写出4-1式,并进行多点验证。

5、思考题:

1)试从钨丝灯泡的伏安特性曲线解释为什么在开灯的时候容易烧坏?

2)在电子振荡器电路中,经常利用正温度系数的灯泡,作为振荡器电压稳定的自动调节元件,参考电路图4-2,试从钨丝灯伏安特性说明该振荡器稳幅原理。

图4-2 钨丝灯稳幅的1KHz振荡电路

电学元件伏安特性研究修订稿

电学元件伏安特性研究内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(二) 实验名称: 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生姓名:史玉龙学号: 年级专业层次: 16秋计算机应用技术网络秋高起专 学习中心: 提交时间: 2017 年 5 月 22 日

1.测定线性电阻的伏安特性 本实验在实验板上进行。分立元件R=200Ω和R=2000Ω普通电阻作为被测元件,并按图1-5接好线路。经检查无误后,先将直流稳压电源的输出电压旋钮逆时针旋转,确保打开直流稳压电源后的输出电压在0V左右,然后再打开电源的开关。依次调 节直流稳压电源的输出电压为表1-1中所列数值。并将相对应的电流值记录在表中。 2.测量半导体二极管的伏安特性 (1)正向特性 将稳压电源的输出电压调到 2V后,关闭电源开关,按图1-6 接好线路。经检查无误后,开启稳压电源。调节电位器W,使电压表 读数分别为表1-2中数值,并将相对应的电流表读数记于表1-2中。为了便于作图,在曲线弯曲部分可适当多取几个测量点。 3.测定小灯泡灯丝的伏安特性本实验采用低压小灯泡作为 测试对象。 按图1-8接好电路,并将直 流稳压电源的输出电压调到0V左右。经检查无误后,打开直流稳 压电源开关。依次调节电源输出 电压为表1-4所列数值。并将相 对应的电流值记录在表1-4中。 注意在打开电源开关前一定先将 电压调节旋钮逆时针调到电压最 小的位置。 图1-5 测量线性电阻伏安特性 图1-6 测量半导体二极管的正向 伏安特性 图1-7 测量小灯泡灯丝的伏安特

实验四__电阻元件伏安特性的测定

实验四电阻元件伏安特性的测定 【实验简介】 电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。 【实验目的】 1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。 2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4、了解系统误差的修正方法,学会作图法处理实验数据。 【实验仪器和用具】 直流稳压电源,直流电压表,直流电流表,滑线变阻器,电阻元件盒(一个百欧,一约千欧,一个二极管),导线10根。 【实验原理】 1、伏安特性曲线 实验中常用的线绕电阻、碳膜电阻和金属膜电阻等,它们都具有以下共同特性,即加在该电阻上的电压与通过其上的电流总是成正比例的变化(忽略电流热效应对阻值的影响)。若以纵坐标表示电流,横坐标表示电压,电流与电压的关系如图4-2(a)所示。具有这种特性的电阻元件成为“线性电阻元件”。 2、非线性电阻 如果电阻电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为“非线性电阻元件”(如热敏电阻、二极管等)。这种元件的特点是电阻随加在它两端的电压改变而改变如图4-2(b)所示。一般均用伏安特性曲线来反映非线性电阻元件的特性。 3、伏安法测电阻 欧姆定律告诉我们,通过一段电路的电流,与这段电路两端的电压成正比,与这段电路

实验一 电路元件伏安特性的测试

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 变阻器R=470Ω 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m =5mA,R I =8.38±0.13Ω 电压表准确度等级1.5,量程U m =0.75V,R V =2.52±0.04kΩ; 量程U m =3V,R V =10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 电动势E e 和等效内阻R e 。(外接法)

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 2. 用原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12132 12321的相对误差为 的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

电工实训3 电路元件伏安特性测试与电源外特性测量

电工实训三 电路元件伏安特性的测绘及电源外特性的测量 一. 实训目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线 2. 学习测量电源外特性的方法 3. 掌握运用伏安法判定电阻元件类型的方法 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法 二. 实训原理 1. 电阻元件 (1) 伏安特性 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。 (2) 线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。在关联参考方向下,可表示为:U=IR ,其中R 为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图3-1(a )所示。 (3) 非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,即它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图3-1(b )所示。 (a) 线性电阻的伏安特性曲线 (b) 非线性电阻的伏安特性曲线 图3-1 伏安特性曲线 2. 直流电压源 (1) 直流电压源 理想的直流电压源输出固定幅值的电压,输出电流大小取决于所连接的外电路,因此其外特性曲线是平行于电流轴的直线,如图3-2(a )中实线所示。 实际电压源的外特性曲线如图3-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图3-2(b )所示。图中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= 式(3-1) (2) 测量方法

电阻伏安特性

实验19 电阻伏安特性及电源外特性的测量 一、实验目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线; 2. 学习测量电源外特性的方法; 3. 掌握运用伏安法判定电阻元件类型的方法; 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法。 二、实验仪器 直流恒压源恒流源,数字万用表,各种电阻11只,白炽灯泡1只(12V/3W)及灯座,稳压二极管(2CW56),电位器(470/2W),短接桥和连接导线及九孔插件方板 三、实验原理 1. 电阻元件 (1)伏安特性 (a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。根据

测量所得数据,画出该电阻元件的伏安特性曲线。 (2)线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。可表示为:U=IR ,其中R 为常量,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图19-1(a )所示。 (3)非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,其伏安特性是一条过坐标原点的曲线,如图19-1(b )所示。 (4)测量方法 在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。 2. 直流电压源 (1)直流电压源 理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。因此它的外特性曲线是平行于电流轴的直线,如图19-2(a )中实线所示。实际电压源的外特性曲线如图19-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图19-2(b )所示。图19-2(a )中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= (19-1) (2)测量方法 将电压源与一可调负载电阻串联,改变负载电阻R 2的阻值,测量出相应的电压源电

电路元件伏安特性的测绘实验报告

广东第二师范学院学生实验报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称电路与电子线路实验 实验项目名称电路元件伏安特性的测绘 实验时间实验地点 实验成绩指导老师签名 一、实验目的: (1)学会识别常用电路元件的方法; (2)掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; (3)掌握实验台上直流电工仪表和设备的使用方法。 二、实验仪器: (1)电路实验箱一台 (2)万用表一块,2AP9二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干。 三、实验内容及步骤: 1.测定线性电阻器的伏安特性 按图3-3接线,调节稳压电源的输出电压U,从0V开始缓慢地增加,一直到10V,在表3-1记下相应的电压表和电流表的读数U R和I。 表3-1 测定线性电阻的伏安特性 U R/V 0 1 2 3 4 5 6 7 8 9 10 I/mA 0 1.14 2.18 3.22 4.27 5.22 6.10 7.12 8.13 9.14 10.16 2.测定半导体二极管的伏安特性 按图3-4接线,R为限流电阻器。测二极管的正向特性时,其正向电流不得超过25mA,二极管D的正向压降U D+可在0~0.75V之间取值。在0.5~0.75V之间应多取几个测量点。做反向特性实验的时候,只需将图1-3中的二极管D反接,且其反向电压可加到30V左右。 表3-2 测定二极管的正向特性 U D+/V 0 0.2 0.4 0.45 0.5 0.55 0.60 0.65 0.70 0.75 I/mA 0 0 0.01 0.07 0.26 0.73 2.05 6.03 17.85 56.0 图3-4 二极管伏安特性测试 图3-3 线性电阻伏安特性测试

实验一元件伏安特性的测定

《电路原理(电路分析)》 实验指导书 四川理工学院自动化与电子信息学院 课程教研组编

实验要求与须知 科学实验是科学得以发展的保证,是自然科学研究的重要手段。对于电路分析这门课程来说,实验是整个教学过程中必不可少的重要实践性环节,它是在系统学习本学科基础理论和基本知识的基础上,通过实验和实际操作使学生得到实验基本技能的训练,学习常用仪器仪表的使用方法,进一步巩固和加深所学的理论知识,培养和提高学生运用基本理论去分析、处理实际问题的能力和创新精神。 一、实验目的和要求: 1、通过实验,学习常用仪器、仪表的使用方法和测量技术,培养学生的基本实验技能; 2、进一步巩固加深所学的理论基础知识,培养运用基本理论知识去分析、解决实际问 题的能力; 3、培养整理实验数据,分析实验结果,编写实验报告和选择实验方法的能力; 4、培养事实求实、严肃认真、踏实细致的科学作风和良好的实验习惯。 二、实验方式 实验课一般分课前预习、进行实验和课后写实验报告三个阶段。为使学生做每次实验,达到预期目的,现将各个阶段的要求简述如下: 1、课前预习 实验能否顺利进行和收到预期效果,很大程度上取决预习准备是否充分。因此要求每次实验之前仔细阅读实验指导书,明确本次实验的目的、任务,了解实验的基本原理以及实验线路、方法、步骤,清楚本次实验要观察哪些现象,记录哪些实验数据和哪些问题。以及搞清楚实验中所要遇到的仪器、仪表的使用方法。 学生只有认真做好预习后才能到实验室做实验,凡达不到预习要求者,不得进行实验。 2、进行实验 一般实验课按下列程序进行: (1)首先认真听取教师在实验前讲授的实验要求及注意事项。 (2)到指定的桌位上做实验,实验前应做到: 1)检查仪器、仪表设备是否齐全、完好,并了解仪器、设备的额定容量,使用方法,量程和操作规程。当未搞清楚性能和用法时,不得随意使用该仪器、设备。 2)做好实验记录的准备工作。 3)按实验要求接线。

电学元件伏安特性的研究

实验一 电学元件伏安特性的研究 不同电学元件的伏安特性曲线不同,由此可以知道电学元件的导电特性,从而了解它们在电路中的作用。 [实验目的] 1.了解电阻及二极管的伏安特性 2.掌握用伏安法测量时的接线方法 3.了解分压器和电表的正确使用方法 [实验仪器] 直流稳压电源、滑线变阻器、毫安表(微 安表)、电压表、换向开关、待测电阻、二极管 [实验原理] 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件 内就会有电流通过,通过元件的电流与端电压 之间的关系称为电学元件的伏安特性。一般以 电压为横坐标和电流为纵坐标作出元件的电压 电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。这类元件称为线性元件,如图4-2-1-1所示。至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两 端的电压不成线性关系变化,其伏安特性为一 曲线。这类元件称为非线性元件,如图4-2-1-2 所示。 2.二极管简介 2AP 型的二极管是由P 型锗和N 型锗组成 的半导体二极管。二极管的正向与反向特性曲 线与符号如图4-2-1-3所示。二极管的伏安特 性包括正向特性、反向特性和反向击穿特性 ⑴二极管的主要参数:(交流环境)(整流用) 最大整流电流am I :二极管长期工作时所 允许的最大正向平均电流。当流经二极管的最 大电流大于此值时,二极管会因发热而损坏。 最高反向工作电压RM U : 保证二极管不 被击穿所允许施加的最大反向电压。 最大反向电流:二极管加上最高反向电压 时反向电流。该值愈小,说明二极管的单向导 电性愈好。 ⑵二极管的单向导电性 PN 结处加正向电压时,PN 结处于导通状态,此时的电

电阻元件伏安特性的测定

电阻元件伏安特性的测定 一、引言 电阻是电学中最常用到的物理量之一,我们有很多方法可以测量电子组件的电阻,采用补偿原理的方法称为补偿法测电阻,利用欧姆定律来求导体电阻的方法称为伏安法,其中,伏安法是测量电阻的基本方法之一。为了研究元件的导电性,我们通常测量出其两端电压与通过它的电流之间的关系,然后作出其伏安特性曲线,根据曲线的走势来判断元件的特性。伏安特性曲线是直线的元件称为线性元件,不是直线的元件称为非线性元件,这两种元件的电阻都可以用伏安法来测量。采用伏安法测电阻,有两种接线方式,即电压表的外接和内接(或称为电流表的内接和外接)。不论采取那种方式,由于电表本身有一定的内阻,测量时电表被引入电路,必然会对测量结果有一定的影响,因此,我们在测量过程中必须对测量结果进行必要的修正,以减小误差。 二、实验内容 本实验包含测量金属膜的伏安特性和测量小灯泡的伏安特性两个实验,其中,测量金属膜的伏安特性又分为电压表外接和电压表内接两种方式。 三、实验原理 当一个电子元件接入电路构成闭合回路,其两端的电压与通过它的电流的比值即为该条件下电子组件的电阻。若电子元件两端的电压与通过它的电流成固定的正比例,则其伏安特性曲线为一条直线,这类元件称为线性元件;而当电子元件两端的电压与通过它的电流不成固定的正比例时,其伏安 特性曲线是一条曲线,这类元件称为非线性元件。 般金属导体的电阻是线性电阻,其伏安特性曲线是一条直线。 电阻是电子元件的重要特性,在电学实验中我们经常要测量其大小。在要求不是很精确的条件

下,我们可以采用伏安法测电阻,即测出被测元件两端的电压U 和通过它的电流I,然后运用欧姆定律R=U/I ”即可求得被测元件的电阻R。同时,我们也可以运用作图法,作出其伏安特性曲线,从曲线上求得电阻的阻值。伏安特性曲线是直线的电阻称为线性电阻,否则则为非线性电阻。非线性电阻的阻值是不确定的,只有通过作图法才能反映其特性。 用伏安法测电阻,原理和操作都很简单,但由于电表有一定的内阻,必然就会给实验带来一定的误差。伏安法测电阻的电路连接方式有电压表的内接和外接两种方式。 在电压表内接法中,电流表测出的电流值I 是通过电阻和电压表的电流之和,即 I=I X + I V,因此,R=U X/|=U X/(I X+I V)=R X/(1+R X/R V)。可见,这种条件下,电压表的内阻对实验有一定的影响,运用电压表内接法,会导致测量值比真实值要小。 在电压表外接法中,电压表测出的电压值U 包含了电流表两端的电压,即 U=U mA+U x,因此,R=U/I X=(U X+U mA)/I X=R X +R mA (其中,U X为电阻两端的真实电压,R X为电阻的真实值,R mA为电流表的内阻,R为测量值)。可见,电流表的内阻对实验结果有一定的影响,运用电压表外接法,会导致测量值比真实值要大,而其差值正好是电流表的内阻。 上述两种伏安法测电阻的电路连接方式,都会给实验结果带来一定的系统误差,为了减小上述误差,我们可以根据被测电阻的大小与电表内阻的大小来选择合适的电路连接方式。当:R x〈〈R V 且R x〉R mA 时,选择电压表的内接法;R x〉〉R mA 且R x〈R V 时,选择电压表的外接法;R X >> R mA且R X << RV时,两种接法均可。

实验七_线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线 电阻是电学中常用的物理量。利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。这两种元件的电阻都可用伏安法测量。但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。 【实验目的】 1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。 2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。 3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。 4.学会用作图法处理实验数据。 【实验仪器】 欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表 数字电压表保护电阻 【实验原理】 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。 常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。 图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体(也叫N型半导体);另一种杂质加到半导体中会产生许多缺少电

电路元件的伏安特性

课程名称电路原理实验日期 实验名称电路元件伏安特性的测定成绩 实验目的: 1. 掌握几种元件的伏安特性的测试方法; 2. 掌握实际电压源和电流源的使用调节方法; 3. 学习常用电工仪表和设备的使用方法。 实验条件: 机房七,Multisim 仿真平台。 实验内容及步骤: (1)测定线性电阻的伏安特性 按图1-2接线,依次调节稳压电源的输出电压为原始数据为表 1 —1中数值,并测相应的电流值记入表中。 图1-2

_|_V1 ::: 二 10& (2) 测定理想电压源的伏安特性 直流稳压电源,其内阻很小,作为理想的电压源。按图 1 —3线路接好后,接通 晶体管稳压电源,调节输出电压 Us=10v ,再调节可变电阻R L ,使直流电流表读数分 别为表1 —4中数据,将相应的电压数据写入表 1 —3中。 200 0 R L 图1-3 (t (3) 测定实际电源内阻及伏安特性 晶体管直流稳压电源和一个 51欧的电阻串联,作为一个实际电压源。按图 1— 4 0.020 一 WV-」 ::::::: DC 1e-&032 R2:: 丄⑷] 二 10 V 10.000 DC U2 0.0 0 UT ; I ; DC 10MC-■ mA

接线,当负载R L开路时调节稳压电源的输出电压U=10V,再调节负载,当电流表的数据分别为表1-1~表1-3中的数值时,将相应的电压、电流数值写入表1-3中,并计算相应的功率值。 图1-4 数据记录: 表1-2 理想电压源的伏安特性 表1-3实际电压源伏安特性

实验总结: 通过本次实验,我学会了用Multisim仿真平台测定电路元件的伏安特性。并且,在连接电路时一定要注意电压表和电流表的正负极,使之正确的接入电路中。否者,电表的读数可能会出现负值。在进行电压源伏安特性的研究中,我们可以看到当电阻R L小于51 Q时电阻的功率随着电阻的增大而增大,当R L大于51Q时,功率随着电阻的增大而减小。因此,我们可以知道当R L等于51Q时,电源的输出功率达到最大。实验思考: 用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之 前或之后,两者对测量误差有何影响? 答:电流表内接,电流测量准确,电压测的是元件和电流表共同的电压,所以会较实际偏大。使得测量的电阻偏大。电流表外接的话,电压表测量准确,电流表测的是电压表和元件并联电路的电流,较实际偏大,根据公式算出结果电阻偏小。

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量 一、实验目的 1. 掌握线性、非线性电阻元件及电源的概念。 2.学习线性电阻和非线性电阻伏安特性的测试方法。 3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。 二、实验仪器 电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻 三、实验原理 1、数字万用表的构成及使用方法 数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。 直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。 2、整体结构 1)交直流电压测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于V量程档。 将测试表笔并联在被测元件两端 2)交直流电流测量 (1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。(2)将功能开关置A量程。 (3)表笔串联接入到待测负载回路里。 3)电阻测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于Q量程。 (3)将测试表笔并接到待测电阻.上 4)二极管和蜂鸣通断测量 (1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。(2)将功能开关置于二极管和蜂鸣 通断测量档位。 (3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的 读数为二极管正向压降的近似值。 将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。同时LCD显示被测线路两端的电阻值。

电学元件伏安特性的研究-电学元件伏安特性的测量

实验一电学元件伏安特性的研究 由此可以知道电学元件的导电特性,从而了解它们不同电学元件的伏安特性曲线不同, 在电路中的作用。 [实验目的] 1?了解电阻及二极管的伏安特性 2?掌握用伏安法测量时的接线方法 3?了解分压器和电表的正确使用方法[实验 仪器] 直流稳压电源、滑线变阻器、毫安表(微安 表)、电压表、换向开关、待测电阻、二极管[实 验原理] 1?电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内 就会有电流通过,通过元件的电流与端电压之间的 图4-2-1-1线性元件伏安特性曲线关系称为电学元件的伏安特性。一般以 电压为横坐标和电流为纵坐标作出元件的电压电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流 与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。这类元件称为线性元 件,如图4-2-1-1所示。至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两 端的电压不成线性关系变化,其伏安特性为一 曲线。这类元件称为非线性元件,如图4-2-1-2 所示。 2?二极管简介 2AP型的二极管是由P型锗和N型锗组成的半导 体二极管。二极管的正向与反向特性曲线与符号如图 4-2-1-3所示。二极管的伏安特性包括正向特性、反 向特性和反向击穿特性 E4-2-1-2非钱性元件伏安特性曲线 ⑴二极管的主要参数:(交流环境)(整流用) 最大整流电流l am :二极管长期工作时所允许 的最大正向平均电流。当流经二极管的最大电流 大于此值时,二极管会因发热而损坏。 最高反向工作电压U R M :保证二极管不被击穿 所允许施加的最大反向电压。 最大反向电流:二极管加上最高反向电压时 反向电流。该值愈小,说明二极管的单向导电性愈 图4-2-1-3二极管伏安特性与符号好。 ⑵二极管的单向导电性 PN结处加正向电压时,PN结处于导通状态,此时的电 图4-2-1^4分压电路

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案) 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式 I=f(U)来表示,即用 I -U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图 1-1(a)所示。该直线的斜率只由电阻元件的电阻值R 决定,其阻值 R 为常数,与元件两端的电压 U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图 1-1(b)、(c)、(d)所示。在图 1-1 中, U >0的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压 U 作用下,测量出相应的电流 I ,然后逐点绘制出伏安特性曲线 I = f ( U ),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表 1 块 3.直流电流表 1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管 1 只 7.稳压二极管 1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性 五、实验预习 1. 实验注意事项 (1)测量时,可调直流稳压电源的输出电压由 0 缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

电学元件的伏安特性(精)

电学元件伏安特性的测量 目的 1.掌握测量伏安特性的基本方法 2.正确使用电压表、电流表、滑线变阻器和电阻箱。 仪器用具 电压表电流表电阻箱滑线变阻器稳压电源待测电阻待测二极管开关导线 原理 1.电学元件的分类 当在一电学元件两端加上直流电压,元件内就会有电流通过。通过元件的电流与端电压之间一一对应的函数关系称为电学元件的伏安特性。以电压和电流分别为横坐标和纵坐标作出的曲线,称为该元件的伏安特性曲线。伏安特性所遵循的规律,就是该元件的导电特性。若所得结果为一条直线,如图1所示,这类元件称线性元件,如碳膜电阻、金属膜电阻、线绕电阻等。若为一曲线,如图2所示,这类元件称为非线性元件,如半导体二极管、稳压管等。 图1 线性元件的伏安特性图2 非线性元件的伏安特性2.实验电路的的比较与选择 伏安法测电阻是研究物质电学特性的常用方法。它即可以测线性电阻也可以测非线性电阻。其优点是测量范围宽,适用性广,且只要知道被测元件两端电压U及流过它的电流I,由欧姆定律I =就可计 U R/ 算出电阻R来。但是,在实际测量中,由于电表内阻的影响,根据I =算出的阻值不是待测电阻的真 U R/ 实值。

读数I 不等于I x ,而是I = I x + I v 。R x 是线性元件,因此 ) 1(x v x x v x x I I I U I I U I U R +=+== (1) 如果v x R R <<(电压表的内阻),则x v I I <<,因此可将)1(x v x I I I +-1用二项式定理展开,略去二次幂以上的项后,式(1)变为 )1()1(v x x x v x x R R R I I I U R -=-≈ (2) R x /R v 是电压表内阻给测量结果带来的相对误差。 由式(2)可见,电流表外接时,若用U / I 作为被测电阻值,则比实际值R x 略小些,应作以下修正。 若R V 值已知。则 (1/) (1)(1)(1) x x x v v x v v v U U R I I I I I U I I R I I I R R R = = --≈ +=+=+ (3) 对于电流表内接法,由图3(b )可知 )1(x A x A x x A x R /R R R R I U U I U R +=+=+== (4) 其中,R A 为电流表的电阻,x A R /R 为电流表的内阻给测量带来的相对误差。 由式(4)可见,若简单地用U/I 值作为被测量电阻值,则比实际值R x 略大些,应作如下修正。 若R A 值已知,则 )1(R /R R R R I U U R A A A x -=-=-= (5) 综上所述,不论哪种连接法,误差总是难免的。该误差是由选用的实验方法引起的,故称为“方法误差”。用伏安法进行测量时,应根据被测电阻的阻值范围及所用电表的内阻来合理选择电路,使“方法误差”尽可能减小,通常可作如下选择:由式(4)可知,当A x R R >>时,接入误差才可以忽略不计, 宜采用电流表内接法,此时,R ≈ R x ;由式(2)可知,当x v R R <<时,宜采用电流表外接法,接入误差才可以忽略不计,此时,R ≈ R x 。对于既满足A x R R >>,又满足x v R R <<的电阻,两种方法均可采用。 实验内容和步骤 一.测量电阻的伏安特性曲线及R x 值 待测电阻约为100Ω,采用电流表的内接法,其电路如图(4)。 1.电源电压E 为3V ,合理地选择电流表和电压表的量程,按图(4)联接好电路。

六电阻元件的伏安特性

实验六 电阻元件的伏安特性 一、实验目的 1.学习常用电磁学仪器仪表的正确使用及简单电路的连接方法。 2.掌握用伏安法测量电阻及其误差分析的基本方法。 3.学习测量线性电阻和非线性电阻的伏安特性。 4.学习用作图法处理实验数据,并对所得伏安特性曲线进行分析。 二、实验仪器 电阻元件伏安特性测量实验仪集成了0~20V 可调直流稳压电源;直流数字电压表,量程为2V/20V 可调,内阻为1M Ω;直流数字毫安表,量程为200μA/2mA/20mA/200mA 可调,其相对应内阻分别为1K Ω、100Ω、10Ω、1Ω;待测240Ω/2W 金属膜电阻、待测稳压管(5.6V )、待测小灯泡(12V/0.1A )等。 三、实验原理 电阻是导体材料的重要特性,在电学实验中经常要对电阻进行测量。测量电阻的方法有多种,伏安法是常用的基本方法之一。所谓伏安法,就是运用欧姆定律,测出电阻两端的电压V 和其上通过的电流I ,根据 (1) 即可求得阻值R 。也可运用作图法,作出伏安特性曲线,从曲线上求得电阻的阻值。对有些电阻,其伏安特性曲线为直线,称为线性电阻,如常用的碳膜电阻、线绕电阻、金属膜电阻等。另外,有些元件,伏安特性曲线为曲线,称为非线性电阻元件,如灯泡、晶体二极管、稳压管、热敏电阻等。非线性电阻元件的阻值是不确定的,只有通过作图法才能反映它的特性。 用伏安法测电阻,原理简单,测量方便,但由于电表内阻接入的影响,给测量带来一定系统误差。 在电流表内接法中,如图(1)所示。由于电压表测出的电压值V 包括了电流表两端的电压,因此,测量值要大于被测电阻的实际值。由 (2) 可见,由于电流表内阻不可忽略,故给测量带来一定的误差。 图(1) I V R =??? ? ??+=+=+== x mA x mA x x mA x x R R 1R R R I V V I V R

实验一电路元件伏安特性的测试

实验一电路元件伏安特性的测试(验证性) 一、实验目的 1.学会识别常用电路元件的方法。 2.掌握线性电阻、非线性电阻元件伏安特性的测绘。 3.掌握实验台上直流电工仪表和设备的使用方法。 二、原理说明 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。 1.线性电阻器(由欧姆定律U(t)=R i(t)定义,关联参考方向,阻值R为常数,元件对不同方向的电流或不同极性的电压,其表现是一样的,两个端钮没有任何区别,这种性质为所有的线性电阻所具备,称为双向性。)的伏安特性曲线是一条通过坐标原点的直线,如图1-1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。 2.一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,灯丝电阻可视为非线性电阻。(电阻元件凡不是线性的就称为非线性的)一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1-1中b曲线所示。 图1-1 3.一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中c所示。正向压降很小(正向导通且电流不大时一般的锗管压降约为0.2~0.3V,硅管压降约为0.5~0.7V),(正向导通电压一般的锗管约为0.1V,硅管约为0.5V)正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十

伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图1-1中d所示。在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管。此时,二极管工作在反向击穿状态,但采取了适当措施限制通过管子的电流保证管子不因过热而烧坏。这样,流过管子的电流在一定范围内变化时,管子两端电压变化很小,达到“稳压”效果。)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。 注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。 三、实验仪器 可调直流稳压电源、直流电压表、数字多用表、电源转接箱、元件箱。 四、实验内容 实验准备:将可调电源中的两路“0~30V可调输出”直流可调稳压电源的输出调至最小(调节旋钮轻轻逆时针旋到底),并将恒流源的输出粗调旋钮拨到2mA档,输出细调旋钮调至最小。将电源转接箱和其下方的“AC220V输出”通过所带的插头连接线连接电源插孔,并将电源转接箱电源插孔通过红、蓝粗线和可调电源及测量仪表一的电源插孔相连(L与L用红线连接,N与N用蓝线连接)。 1.测定线性电阻器的伏安特性 按图1-2接线,稳压电源取“可调电源”中的两路“0~30V可调输出”直流可调稳压电源的任一路都可。毫安表用数字多用表,计算电路的最大电流,选择合适的毫安表的量程及接线端子,电压表选取“测量仪表一”中的“直流电压表0~200V”,电阻从“元件箱”中选取。接线过程中注意电源和仪表的极性及电压表和电阻的并联都要正确。 接完线检查无误后将电源转接箱和其下方的“AC220V输出”的电源控制开关合上,并将可调电源及测量仪表一的电源控制开关合上。 记下刚接通电源时的电压表、电流表的初始值,调节稳压电源的输出电压U,缓慢地增加,一直到10V左右,记下相应的电压表和电流表的读数U R、I ,较均匀地取六组数据,让最后的电压表示数为10V。

电阻元件伏安特性

实验五测绘线性电阻和非线性电阻的伏安特性曲线 【实验目的】 1.熟悉电学常用仪器的基本技术指标,掌握其使用方法。 2.训练用回路接法看图接线。 3.学习测绘线性电阻和非线性电阻的伏安特性曲线。 【实验仪器】 直流电压表、电流表,滑线变阻器,电阻箱,直流稳压电源,二极管,开关及导线等。 一、直流电压表 直流电压表是由表头和一高电阻串联而成,用于测量电路中两点间电 压的大小。它的主要技术指标有: 1.量程:即指针偏转满刻度时的电压值。直流电压表分为伏特表、毫伏表等,一般为多量程的。 2.内阻:即电表两端间的电阻。同一电压表的不同量程,其内阻亦不同。但是,由于各量程的每伏欧姆数都相同,所以电压表的内阻一般用Ω/ V统一表示。各量程的内阻可用下式计算 内阻=量程×每伏欧姆数 二、直流电流表 直流电流表是由表头和一个低电阻并联而成。用于测量电路中的电流的大小。它的主要技术指标有 1.量程:即指针偏转满刻度时的电流值。直流电流表分为安培表、毫安表、微安等,一般为多量程的。 2.内阻:一般安培表的内阻都在0.1Ω以下,毫安表、微安表的内阻可达几百欧姆到几千欧姆。 使用电表时应注意以下几点: 1.零点调整测量前,先检查电表指针是否指零,如不指零,要用一字形螺丝刀细心地调节零点调整螺丝,使指针指零。

2.选择量程根据待测电流(或电压)的大小选择合适量程的电流表或电压表进行测量。在不知道测量范围时要选用大量程电表进行测试,再根据测量值得大小,选用合适的量程,尽量使指针在满刻度的三分之二以上。 3.电表的连接电流表必须串联在待测电路中;电压表必须与被测电压的两端并联。 4.电表的极性必须让电流从表的“+”极流向“—”极,不可接错。 5.电表的安放应按电表表面指示符号正确放置电表,否则,指示数据不准。 6.避免读数误差设电表的量程为(或),电表的准确度等级为,则用该电表进行测量时可能引起的得最大误差(或)按下式计算:或 读数时,应读到有误差的一位上。如0.5级量程为150mA电流表,其 则用此量程测量电流时,读数应读到小数点后一位。 三、滑线变阻器 滑线变阻器是用来控制电路中的电压和电流的,它的主要技术指标有: 1.全电阻即全额电阻,即滑线变阻器两个底脚间的电阻值。 2. 额定电流即变阻器允许通过的最大电流,使用时不得超过该值。 滑线变阻器的两种接法: 1.限流电路如图1-1所示,当滑动C时,整个电路的电阻改变了,因此回路中的电流也改变,所以它能控制电路中的电流的大小。该电路称作限流电路。 2.分压电路如图1-2所示接通电源后,加在负载电阻上的电压取自的一部分,随着触点C的位置的变化,大小可调。该电路称作分压电路。 【实验原理】某电学元件两端加上直流电压,在元件就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。若以电压为横坐标,一电流为纵坐标,作出电流随电压变化的关系曲线,称作电学元件的伏安特性曲线。 对于碳膜电阻、线绕电阻等电学元件,在通常情况下的伏安特性曲线是一条直线,如图1-3所示。这类元件称作线性元件,其电阻称作线性电阻。

相关文档
最新文档