自制简易的无线增益天线

自制简易的无线增益天线
自制简易的无线增益天线

自制简易的无线增益天线,让你的无线网络信号更加强劲!

初学者型奶粉罐天线

一、选型

先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。经过再三筛选,最终把制作目标锁定在罐头天线上。选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。

二、制作

圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。笔者就是随便拿了一个奶粉罐制作的。

下面是参照外国WIFI网站的图片而画的制作图。

各数据如下:

中心频点=2.445G

圆筒直径=127mm

圆筒长度=111mm

振子长度=31mm

振子距圆筒底部边距=37mm

从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意!

在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊

在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的味道了!

建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响!

馈线笔者是选用双屏蔽的RG-58电缆,接头是SMA母头,用于接在WIFI的AP上面。一般来说馈线直径越粗越好,而且长度要尽量短,不然馈线过长所造成的损耗比天线增益还大,失去DIY的意义!笔者使用的馈线直径由于比较小,所以长度取在1米这个数值。良好的馈线是制作天线的关键,2.4G频段的信号在线材中的损耗和泄漏比400Mhz的大很多,所以馈线必须用屏蔽网加铝薄双屏蔽,而且芯线要尽量粗。

三、测试

开始的时候,mr7浏览外国爱好者们讨论WIFI 天线增益如何如何的高,改善情况如何如何的好,总觉得有点吹嘘的感觉。但当mr7在实际测试时发现使用效果真的发生了天大的变化!

在这次测试中,mr7使用的设备是D-LINK的DWL-G810(800AP)五合一AP,该AP可以通过软件刷机同时拥有AP、网桥、中继等功能,发射功率是32mW。

测试地点时家里阳台,在防盗网内(没办法,金属圆筒直径粗了点,伸不出防盗网外)。按照经验,一般WIFI设备放在防盗网内使用的效果时十分差的,因此mr7也没抱多大希望。在使用原配天线时,mr7用AP搜索到3-4个外界信号(正常现象),当换上自制的WIFI圆筒天线后惊奇地发现居然可以收到7-8个外界信号,接收数目是更换天线前多出100%左右,真是出乎意料之外!不禁暗暗为自己制作的天线叫好。

小结:

1、该天线的确适合初学者业余制作,大家不要被未尝试过的制作而难倒,要相信自己相信科学。笔者也是新手,之前也没抱多少希望制作天线的,当果断迈出第一步之后,你会尝试到实践带来的无穷乐趣和知识!

2、多与身旁的同好们交流心得,听取各方意见,边做边学,这样会少走弯路。

3、制作天线时的尺寸和用料是成功的关键,要把握好尺寸的精确度,材料要选质量过关的。在这次制作中我每次裁剪时都要反复量度尺寸,精确度起码是mm级。材料方面,我用的是厚底的铁罐,而馈线则是进口的双屏蔽电缆。

4、由于附近比较多写字楼,自然用无线网络的公司也比较多,同时楼宇之间距离比较宽,所以在家中的阳台可以收到这么多网络的信号,这一点再次验证了“好机不如好天线,好天线不如好传播!”这个经验。

5、根据玩家提供的数据,该WIFI圆筒天线的增益在12DBI左右。假如改进一下,在天线外口加一个喇叭状的金属圆环,该天线还可以增加3DBI的增益,大家不妨试试!

同时说明一下该天线不适合担当无线中继功能的AP用,建议做无线中继时最好使用高增益的同轴全向天线。加强改进型漏勺天线

如果无线路由器或无线AP不适合加装增益天线,那么我们该如何增加无线信号的传输距离和效率呢?显然,只有给无线网卡增加增益天线了。下面笔者以USB无线网卡为基础元件,介绍一下如何制作无线网卡增益天线。

一、寻找材料

首先寻找有规则抛物面的金属器具,那么你会想到什么呢?很快你就会想到家里的铁锅,但是铁锅质量较重且不适合固定和安装,也不美观。好在,我们的祖先在千年以前就为我们发明了制作增益天线的好物件“漏勺”(图3),是不是有点疑问?马上你就知道它除了可以用来捞饺子和面条,还能用来制作增益天线。

二、准备工具

制作过程中可能用到的工具有手锯、尖头钳子、橡胶管以及USB连接线等。手锯是用于将漏勺把锯掉或让它长短合适。尖头钳子则用于在漏勺中心为橡胶管剪一个合适的缺口(图4)。橡胶管的作用就是根据焦点的距离将USB接头固定在漏勺上;而USB连接线就是为了将无线网卡与电脑连接起来。

当然,你还是要准备好一把尺子,如果必要也需要纸、笔和计算器,以测量和计算焦点位置。

三、计算焦点位置

确定了焦点位置才可以确定胶皮管的长度,才能固定胶皮管和无线网卡。

采用上面所介绍的焦点计算公式即可计算出焦点距离漏勺底部中心(胶皮管安放处)的长度,要注意的是要考虑USB网卡的长度,因为USB无线网卡的天线是内置的。

打开USB无线网卡,内置天线就位于左侧白色位置。这样只要保证USB无线网卡的底部位于焦点位置即可,如果USB无线网卡本身长度不够,则需要用胶皮管来支撑USB无线网卡。

四、固定USB无线网卡

在确定焦点位置之后,就可以对USB无线网卡进行固定了。一定要注意测量好USB网卡的长度和胶皮管的长度,二者连接后的长度之和应等于计算好的焦点距离。

五、为天线制作支架

可以使用漏勺原来的竹板作为支撑,不过每次使用都需要找合适的位置固定,这种情况下就需要给天线制作一个支架,做一个三脚支架就很牢固。材料可以任意选择,只要支架材料与漏勺天线绝缘即可。例如,可以使用三只竹筷子做成一个支架,当然你也可以奢侈一点,用废旧的照相机的三脚架来做支架。

经过以上五个步骤,一个超酷的USB无线网卡增益天线就制作成功了,使用USB连接线与你的电脑相连,你就可以体验自制增益天线给你带来的“快感”了。

小结:

这种方法也是根据我们所介绍的制作增益天线的基本原理,将USB无线网卡的原有天线改装为效果更好的增益天线,关键也在于要选择合适的金属抛物面材料,计算好抛物面焦点,其特点是效果显著、简单、零成本,是从末端增强无线信号收发效果的最佳解决方案。

文章来源:

信号不稳定,你能惬意地靠在沙发上享受无线网络?

网络覆盖范围小,你只能提着笔记本电脑在一个狭小的区域“移动”。

在使用无线网络的时候,你肯定会遇到或即将遇到这些令人不爽的问题。解决这些问题,除了减少遮挡物、减少同频段设备的干扰外,最有效的方法就是更换高增益的天线了,用天线加强无线网络的传输效果、覆盖范围。然而,购买无线增益天线需要掏出不少银子,可能花费上百元甚至上千元的费用。

“鱼与熊掌”都想兼得的我们,是否能找到两全其美的办法呢?对于DIY迷来说,这个问题是非常简单、也非常有趣的,因为在家里,很多日用品、甚至废弃物都可以作为制作无线天线的材料。当然,人人都可动手制作无线天线……

基础不可无: 增益天线工作原理

别急于下手制作,动手制作之前,我们还得了解一下无线增益天线的基本工作原理。只有有了一定的理论基础,我们才能制作出效果极佳的天线。

关键词:抛物面、焦点

对于增益天线工作原理较为通俗的说法就是:在现有天线周围放置规则的金属抛物面,使天线位于抛物面的内反射焦点处,通过电磁波反射在焦点处形成能量集中,从而增强电磁信号的收发,实现在特定方向增强信号。

制作简单的增益天线的关键就在于找到比较规则的金属抛物面和计算抛物面的焦点位置。金属抛物面并不一定要求用金属板,也可以是网状、栅栏状金属材料。焦点位置的确定需要根据所选抛物面的形状来计算。

计算公式:F=D×D/16H (m)

其中,D为抛物面的直径,H为抛物面的深度,单位为m。

考虑到存在一定误差,因此可以用更简单的估算公式进行计算,即F=0.3D~0.4D。

在一个简单的Wi-Fi无线网络中,包括无线路由器或无线AP,以及无线网卡等。因此,要增强无线信号的传输效率,要从增加无线路由器或无线AP天线的收发增益和无线网卡收发增益两个方面入手

接下来,就让我们来看看无线路由器或无线AP的增益天线的制作方法和无线网卡增益天线的制作方法。

易拉罐变无线路由器增益天线

提高无线设备之间的传输效率,首先要考虑增加无线路由器(无线AP)天线的增益,在不更换现有设备天线的情况下,最好的办法就是将现有天线改装为增益天线,以达到提高无线路由器(无线AP)天线收发效率的目的,进而提高传输距离和速率。

关键词:抛物面、焦点

制作材料:金属桶、原有无线路由器天线

别人的实物图:

一种在60GHz通信的高增益天线讲解

一种用于60GHz通信的高增益、 介质加载采用基片集成波导技术的 对线性渐变开槽天线 摘要——60GHz带宽有提供高速的通信能力。此文章证明了一种能为对线性变槽天线(ALTSA)提供高增益的基片集成波导(SIW)的存在。为了获得高增益,给ALTSA上加了介质加载,并使用了沟槽结构。使用SIW技术实现了高效、简洁和低成本的平面设计。本文使用了一种电磁场仿真工具来设计和模拟这个天线。首先设计一个ALTSA单元,然后在1*4的ALTSA阵列上加上SIW功分器。为了使设计可行,制作和测量了原型。测量结果非常符合仿真值,从而证实了这个设计。测得1*4ALTSA阵列在整个60GHz带宽(57——64GHz)的回波损耗优于12dB,增益为23.10.5dBi。 1.介绍 近些年对在高速通信中极大带宽的需求越来越高。而60GHz带宽(57——64GHz)可以为高速无线通讯以每秒几千兆的速度传输高容量未压缩数据。由于在毫米波频段的微带线相关损耗非常高,因此需要更多的有效的技术,比如SIW。SIW有传统矩形波导低损耗、高品质因数、完全屏蔽和处理高功率情况的特点,也有低成本、平面电路设计的优势。报道表明,已经有大量的研究者从事SIW相关工作多年。天线容易在60GHz 带宽受到大气吸收而衰减,这就要求在使用高增益天线时要减少这类损耗。锥形缝隙天线(TSA)因其宽带宽、高回波损耗和高增益而被经常使用。对线性渐变槽线天线(ALTSA)是TSA的一种类型,在反方向的锥形介质板的上表面和底部金属部分使用对极几何设计。 研究者设计了一种带宽为4——50GHz的反极向天线。天线在带宽内的增益3——12dBi。 本文作者设计了一种在60GHz处增益可达18.75dBi的对费米渐变槽线天线。在张成浩的的文章里,他介绍了一种新颖的技术,即让ALTSA和SIW的上表面和下表面的锥形边缘的馈线重合来克服阻抗失配。有沟槽结构的TSA被用来减小天线宽度以极小化任何对辐射方向图的重要影响,使得阵列天线尺寸更加紧凑。而且,沟槽结构可以提高天线增益,减小旁瓣电平和交叉极化,由此提高天线总性能。TD介绍设计了一种有矩形波纹的带有三角功分器的ALTSA阵列。1*12阵列的增益为19.25dBi。DM介绍了一种有半圆形沟槽的ALTSA,它在7GHz的增益为12.4dBi。介质加载,通过在天线前端放置电介质板作为一个引导结构都可以增强天线增益。平面SIW喇叭天线上的介质加载被用来使E面波束宽度变窄,同时提高增益。NG设计了一种带有SIW喇叭结构和矩形介质加载的高增益ALTSA阵列,其1*4ALTSA阵列的增益为191dBi。

大家都来DIY自己手台的天线

大家都来DIY自己手台的天线,说不定性能比原装的还好! 在无线通讯网络中信号品质是大家最关心的问题之一,它直接关系到下情上报和上令下达的准确性和通畅性。确定无线通讯质量除了收发信机的性能外天线是一个非常关键的因素,在整个无线通讯网络工程中天馈系统一直占有相当比例的预算。从天线理论上讲当A电台系统(输出功率25W)所配用天线增益比B电台系统高3dB其实际发射效果与B电台系统功率输出50W时相同,也就是说天线增益增加3dB相当于电台输出功率增加一倍,而且由于在信号接收上同样有信号放大的作用所以实际接收时使用增益比较高的天线对信号接收效果也有明显的提升,理论上高增益天线可以增加通讯覆盖范围,提高弱信号区的通讯质量。天线的性能直接关系到通讯信号的质量。天线根据使用场合的不同可以分为手持台天线、车载天线、基地天线三大类。 一、手持台天线 手持台天线也就是个人使用手持对讲机的天线,常见的有橡胶天线和拉杆天线两大类。根据天线的形式橡胶天线又有四分之一波长橡胶天线和螺旋橡胶天线。四分之一波长橡胶天线相对一般螺旋天线有效率高的优点,因为根据天线原理四分之一波长的导体天线自然谐振,具有较高的辐射效率。这类天线一般辐射体比较细长,如400MHz频段的红灯403KG/403KGP和MOTOROLAGP88/P110/GP300标配使用的细长型天线都属于四分之一波长天线类。一般认为手持对讲机天线中四分之一波长天线的实际辐射效率要优于缩短型的螺旋天线。这也是标配MOTOROLAGP88电台性能出众,通讯距离相对较远的的原因之一。我们做过一个简单的对比试验:用同一台GP300手持电台固定位置,先后使用GP88原配的四分之一波长橡胶天线和GP68原配的橡胶螺旋天线以及GP300选配的原装螺旋橡胶,在一米外固定位置使用场强仪测定场强,结果四分之一波长橡胶天线有明显的优势。不过这种四分之一波长类型的天线也有它的局限性,与螺旋橡胶天线相比它的长度较长。所谓四分之一波长天线它的天线长度为通讯频率波长的四分之一(实际制作中还要根据缩短因子修正),常用的警用通讯频段160MHz、350MHz、410MHz、460MHz分别波长为1.875米、0.857米、0.7317米、0.652米(用常数300除以频率数折算出波长),对于理论四分之一波长天线的长度约为46.875厘米、21.42857厘米、18.29厘米、16.304厘米。由长度可见在160MHz频段使用四分之一波长形式的手持机橡胶天线显然是不适合的,所以这种类型天线一般应用于400MHz以上频段(350MHz也可以应用)。螺旋橡胶天线也有多种形式在此不再细分,总体螺旋橡胶天线根据需要可以缩短天线的尺寸,所以天线长度可以做得比较短,外观比较漂亮。螺旋橡胶天线的辐射效率一般与其缩短率和结构形式有关,通常较长的天线发射效率比较高。在低频段如160MHz橡胶天线大部分采用螺旋的结构,这样可以有效的控制天线的长度。在350MHz以上频段也有各种形式的螺旋橡胶天线,都是以尺寸短小见长,如350MHz/380MHz的MOTOROLAGP300(常规)和PTX600(集群)对讲机标配的都是螺旋橡胶天线。

天线的主要性能指标和相关知识讲解学习

天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功率波瓣宽度为65°,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。一般移动通信天线的输入阻抗为50Ω。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电压最大值与最小值的比即为电压驻波比VSWR。假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=(+)/(-)。一般地说,移动通信天线的电压驻波比应小于1.5,但实际应用中VSWR应小于1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂直极化和±45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或±45o极化方式。 7、双极化天线隔离度 双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔离度=P1-P2。 移动通信基站要求在工作频段内极化隔离度大于28dB。±45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一些特殊措施,使天隔离度大于30dB。

增益天线种类详解

电源招聘专家 增益天线种类详解 着无线产品价格的逐渐走低,许多人都在企业或家里构筑了无线网络,大大方便了日常应用。不过,家里面积大了,企业间的距离远了,无线网络不稳定、数据传输受阻等技术开始出现。怎样才能解决这些棘手的技术呢? 更换网络设备花销过大,不符合经济节约的消费理念,而更换、加装增益天线却是极为经济切增强无线网络传输能力、稳定性的方法。 了解增益天线 作为增益天线的基本属性,增益是指定方向上的最大辐射强度和天线最大辐射强度的比值,即天线功率放大倍数。在一般情况下,增益的强弱将干扰到天线辐射或接收无线信号的能力。也就是说,在同等条件下,增益越高,无线信号传播距离就越远。增益的单位为dBi,室内天线大多为4dBi~5dBi,室外天线大多为8.5dBi~14dBi。 通常情况下,由于增益的大小和无线带宽成反比,即增益越大,其带宽就越窄;增益越小,带宽则较大。因此,较大增益的天线主要在远距离传输,而小增益天线则更适合于无线信号大覆盖范围的应用环境。 目前在无线网络应用中,天线分为点对点应用、点对多点应用两种,用户可根据不同的应用范围选购不同类型的无线天线,使无线信号能够顺利地被各个无线设备接收和发送。 天线种类扫描 在上文中,我们说明了增益天线的定义和作用。其实,增益天线仅是一个统称而已,我们可以笼统地将它看做是无线天线。在这个天线家族中,还有许多不为人所知的新面孔。在此,我们让大家“见识”一下它们的实力。 1.种类全接触 无线天线可分为全向天线、定向天线、扇形天线、平板天线等类型。 其中全向天线适在各无线接点距离较近、需要覆盖较多数量无线设备及客户端的场合,但这些设备的增益大多较小,信号传递距离较短。 定向天线包括八木定向天线、角型定向天线、抛物面定向天线等品种,适在各无线接点位置距离很远,并且无线接入点集中、数量较少且位置固定的环境。这种天线具有信号传递距离长、能量汇聚能力强的特点。 扇形天线可以多角度的覆盖,如果无线接入点集中在该天线的覆盖范围内,可考虑选购此类天线,它具有能量定向和汇聚功能。 平板天线的角度范围可分为30度和15度,比扇形天线的信号覆盖范围小,但它的能量汇聚能力更强,可用在无线接入点相对较远、更为集中的环境。 2.主流天线详解 在诸多不同类型的天线中,使用全向天线和定向天线的企业和个人非常多,它们也是笔者要重点推荐大家使用的天线。 ●全向天线 所谓全向天线,是指在水平面上辐射和接收无最大方向的天线。由于辐射和接收无方向性,所以此类天线安装起来比较方便,不需要考虑传输点的天线安装角度技术。 不过全向天线没有最大方向,它的天线增益相对较低,这就导致无线信号的传输距离较短。因此,这类天线一般比较适合在传输距离规则不太高的点对多点通信环境使用。例如,在对等网络和无线漫游网络的中心无线AP上使用此类天线,通过中心无线AP,可以均匀地将

射频参数解析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温 驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

高增益微带八木天线的设计

高增益微带八木天线的设计

高增益微带八木天线的设计 【摘要】本文基于八木天线的结构设计并制作了一个准八木高增益微带天线,利用电磁仿真软件CST进行仿真设计。通过增加引向器的个数来增加增益随着引向器的增加,增益由4.15dBi增加到8.2dBi;通过增加x方向的单元数,压缩E 面的方向性进而提高增益,其增益由8.2dBi提高到12.7dBi。最终设计出一款工作于5.8GHz,增益约为12.7dBi,前后比为26dB的天线,实测与仿真结果基本吻合。 1、微带八木天线的设计原理 随着微波技术的发展,微带准八木天线由于其结构简单易于加工实现而成为国内外的一个研究热点。微带准八木天线的工作原理如图,采用180°相位差的微带传输线作为馈线,馈入八木天线的两臂的信号刚好等幅反向。八木天线可看作是端射式行波天线,其波瓣图可近似为间距λ/4,相位递减90°的电源端射阵。在微带八木中要实现输入端的阻抗匹配很关键,2单元6元阵子在馈电微带的阻抗匹配计算如图1所示 图1 阻抗匹配计算 八木天线的地板作为反射器,馈电后的主阵子向空间辐射电磁波,同时引向阵子由于耦合作用产生了感应电流,也向外辐射电磁波,引向器和反射器的相互作用能将有源振子辐射的能量集中到主辐射方向。引向器的数目在一定的范围内越多,方向性越强,增益就越高。有源振子的长度一般取半波长,通过调整阵子间的间距以及无源振子的长度,可以改变无源振子上产生的交变感应电流的相位和幅度,使得电磁场在主方向上叠加,从而达到增强天线辐射方向性的目的,进而提高天线的增益和辐射效率。不同数量引向阵子对应增益增量如表1所示。 表1 不同单元八木天线的增益值

发射功率与增益详解

发射功率与增益详解 2011-09-28 15:31:48| 分类:TEC-Hardware|举报|字号订阅 本文转载自jason《发射功率与增益详解》 无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。 Tx是发射(Transmits)的简称。无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准: 功率(W)-相对1瓦(Watts)的线性水准。 增益(dBm)-相对1毫瓦(Milliwatt)的比例水准。 两种表达方式可以互相转换: dBm = 10 x log[ 功率mW] mW = 10 [ 增益dBm / 10 dBm] 在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。天线增益的度量单位为“dBi”。 由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB),例如,发射设备的功率为100mW ,或20dBm;天线的增益为10dBi,则: 发射总能量=发射功率(dBm)+天线增益(dBi) =20dBm +10dBi =30dBm

或者:=1000mW =1W 在“小功率”系统中每个dB都非常重要,特别要记住“3dB法则”。 每增加或降低3dB,意味着增加一倍或降低一半的功率: -3 dB = 1/2 功率 -6 dB = 1/4 功率 +3 dB = 2x 功率 +6 dB = 4x 功率 例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW的发射功率为23dBm。 0dbm=0.001w 左边加10=右边乘10 所以0+10DBM=0.001*10W 即10DBM=0.01W 故得20DBM=0.1W 30DBM=1W 40DBM=10W 还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W 例如机器20W 在400MHZ频率上使用30米50-7(物理发泡低损耗电缆)到天线上还剩下多少增益 20W=43DB 30米50-7损耗一米小于0.09 按照最大值0.09*30=2.7DB 43DB-2.7DB=40.3DB 天线增益16DBi+40.3DB=56.3DB

制作超强的无线网卡天线-最远30公里

最远30公里!-制作超强的无线网卡天线 无线路由器越来越普及,引出的讨论也越来越多。特别是信号强度,接收性的问题相当值得注意。而大家最经常想到、比较可行的办法就是采用增益天线。因此,编者特收集 整理相关制作天线的例子,从国内外、从低端到终极,以一种比较客观的角度,展示天线制作 的技巧方法、天线的作用有多大、能达到什么样的效果。 初学者型奶粉罐天线 一、选型 先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。经过再 三筛选,最终把制作目标锁定在罐头天线上。选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。 二、制作 圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。笔者就是随便拿 了一个奶粉罐制作的。 下面是参照外国WIFI网站的图片而画的制作图。 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈 线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 1001下载乐园 https://www.360docs.net/doc/8a17234205.html,

在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的味道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响! 馈线笔者是选用双屏蔽的RG-58电缆,接头是SMA母头,用于接在WIFI的AP上面。一般来说馈线直径越粗越好,而且长度要尽量短,不然馈线过长所造成的损耗比天线增益还大,失去

MIMO技术详解

MIMO技术详解 1.介绍 随着无线通信系统的充分发展,语音业务已经不能够满足人们对高速数据业务的要求。提供网页浏览、多媒体数据传输以及其他类型的数据业务是发展无线通信系统和服务的一个重要目的。特别是,基于码分多址的第三代移动通信系统。虽然已经提出多种利用现有无线资源(诸如码道、时隙、频率等)提高数据传输速率的建议,但是其只不过是以语音容量换取数据容量的方法。随着MIMO的技术的出现,一种利用多个发射天线、多个接收天线进行高速数据传输的方法已经被提出,并成为未来无线通信技术发展的一种趋势。最早提出MIMO概念的是Telatar和Foschini,其中Foschini等人提出的BLAST结构是典型的利用MIMO技术进行空间多路复用的技术。已经证明,具有M个发射天线以及P 个接收天线的MIMO系统,在P≥M的情况下几乎可以使得信道容量提高到原来的M倍。 传统的MIMO系统均是非扩频的系统,而第三代移动通信系统是基于CDMA技术的扩频系统。可以采用码复用(Code-Reuse)方式把MIMO技术与CDMA系统结合起来,从而有效地提高其高速下行分组接入(HSDPA)的总体数据速率。同样,TD-SCDMA系统也可以采用码复用的方式来应用MIMO技术,本文给出了一种TD-SCDMA系统的MIMO技术解决方案。这样,TD-SCDMA系统将既可以应用智能天线技术,也可以应用MIMO天线技术,本文将初步分析应用MIMO技术之后对智能天线技术的影响。 2.MIMO技术概述 MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到,单天线衰落信道的平均误差概率为。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。 分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据速率,这被成为空间复用。需要特别指出的是在高SNR 的情况下,传输速率是自由度受限的,此时对于m根发射天线n根接收天线,并且天线对之间是独立均匀分布的瑞利衰落的。 根据子数据流与天线之间的对应关系,空间多路复用系统大致分为三种模式:D-BLAST、V-BLAST以及T-BLAST。 D-BLAST最先由贝尔实验室的Gerard J. Foschini提出。原始数据被分为若干子流,每个子流之间分别进行编码,但子流之间不共享信息比特,每一个子流与一根天线相对应,但是这种对应关系周期性改变,如图1.b所示,它的每一层在时间与空间上均呈对角线形状,称为D-BLAST(Diagonally- BLAST)。D-BLAST的好处是,使得所有层的数据可以通过不同的路径发送到接收机端,提高了链路的可靠性。其主要缺点是,由于符号在空间与时间上呈对角线形状,使得一部分空时单元被浪费,或者增加了传输数据的冗余。如图1.b所示,在数据发送开始时,有一部分空时单元未被填入符号(对应图中右下角空白部分),为了保证D-BLAST的空时结构,在发送结束肯定也有一部分空时单元被浪费。如果采用burst模式的数字通信,并且一个burst的长度大于M(发送天线数目)个发送时间间隔,那么burst的长度越小,这种浪费越严重。它的数据检测需要一层一层的进行,如图1.b所示:先检测c0、c1和c2,然后a0、a1和a2,接着b0、b1和b2…… 另外一种简化了的BLAST结构同样最先由贝尔实验室提出。它采用一种直接的天线与层的对应关系,即编码后的第k个子流直接送到第k根天线,不进行数据流与天线之间对应关系的周期改变。如图1.c所示,它的数据流在时间与空间上为连续的垂直列向量,称为V-BLAST(Vertical-BLAST)。由于V-BLAST中数据子流与天线之间只是简单的对应关系,因此在检测过程中,只要知道数据来自哪根天线即可以判断其是哪一层的数据,检测过程简单。 考虑到D-BLAST以及V-BALST模式的优缺点,一种不同于D-DBLAST与V-BLAST的空时编码结构被提出:T-BLAST。等文献分别提及这种结构。它的层在空间与时间上呈螺纹(Threaded)状分布,如图2所示。原始数据流被多路分解为若干子流之后,每个子流被对应的天线发送出去,并且这种对应关系周期性改变,与D-BLAST系统不同的是,在发送的初始阶段并不是只有一根天线进行发送,而是所有天线均进行发送,使得单从一个发送时间间隔来看,它的空时分布很像V-BALST,只不过在不同的时间间隔中,子数据流与天线的对应关系周期性改变。更普通的T-BLAST结构是这种对应关系不是周期性改变,而是随机改变。这样T-BLAST不仅可以使得所有子流共享空间信道,而且没有空时单元的浪费,并且可以使用V-BLAST检测算法进行检测。

天线增益相关知识

h t t p ://w w w. m s c b s c .c o m h t t p ://w w w. m s c b s c .c o m /a s k p r o / 本文档来源于移动通信网(mscbsc)技术问答,原文地址:https://www.360docs.net/doc/8a17234205.html,/askpro/question5283 天线增益是什么意思? 对天线增益概念理解有点模糊,哪位给详解一下? --------------- 提问者:chgfagy 提问时间:2009-05-19 18:14:00———————————————————————————— 答: 1、增益是用来表示天线集中辐射的程度。其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。增益的单位用“dBi”或“dBd”表示。 2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。如果以半波对称振子作比较对象,其增益的单位是 dBd 。半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15–2.15=6dBd 。 对于水平极化方式的天线来讲,通常以一个半波水平放置的偶极子天线为标准天线,其增益为0dB(实际指dBd)。调频二偶极子反射板天线的增益通过计算和实验数据,其结果基本一致。相对于半波偶极子天线的增益最高只能做到7.5dB。当天线在进行组阵时,天线系统增益为7.5dB。计算推论如下:总功率在一层四面分配时,天线功率将损失6dB,此时天线增益为7.5-6.5=1.5dB;再根据天线层数增

自制无线网卡高增益天线(3)——usb天线加强

自制无线网卡高增益天线()——usb加强 天线 一、选型 先上网收集天线资料,看到很多国外的天线DIYER做出来的WIFI 天线真是五花八门!有螺旋天线、有八木天线、有菱形天线、有栅网天线、还有罐头天线......让人看得眼花缭乱。经过再三筛选,最终把制作目标锁定在罐头天线上。选择它为DIY对象主要是因为这种天线取材方便、效率高!十分适合初学者制作。 二、制作 圆筒天线之所以取材方便,是由于人人家里必定有铁罐、金属筒之类的东西。笔者就是随便拿了一个奶粉罐制作的。 下面是参照外国WIFI网站的图片而画的制作图。 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm

从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 在参照外国爱好者制作WIFI天线的同时,笔者加入了自己的想法:很多爱好者都喜欢在圆筒加装N座或BNC座,然后在馈线的连接处做对应的N头或BNC头,用于连接。但笔者觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的味道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热 缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响!

关于增益的几个知识全面讲解

关于增益的几个知识全面讲解 一、关于增益:电波是一种能量,根据能量守恒定律,高增益天线并不是把电波的总能量增强了,而是把电波集中到较窄的某一空间,在该空间的电波密度得到加强。低增益天线把电波散射到较广的空间。 最合适的比喻就是手电筒,天线相当与手电筒的反射镜,调整手电筒反射镜,可能让光线聚焦在一个较小的点上,你会发现被照射的这个点很亮,但周边比较暗,适合看较远物品,视野窄;把手电筒调到散光状态,周边光线强度都比较平均,适合看近距离物品,视野广。 光波能量守恒,在同一条件下,手电筒的反射镜并没有改变灯泡的自身的发光亮度。 电波的也一样,天线并没有改变发射机的功率,更加没有放大发射机的功率。 二、关于发射(仰)角1、短波 天线的发射角主要包括水平发射角和垂直发射角,在这一小节,我们只讨论水平发射角(也就是我们短波通信中常叫的发射仰角)。 短波通联,要玩的痛快,就必须掌握发射仰角与波瓣一些常识,楼主已经分析的很透彻,在这里用通俗的方式描述一下,天线发射仰角越小,通过电离层一次发射跳跃的距离越远,适合远距离通信,一般情况下,发射仰角小于30度的天线适合远距离DX通信,如高架设的多单元短波八木天线,但近距离通信会出现盲区,这类天线不适合国内(省内)通联。我们会发现,国内通联,高发射仰角的倒V天线,综合效果往往会比高增益的八木天线效果好,斜拉天线仰角更大,通常500公里以内的短波无盲区通信会使用。 我的个人经验:发射仰角的30-60度的适合国内中短距离通联,发射仰角的小于30度的适合远距离DX,发射仰角的小于20度的,适合猎奇,如南美东岸。 天线架设高度与发射仰角(增益)有很大关系,默认情况,天线的设计增益参考高度都是1/2波长高度,比如,一个设计发射仰角为25度(增益为12dbi)的对数周期短波天线,如果架设高度只有1/4波长高度,发射仰角可能会变成40度,增益也会降到大概9dbi;如果架设高度达到1个波长高度,发射仰角可能会变成小于20度,增益也会增加到13dbi

2_4G通用高增益天线_RogerPaskvan

13 2012.01 2.4G通用高增益天线 作者/Roger Paskvan(WA0IUJ) 译者/马亦卯(BD1LEN) 如果你想要轻松地制作一个2.4G 波段的天线,那么本文所讲的设计与制作细节可能正是你所需要的。这支天线不但有着高增益、高屏蔽的特性,而且其覆盖范围也很让人满意。这支天线既可以用于垂直极化方式,也可以用于水平极化方式,而不用考虑如何改变安装位置。根据使用的材料,一根铜管,我推测出设计和制作的细节数据,并提供了调试的方法。 图1 制作完成的号角天 线 图2 13cm波段波长与号角直径的关系 图3 9cm波段波长与号角直径的关系 这篇文章以简单的渐进式的描述,为您提供支号角天线的设计制作方法。这支号角天线做为独立天线使用时可以提供近9db-d的增益(见图1),另外它也可以作为碟型抛物面天线的馈源。其实只要你想得到,你可以把它用在任何地方。通过实验,用这支天线可以稳定地进行数英里的点对点数据和语音传输。如果你的电台室在花园里,并与你的家有一段距离,那么一对这样的天线可以在你的电台室和起居室之间提供很好的无线数据链路。虽然作者本人没有试过把这支号角天线当作碟型抛物面天线的馈源来使用,但是没有理由认为不可以那样用。如果使用碟型抛物面天线,需要注意的是焦距/直径比(f/d ratio)和馈源遮蔽。在合理设计的情况下,这支号角配合碟型抛物面可以提供12 db即17倍的增益! 据John D. Kraus(约翰·克劳斯)所著的《天线》一书介绍,号角天线可以被看作是张开的波导天线。这种天线由于产生同向前进波,所以可以在给定的方向上提供增益,信号馈入波导的振源必须严格地按照计算的结果来放置。我的这支天线在该书中被描述为圆形号角,正好可以用我手头的铜管来制作。 有时候,看似相对简单的关系实际上非常复杂。设 计号角天线就是这种情况(见图5)。首先,号角管的

天线基本知识解析

天线基本知识 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。

1.3 天线方向性的讨论 1.3.1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。 1.3.2 天线方向性增强

木天线的原理和制作tm

八木天线的原理和制作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4 个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显着地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

天线知识讲座讲解

天线部分 一、天线理论知识 天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。所以我们必须全面了解天线。 1、天线的方位图: 方位图是天线电气性能的最重要指标它直接全面的反映出天线的辐射特性。 定义:天线的辐射电磁场在一定距离上随空间角坐标分布的图形。 由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。 根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面; H面方向图:通过最大辐射方向并与磁场矢量平行的平面; 水平面方向图(Horizontal):是指与地面平行的平面内的方向图; 垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。 E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。 2、波瓣: 零功率点波瓣宽度:主瓣最大值两边两个零辐射方 向之间的夹角。 半功率点波瓣宽度:在E面或H面的等距线上,主 瓣最大值两边场强等于最大场强的0.707倍(或一 半功率密度)的两辐射方向之间的夹角。 副瓣电平:在E面或H面的等距线上,副瓣最大值 与主瓣最大值之比,通常用dB表示。 后瓣:与主瓣相反方向上的副瓣。 前后比:等距线上,主瓣功率密度最大值和后瓣功 率密度最大值之比(dB)

10db定向天线制作及应注意的问题(精)

10db定向天线制作及应注意的问题时间:2009-06-09 来源: 作者: 点击:4129 字体大小:【大中小】在网上看到很多千奇百怪有丰富想象力的天线,但大体看来无 非背射式定向天线和全向天线。而且受制作精度和难度困扰全向天线DIY 的极少。 2.4GHZ本身就是高频要求制作精度高,如果您动手能力差的话还是不 要做的好许多网友看到网上的制作资料就急不可耐的去找材料,然后加班 加点的制作。等做出了天线发现效果不怎么样,或出了这样和那样的问题, 才肯坐下来继续研究资料。 其实你大可研究好了再做,网上的图纸各种各样,你知道它的材料吗? 因为它来自世界各地。缩短率,平衡-不平衡转换,原理,构造,阻抗匹配 等。最起码得先了解些原理吧,比如有个网友做了个双菱形的感觉效果不 怎么好就想再做个4菱形的,尺寸和原来的一样结果做出来了增益没有高, 减益倒高了不少,因为双菱形的阻抗和4菱形的根本不一样。 ?无线系统的天线长度通常是使用频率波长的1/4,2.4Ghz由于频率高,波长当然就短,所以天线自然就特别短,因此使用 2.4Ghz系 统当然就再不需要传统那样长长的拉杆天线了。单一菱形四条边: 每一边长1/4 波长,单个菱形全长1个波长,有些人会计入缩短 系数(根据线径粗细0.96-1.05),所以有这么多值跑出来,最好 自己计算。 ?频率为2.4GHZ的波长是12.5cm ,2.4G波长 =3*108/2.4?….*109=0.125m=12.5cm,根据频点可得不同长度。

如2.45G频率的波长12.24厘米,1.5mm铜丝的缩短系数0.96,则边长=波长*缩短系数/4=29.39毫米 ?反射板的宽度应大于12.5CM,取140MM也是合理的,但不要太大了,能有个弧度最好 ?为了减少杂波干扰,前面还可以制作一个挡板,过滤掉波长为几十毫米以下的杂波,当然这个工艺性要求较高,省去也是可以的。 ?引下线可以采用50欧姆的同轴电缆,长度计算应与阻抗相匹配。 2.4G高频信号衰减厉害,馈线最好不要超1米。 ?反射板屏蔽掉能获得更大增益,双棱增益10DB,屏蔽12DB ;四棱增益13DB,屏蔽14DB ?一个菱形标准是3.15dbi,加反射板多3db,菱形每多一倍加3db,所以双菱形是 3.15+3+3=9.15dbi;四菱形12.15dbi;八菱形 15.15dbi;16 菱形18.15dbi;32 菱形21.15dbi;64 菱形 24.15dbi;128 菱形是27.15dbi;要达到30dbi增益需要256 个菱 形!!! ?高增益天线应用在短距离时,其效果并不见得会比低增益天线来的好(近距离时,低增益天线的"等效截面积",有时会比高增益天线来的大),如果再加上于室内使用,因为多重路径的关系,高增益天线的效果也不一定会比低增益天线好

相关文档
最新文档