计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型

第三章、经典单方程计量经济学模型:多元线性回归模型

一、内容提要

本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。

本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。

本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。这里需要注意各回归参数的具体经济含义。

本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。它们仍以估计无约束模型与受约束模型为基础,但以最大似然原

χ分布为检验统计量理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2

的分布特征。非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。

二、典型例题分析

例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36

.0

.

+

=

-

10+

094

medu

fedu

.0

sibs

edu210

131

.0

R2=0.214

式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。问

(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?

(2)请对medu 的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少? 解答:

(1)预期sibs 对劳动者受教育的年数有影响。因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。

根据多元回归模型偏回归系数的含义,sibs 前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。

(2)medu 的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。

(3)首先计算两人受教育的年数分别为 10.36+0.13112+0.21012=14.452 10.36+0.13116+0.21016=15.816

因此,两人的受教育年限的差别为15.816-14.452=1.364

例2.以企业研发支出(R&D )占销售额的比重为被解释变量(Y ),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:

099

.0)046.0()

22.0()

37.1(05.0)log(32.0472.022

1=++=R X X Y

其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。如果X1增加10%,估计Y 会变化多少个百分点?这在经济上是一个很大的影响吗?

(2)针对R&D 强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D 强度Y 是否在统计上有显著的影响? 解答:

(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y 变化的单位数,即Y=0.32log(X1)0.32(X1/X1)=0.32100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y 会增加0.32个百分点。由此,如果X1增加10%,Y 会增加0.032个百分点。这在经济上不是一个较大的影响。

(2)针对备择假设H1:01>β,检验原假设H0:01=β。易知计算的t 统计量的值为t=0.32/0.22=1.468。在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为1.699(单侧),计算的t 值小于该临界值,所以不拒绝原假设。意味着R&D 强度不随销售额的增加而变化。在10%的显著性水平下,t 分布的临界值为1.311,计算的t 值小于该值,拒绝原假设,意味着R&D 强度随销售额的增加而增加。

(3)对X2,参数估计值的t 统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y 在统计上没有显著的影响。

例3.下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。数据为美国40个城市的数据。模型如下:

μ

ββββββββ++++++++=statetax localtax unemp popchang

income value density g hou 76543210sin

式中housing ——实际颁发的建筑许可证数量,density ——每平方英里的人口密度,value ——自由房屋的均值(单位:百美元),ine ——平均家庭的收入(单位:千美元),popchang ——1980~1992年的人口增长百分比,unemp ——失业率,localtax ——人均交纳的地方税,statetax ——人均缴纳的州税 变量 模型A 模型B 模型C 模型D C 813 (0.74) -392 (0.81) -1279 (0.34) -973 (0.44) Density 0.075 (0.43) 0.062 (0.32) 0.042 (0.47)

Value -0.855 (0.13) -0.873 (0.11) -0.994 (0.06) -0.778 (0.07) Ine 110.41 (0.14) 133.03 (0.04) 125.71 (0.05) 116.60 (0.06) Popchang 26.77 (0.11) 29.19 (0.06) 29.41 (0.001) 24.86 (0.08) Unemp -76.55 (0.48) Localtax -0.061 (0.95)

Statetax -1.006 (0.40) -1.004 (0.37) RSS 4.763e+7 4.843e+7 4.962e+7 5.038e+7 R 2

0.349 0.338 0.322 0.312 2?σ

1.488e+6 1.424e+6 1.418e+6 1.399e+6 AIC

1.776e+6

1.634e+6

1.593e+6

1.538e+6

(1)检验模型A 中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。

根据检验结果,你认为应该把变量保留在模型中还是去掉?

(2)在模型A 中,在10%水平下检验联合假设H 0:i =0(i=1,5,6,7)。说明被择假设,计

算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。说明你的结论。

(3)哪个模型是“最优的”?解释你的选择标准。 (4)说明最优模型中有哪些系数的符号是“错误的”。说明你的预期符号并解释原因。确认

其是否为正确符号。 解答:

(1)直接给出了P-值,所以没有必要计算t-统计值以及查t 分布表。根据题意,如果p-值<0.10,则我们拒绝参数为零的原假设。

由于表中所有参数的p-值都超过了10%,所以没有系数是显著不为零的。但由此去掉所有解释变量,则会得到非常奇怪的结果。其实正如我们所知道的,多元回去归中在省略变量时一定要谨慎,要有所选择。本例中,value 、ine 、popchang 的p-值仅比0.1稍大一点,在略掉unemp 、localtax 、statetax 的模型C 中,这些变量的系数都是显著的。

(2)针对联合假设H 0:i =0(i=1,5,6,7)的备择假设为H1:i =0(i=1,5,6,7) 中至少有一个不为零。检验假设H0,实际上就是参数的约束性检验,非约束模型为模型A ,

约束模型为模型D ,检验统计值为

462.0)

840/()7763.4()

37/()7763.47038.5()1/()/()(=-+-+-+=----=

e e e k n RSS k k RSS RSS F U U R U U R

显然,在H0假设下,上述统计量满足F 分布,在10%的显著性水平下,自由度为(4,32)

的F 分布的临界值位于2.09和2.14之间。显然,计算的F 值小于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著的。

(3)模型D 中的3个解释变量全部通过显著性检验。尽管R2与残差平方和较大,但相对来说其AIC 值最低,所以我们选择该模型为最优的模型。

(4)随着收入的增加,我们预期住房需要会随之增加。所以可以预期β3>0,事实上其估计值确是大于零的。同样地,随着人口的增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此。随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预期β3估计值的符号为负,回归结果与直觉相符。出乎预料的是,地方税与州税为不显著的。由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。虽然模型A 是这种情况,但它们的影响却非常微弱。

4、在经典线性模型基本假定下,对含有三个自变量的多元回归模型:

μββββ++++=3322110X X X Y

你想检验的虚拟假设是H0:1221=-ββ。

(1)用2

1?,?ββ的方差及其协方差求出)?2?(21ββ-Var 。 (2)写出检验H0:1221=-ββ的t 统计量。 (3)如果定义θββ=-212,写出一个涉及

、、

2

3

的回归方程,以便能直

接得到估计值θ

?及其标准误。 解答:

(1)由数理统计学知识易知

)?(4)?,?(4)?()?2?(2

21121ββββββVar Cov Var Var +-=- (2)由数理统计学知识易知

)?2?(1?2?2

121ββββ---=se t ,其中)?2?(21ββ-se 为)?2?(2

1ββ-的标准差。 (3)由θββ=-212知212βθβ+=,代入原模型得

μ

ββθβμβββθβ+++++=+++++=33212103322120)2()2(X X X X X X X Y

这就是所需的模型,其中估计值θ

?及其标准误都能通过对该模型进行估计得到。

三、习题

(一)基本知识类题型 3-1.解释下列概念:

1) 多元线性回归 2) 虚变量 3) 正规方程组 4) 无偏性 5) 一致性

6) 参数估计量的置信区间 7) 被解释变量预测值的置信区间 8) 受约束回归 9) 无约束回归 10) 参数稳定性检验

3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?

1) i i i X Y εββ++=3

10

2) i i i X Y εββ++=log 10 3) i i i X Y εββ++=log log 10 4) i i i X Y εβββ++=)(210 5) i i

i X Y εββ+=

10

6) i i i X Y εββ

+-+=)1(110 7) i i i i X X Y εβββ+++=1022110

3-3.多元线性回归模型与一元线性回归模型有哪些区别?

3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?

3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。 (二)基本证明与问答类题型

3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:

i ki k i i i u x x x y +++++=ββββ 22110,n i ,,2,1 =的正规方程组,及其推导过程。

3-8.对于多元线性回归模型,证明: (1)∑=0i

e

(2)

0)???(?110

=+++=∑∑i

ki k i i

i e x x e y

βββ 3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?

3-10.在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中二者是否有等价的作用?

3-11.设有模型:u x x y +++=22110βββ,试在下列条件下: (1)121=+ββ (2)2

1ββ=

分别求出1β和2β的最小二乘估计量。 3-12.多元线性计量经济学模型

y x x x i i i k ki i =+++???++ββββμ01122=i 1,2,…,n (2.11.1)

的矩阵形式是什么?其中每个矩阵的含义是什么?熟练地写出用矩阵表示的该模型的普通最小二乘参数估计量,并证明在满足基本假设的情况下该普通最小二乘参数估计量是无偏和有效的估计量。

3-13.有如下生产函数:L K X ln 452.0ln 632.037.1ln ++=

(0.257) (0.219)

98.02=R 055.0),Cov(=L K b b

其中括号内数值为参数标准差。请检验以下零假设: (1)产出量的资本弹性和劳动弹性是等同的; (2)存在不变规模收益,即1=+βα 。

3-14.对模型i ki k i i i u x x x y +++++=ββββ 22110应用OLS 法,得到回归方程如下:

ki

k i i i x x x y ββββ?????22110++++= 要求:证明残差i i i y

y ?-=ε与i y ?不相关,即:0?=∑i

i y

ε。

3-15.

3-16.考虑下列两个模型:

Ⅰ、i i i i u x x y +++=33221βββ Ⅱ、i i i i i u x x x y '+++=-332212)(ααα

要求:(1)证明:1??22-=βα ,11??βα= ,3

3??βα= (2)证明:残差的最小二乘估计量相同,即:i i u u

'=?? (3)在何种情况下,模型Ⅱ的拟合优度2

2R 会小于模型Ⅰ拟合优度2

1R 。

3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两个可能的解释性方程:

方程A :3

215.10.10.150.125?X X X Y +--=75.02

=R 方程B :4

217.35.50.140.123?X X X Y -+-=73.02=R 其中:Y ——某天慢跑者的人数

1X ——该天降雨的英寸数 2X ——该天日照的小时数

3X ——该天的最高温度(按华氏温度) 4X ——第二天需交学期论文的班级数

请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?

(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?

3-18.对下列模型:i i i i u z x y +++=2βα (1)

i i i i u z x y +-+=ββα (2)

求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二乘估计值作比较:

(3)i i i i u z x y +-+=γβα ,你认为哪一个估计值更好?

3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为标准差):

i

i i i i X X X X Y 43219.561.07.124.286.10?-+++= (2.6) (6.3) (0.61) (5.9) 63.02

=R 35=n

要求:

(1)试判定每项结果对应着哪一个变量? (2)对你的判定结论做出说明。 (三)基本计算类题型

3-20.试对二元线性回归模型:i i i i u X X Y +++=22110βββ ,(n i ,,2,1 =)作回归分

析,要求:(1)求出未知参数210,,βββ的最小二乘估计量2

10?,?,?βββ; (2)求出随机误差项u 的方差2σ的无偏估计量; (3)对样本回归方程作拟合优度检验; (4)对总体回归方程的显著性进行F 检验; (5)对21,ββ的显著性进行t 检验;

(6)当),,1(20100'=X X X 时,写出)|E(00X Y 和Y 0的置信度为95%的预测区间。 3-21.下表给出三变量模型的回归结果: 方差来源 平方和(SS )

自由度(d.f.) 平方和的均值(MSS)

来自回归65965 — — 来自残差_— — — 总离差(TSS)

66042

14

要求:(1)样本容量是多少?

(2)求RSS ?

(3)ESS 和RSS 的自由度各是多少? (4)求2

R 和2

R ?

(5)检验假设:2X 和3X 对Y 无影响。你用什么假设检验?为什么? (6)根据以上信息,你能否确定2X 和3X 各自对Y 的贡献吗? 3-22.下面给出依据15个观察值计算得到的数据:

693.367=Y , 760.4022=X ,0.83=X ,269.660422=∑i y

096.848552

2=∑i

x

,0.2802

3=∑i x , 346.747782=∑i i x y

9.42503=∑i

i

x

y , 0.479632=∑i i x x

其中小写字母代表了各值与其样本均值的离差。 要求:(1)估计三个多元回归系数;

(2)估计它们的标准差;并求出2R 与2

R ? (3)估计2B 、3B 95%的置信区间;

(4)在%5=α下,检验估计的每个回归系数的统计显著性(双边检验); (5)检验在%5=α下所有的部分系数都为零,并给出方差分析表。 3-23.考虑以下方程(括号内为估计标准差):

t

t t i U P P W 560.2004.0364.0562.8?1-++=- (0.080) (0.072) (0.658) 19=n 873.02

=R

其中:W ——t 年的每位雇员的工资和薪水

P ——t 年的物价水平

U ——t 年的失业率

要求:(1)对个人收入估计的斜率系数进行假设检验;(尽量在做本题之前不参考结果)

(2)讨论1-t P 在理论上的正确性,对本模型的正确性进行讨论;1-t P 是否应从方程中删除?为什么?

3-24.下表是某种商品的需求量、价格和消费者收入十年的时间序列资料:

要求:(1)已知商品需求量Y 是其价格1X 和消费者收入2X 的函数,试求Y 对1X 和2X 的最

小二乘回归方程:2

2110????X X Y βββ++= (2)求Y 的总变差中未被1X 和2X 解释的部分,并对回归方程进行显著性检验;

(3)对回归参数1

?β,2?β进行显著性t 检验。 3-25.参考习题2-28给出的数据,要求:

(1)建立一个多元回归模型,解释MBA 毕业生的平均初职工资,并且求出回归结果; (2)如果模型中包括了GPA 和GMAT 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?

(3)如果学费这一变量的系数为正、并且在统计上是显著的,是否表示进入最昂贵的商业学校是值得的。学费这个变量可用什么来代替?

3-26.经研究发现,学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水平有关,对18名学生进行调查的统计资料如下表所示:

要求:

(1)试求出学生购买书籍及课外读物的支出Y 与受教育年限1X 和家庭收入水平2X 的估计

的回归方程:2

2110????X X Y βββ++= (2)对21,ββ的显著性进行t 检验;计算2

R 和2

R ;

(3)假设有一学生的受教育年限101=X 年,家庭收入水平月元/4802=X ,试预测该学生全年购买书籍及课外读物的支出,并求出相应的预测区间(α=0.05)。 3-27.根据100对(1x ,y )的观察值计算出:

122

1

=∑x

9-=∑y x

302=∑y 要求:

(1)求出一元模型u x y ++=110ββ中的1β的最小二乘估计量及其相应的标准差估计量; (2)后来发现y 还受2x 的影响,于是将一元模型改为二元模型v x x y +++=22110ααα,收集2x 的相应观察值并计算出:

6

2

2=∑x 82

=∑y

x

221=∑x x 求二元模型中的1α,2α的最小二乘估计量及其相应的标准差估计量;

(3)一元模型中的1

?β与二元模型中的1?α是否相等?为什么? 3-28.考虑以下预测的回归方程:

t

t t RS F Y 33.510.0120?++-=50.02=R 其中:t Y ——第t 年的玉米产量(蒲式耳/亩)

t F ——第t 年的施肥强度(磅/亩) t RS ——第t 年的降雨量(英寸)

要求回答下列问题:

(1)从F 和RS 对Y 的影响方面,说出本方程中系数10.0和33.5的含义; (2)常数项120-是否意味着玉米的负产量可能存在? (3)假定F β的真实值为40.0,则估计值是否有偏?为什么?

(4)假定该方程并不满足所有的古典模型假设,即并不是最佳线性无偏估计值,则是否意味着RS β的真实值绝对不等于33.5?为什么?

3-29.已知线性回归模型U X Y +=B 式中~U (0,I 2

σ),13=n 且3=k (n 为样本

容量,k 为参数的个数),由二次型)()'(B B X Y X Y --的最小化得到如下线性方程组:

3??2?321=++βββ 9??5?2321=++βββ 8?6??3

21-=++βββ 要求:(1)把问题写成矩阵向量的形式;用求逆矩阵的方法求解之;

(2)如果53='Y Y ,求2

(3)求出β

?的方差—协方差矩阵。 3-30.已知数据如下表:

要求:(1)先根据表中数据估计以下回归模型的方程(只估计参数不用估计标准差):

i i i u x y 1110++=αα i i i u x y 2220++=λλ i i i i u x x y +++=22110βββ

(2)回答下列问题:11βα=吗?为什么?22βλ=吗?为什么? (四)自我综合练习类题型

3-31.自己选择研究对象(最好是一个实际经济问题),收集样本数据,应用计量经济学软件(建议使用Eviews3.1),完成建立多元线性计量经济模型的全过程,并写出详细研究报告。

四、习题参考答案

(一)基本知识类题型

3-1.解释下列概念

(1)在现实经济活动中往往存在一个被解释变量受到多个解释变量的影响的现象,表现为在线性回归模型中有多个解释变量,这样的模型被称为多元线性回归模型,多元指多个解释变量。

(2)形如B

?X X '=Y X '的关于参数估计值的线性代数方程组称为正规方程组。 3-2.答:变量非线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数非线性;变量、系数均为非线性;变量、系数均为非线性;变量、系数均为线性。

3-3.答:多元线性回归模型与一元线性回归模型的区别表现在如下几方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估

计式的表达更复杂;

3-4.在多元线性回归模型中,参数的最小二乘估计量具备线性、无偏性、最小方差性,同时多元线性回归模型满足经典假定,所以此时的最小二乘估计量是最优的线性无偏估计量,又称BLUE 估计量。对于多元线性回归最小二乘估计的正规方程组,

3-5.答:多元线性回归模型的基本假定有:零均值假定、随机项独立同方差假定、解释变量的非随机性假定、解释变量之间不存在线性相关关系假定、随机误差项i u 服从均值为0方差为2

σ的正态分布假定。在证明最小二乘估计量的无偏性中,利用了解释变量与随机误差项不相关的假定;在有效性的证明中,利用了随机项独立同方差假定。

3-6.答:区间估计是指研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差X 围。 (二)基本证明与问答类题型

3-7.答:含有待估关系估计量的方程组称为正规方程组。 正规方程组的非矩阵形式如下:

??

???????=++++-=++++-=++++-=++++-∑∑∑∑∑∑∑∑0

)????(0)????(0)?

???(0)????(221102221102122110122110ki ki k i i ki i i ki k i i i i i ki k i i i i ki

k i i i x x x x x y x x x x x y x x x x x y x x x y ββββββββββββββββ 正规方程组的矩阵形式如下:

B

?X X '=Y X ' 推导过程略。

3-16.解:

(1)证明:由参数估计公式可得下列参数估计值

1?)

()(?2

233232222332322

22332322223332223323222232332222-=-=

--=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑βα

i

i

i

i

i i

i i

i

i

i i

i

i

i

i

i

i

i

i

i

i

i

i

i i

i

i

i i

i

i

i i i i

i i i i

x

x x

x x x x x x x x x x x x x x x x y x x x y x x x x x x x x

x y x

x x x y

x

3

233232223232222223323222332222233232222332222

23?)()(?βα

=-=

--=

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑i

i

i

i

i i

i i i

i

i i

i

i

i

i

i

i

i

i

i

i

i

i i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

x

x x

x x x x x x x x

x x x x x x x y x x x y x x x x x x x x x y x x x x y x

x

1

3

322332233221????)?1(???β

ββααααα

=--=-+-=---=x x y x x y x x x y

证毕。 ⑵证明:

i i

i i i i i i i i i i u

x x y x x y x x x y u

?????)?1(?????3322133221332212=---=-+--=----='βββααα

ααα

证毕。

⑶设:i i i x y z 2-= I 式的拟合优度为:

∑∑--=-=2

22

1

)

(?11y y u TSS ESS R i i II 式的拟合优度为:

∑∑-'-=-=2

2

2

2)(?11z z u TSS ESS R i

i 在⑵中已经证得i i u u

'=??成立,即二式分子相同,若要模型II 的拟合优度2

2R 小于模型I 的拟合优度2

1R ,必须满足:

22)()(y y z z

i i

-<-∑∑。

3-17.答:

⑴方程B 更合理些。原因是:方程B 中的参数估计值的符号与现实更接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化,这一点在学校的跑道模型中是一个合理的解释变量。

⑵解释变量的系数表明该变量的单位变化在方程中其他解释变量不变的条件下对被解释变量的影响,在方程A 和方程B 中由于选择了不同的解释变量,如方程A 选择的是“该天的最高温度”而方程B 选择的是“第二天需交学期论文的班级数”,由此造成2X 与这两个变量之间的关系不同,所以用相同的数据估计相同的变量得到不同的符号。 3-18.答:

将模型⑴改写成i i i i u x z y ++=-βα)2(,则β的估计值为:

∑∑---=2

)

()2)((?x x z y x x i

i i

i

β

将模型⑵改写成i i i i u z x y +-+=)(βα,则β的估计值为:

∑∑+--+--=2

)

()(?z x z x y

z x z x i

i

i

i

i

β

这两个模型都是三变量回归模型⑶在某种限制条件下的变形。如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏。 3-19.答:

⑴答案并不唯一,猜测为:1X 为学生数量,2X 为附近餐厅的盒饭价格,3X 为气温,

4X 为校园内食堂的盒饭价格;

⑵理由是被解释变量应与学生数量成正比,并且应该影响显著;与本食堂盒饭价格成反比,这与需求理论相吻合;与附近餐厅的盒饭价格成正比,因为彼此是替代品;与气温的变化关系不是十分显著,因为大多数学生不会因为气温升高不吃饭。 (三)基本计算类题型 3-22.解:⑴

7266.07578105506200.4796280096.848550

.47969.4250280346.74778?2323223223232322==

-??-?=

--=

∑∑∑∑∑∑∑∑i

i

i

i

i

i

i

i

i

i i

i

i x

x x x x x x x x y x x y β

7363

.275781020735800.4796280096.848550

.4796346.74778096.848559.4250?2

323223223222233==

-??-?=

--=

∑∑∑∑∑∑∑∑i

i

i

i

i

i

i

i

i

i i

i

i x

x x x x x x x x y x x y β

1572

.530.87363.2760.4027266.0693.367???3

3221=?-?-=--=X X Y βββ ⑵

3821

.612

9

.42507363.2346.747787266.0269.660423

15??33322222

=?-?-=

---=

-=

∑∑∑∑i

i i i i

i

x y x y y n e ββσ

768.1215

1

)()(211=??=

=σββA Var se 其中:∑∑∑∑∑∑∑-?-?+?=

i

i i i i i i

i i i x x x x x x x x X X x X x X A 32322322322

222322

同理,可得:0486.0)(2=βse ,8454.0)(3=βse

拟合优度为:9988.0??2

33222

=+=

∑∑∑i i

i i i y x y x y R ββ

9986.01

)

1(122=----=k

n n R R ⑶%5,12..==αf d ,查表得95.0)179.2(=≤t P

179.20486.07266.0179.22

≤-≤

-β,得到8325.06207.02≤≤β

179.28454.07363.2179.23

≤-≤-β,得到5784.48942.03≤≤β

8325.06207.0%9522≤≤∴ββ的置信区间为:,

5784.48942.0%9533≤≤ββ的置信区间为:

⑷)3,2,1(,0:0==i B H i ,0:1≠i B H

双边)%(5=α,12315..=-=f d 查表得临界值为179.2179.2≤≤-t

则:0:,179.20963.49768.120

1572.5311=∴>=-=

B t 拒绝零假设β

0:,179.29509.140486.007266.022=∴>=-=B t 拒绝零假设β

0:,179.22367.38454

.007363.233

=∴>=-=B t 拒绝零假设β

⑸所有的部分系数为0,即:0210===B B H ,等价于0:2

0=R H

方差来源 平方和 自由度 平方和的均值 来自回归 65963.018 2 32981.509 来自残差 79.2507 12 6.6042 总离差

66042.269

0203.49946042

.6509

.32981==

F ,12,2..%,5==f d α,F 临界值为3.89

F 值是显著的,所以拒绝零假设。

3-23.解:

⑴对给定在5%的显著水平下,可以进行t 检验,得到的结果如下:

3-28.解: ⑴在降

雨量不变时,每亩增加一磅肥料将使第t 年的玉米产量增加0.1蒲式耳/亩;在每亩施肥量不变的情况下,每增加一英寸的降雨量将使第t 年的玉米产量增加5.33蒲式耳/亩; ⑵在种地的一年中不施肥、也不下雨的现象同时发生的可能性极小,所以玉米的负产量不可能存在;

⑶如果F β的真实值为0.40,并不能说明0.1是有偏的估计,理由是0.1是本题估计的参数,而0.40是从总体得到的系数的均值。

⑷不一定。即便该方程并不满足所有的古典模型假设、不是最佳线性无偏估计值,也有可能得出的估计系数等于5.33。 3-29.解:

⑴该方程组的矩阵向量形式为:

??

????

????-=????????????????????893???611152121321βββ

??????????-=??????????-?????????

?=??????????-213893611152121???1321

βββ ⑵9.13

1382913353)(?2=-?-?-?-=--=k n RSS TSS σ

⑶β

?的方差—协方差矩阵为: ????

??????----=????

??????=X X '=---619.0225

.0675

.0225.0125.1475.2675.0475

.2525

.66111521219.1)(?)?(1

12σβ

Cov V

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型

2006年 217656.6 77597.2 63376.86 2007年 268019.4 93563.6 73300.1 2008年 316751.7 100394.94 79526.53 2009年 345629.2 82029.69 68618.37 2010年 408903 107022.84 94699.3 2011年 484123.5 123240.56 113161.39 2012年 534123 129359.3 114801 2013年 588018.8 137131.4 121037.5 2014年 636138.7 143911.66 120422.84 数据来源:国家统计局 三、模型的检验及结果的解释、评价 (一)OLS 法的检验 相关系数: Y X1 X2 Y 1 0.9799919175967026 0.98352422945 0628 X1 0.97999191759 67026 1 0.99756527944 46187 X2 0.983524229450628 0.99756527944 46187 1 线性图: 100,000 200,000300,000400,000500,000600,000700,000Y X1 X2 估计参数: Dependent Variable: Y

Method: Least Squares Date: 12/14/15 Time: 14:47 Sample: 1985 2014 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob. C 3775.319359 326024 8769.9280467 183 0.4304846447 102545 0.67026006 64360232 X1 -0.91272630 85551189 1.9385186318 83585 -0.470837005 9194414 0.64153894 75333828 X2 5.522785592 51161 2.2548570541 42605 2.4492841275 08302 0.02108703 0146243 R-squared 0.967586049 4429319 Mean dependent var 173871.823 3333334 Adjusted R-squared 0.965185016 0683343 S.D. dependent var 187698.441 4104575 S.E. of regression 35022.22758 863741 Akaike info criterion 23.8599929 764685 Sum squared resid 3311702348 2.29852 Schwarz criterion 24.0001127 1463471 Log likelihood -354.899894 6470274 Hannan-Quinn criter. 23.9048184 8460881 F-statistic 402.9873385 683694 Durbin-Watson stat 0.54328498 36158895 Prob(F-statistic) 7.850214650 723685e-21 统计检验: (1)拟合优度:从上表可以得到R2=0.9675860494429319,修正后的可决系数R2=0.9651850160683343,这说明模型对样本的拟合很好。 (2)F检验:针对H0: (二)多重共线性的检验及修正 相关系数矩阵: X1 X2

经典线性回归模型

2 经典线性回归模型 §2.1 概念与记号 1.线性回归模型是用来描述一个特定变量y 与其它一些变量x 1,…,x p 之间的关系。 2. 称特定变量y 为因变量 (dependent variable )、 被解释变量 (explained variable )、 响应变量(response variable )、被预测变量(predicted variable )、回归子 (regressand )。 3.称与特定变量相关的其它一些变量x 1,…,x p 为自变量(independent variable )、 解释变量(explanatory variable )、控制变量(control variable )、预测变量 (predictor variable )、回归量(regressor )、协变量(covariate )。 4.假定我们观测到上述这些变量的n 组值:( ) ip i i x x y , , , 1 L (i=1,…,n)。称 这n 组值为样本(sample )或数据(data )。 §2.2 经典线性回归模型的假定 假定 2.1(线性性(linearity)) i ip p i i x x y e b b b + + + + = L 1 1 0 (i=1,…,n)。 (2.1) 称方程(2.1)为因变量y 对自变量x 1,…,x p 的线性回归方程(linear regression equation ),其中 ( ) p , k k , , 1 0 L = b 是待估的未知参数(unknown parameters ), ( ) n i i , , 1 L = e 是满足一定限制条件的无法观测的误差项(unobserved error term ) 。称自 变量的函数 ip p i x x b b b + + + L 1 1 0 为回归函数(regression function )或简称为回归 (regression )。称 0 b 为回归的截距(ntercept),称 ( ) p k k , , 1 L = b 为自变量的回归系数 (regression coefficients ) 。某个自变量的回归系数表示在其它条件保持不变的情况下,

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

计量经济学简单线性回归实验报告精编

实验报告 1. 实验目的随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。 2. 模型设定 为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量” 为被解释变量(用Y 表示),选择“人均收入”为解释变量(用X 表 示)。本次实验报告数据取自某市从1974 年到1987 年的数据(教材书上101页表3.11),数据如下图所示:

1粮食年销售量Y/万吨人均收入X/ rF1974[ 9& 45153.2 1975100.7190 pl1976102.8240.3 1977133. 95301.12 [61978140.13361 71979143.11420 8—1980146.15491.76「91981144.6501 101982148. 94529.2 1 11-1983158.55552. 72匸1984169. 68771.16 131985P 162.1481L8 14二1986170. 09988.43 1519871F& 691094.65为分析粮食年销售量与人均收入的关系,做下图所谓的散点图 从散点图可以看出粮食年销售量与人均收入大体呈现为线性关 系,可以建立如下简单现行回归模型: 3?估计参数

Y t = ■? 1 2 X t ——I t 假定所建模型及其中的随机扰动项叫满足各项古典假定,可以 用OLS法估计其参数。 通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示: Dependent Variable Y Method: Least Squares Date 10/15/11 Time 14 49 Sample- 1 14 Included observations: 14 Variable Coefficient Std Error t-Statistic Prob C99 61349 6 431242 15 489000 0000 X0.0814700.010738 7.5071190.0000 R-squared0 827493Mean dependent var142 7129 Adjusted R-squared0 813123S.D. dependent var26.09805 S E of regression11 28200Akaike info criterion7 915858 Sum squared resid1527 403Schwarz criterion7 907152 Log likelihood-52.71101F-statisti c5756437 Durbin-V/atson stat0 638969Prob(尸-statistic)0 000006 可用规范的形式将参数估计和检验的结果写为: A Y t =99.61349+0.08147 X t (6.431242)(0.10738) t= (15.48900) (7.587119) R2=0.827498 F=57.56437 n=14 4?模型检验 (1).经济意义检验 A A 所估计的参数1=99.61349, 1 2=0.08147,说明人均收入每增加 1元,平均说来可导致粮食年销售量提高0.08147元。这与经济学中

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型应用作业 1985~2014年中国GDP与进口、出口贸易总额的关系 一、概述 在当今市场上,一国的GDP与多个因素存在着紧密的联系,例如进口总额和出口总额等都是影响一国GDP 的重要因素。本次将以中国1985-2014年GDP和进口总额、出口总额两个因素因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调贸易对GDP 的重要性,从而促进国内生产总值的发展。 二、模型构建过程 ⒈变量的定义 解释变量:X1进口贸易总额,X2出口贸易总额被解释变量:Y国内生产总值 建立计量经济模型:解释原油产量与进口贸易总额、出口贸易总额之间的关系。 ⒉模型的数学形式 设定GDP与两个解释变量相关关系模型,样本回归模型为: ⒊数据的收集 该模型的构建过程中共有两个变量,分别是中国从1990-2006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示 时间国内生产总值(亿元) 出口总额(人民币亿 元) 进口总额(人民币亿 元) 1985年9039.9 808.9 1257.8 1986年10308.8 1082.1 1498.3 1987年12102.2 1470 1614.2 1988年15101.1 1766.7 2055.1 1989年17090.3 1956 2199.9 1990年18774.3 2985.8 2574.3 1991年21895.5 3827.1 3398.7 1992年27068.3 4676.3 4443.3 1993年35524.3 5284.8 5986.2 1994年48459.6 10421.8 9960.1 1995年61129.8 12451.8 11048.1 1996年71572.3 12576.4 11557.4 1997年79429.5 15160.7 11806.5 1998年84883.7 15223.6 11626.1 1999年90187.7 16159.8 13736.5 2000年99776.3 20634.4 18638.8 2001年110270.4 22024.4 20159.2 2002年121002 26947.9 24430.3 2003年136564.6 36287.9 34195.6 2004年160714.4 49103.3 46435.8 2005年185895.8 62648.1 54273.7

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

经典线性回归模型的诊断与修正

经典线性回归模型的诊断与修正下表为最近20年我国全社会固定资产投资与GDP的统计数据:1 年份国内生产总值(亿元)GDP 全社会固定资产投资(亿元)PI 1996 71813.6 22913.5 1997 79715 24941.1 1998 85195.5 28406.2 1999 90564.4 29854.7 2000 100280.1 32917.7 2001 110863.1 37213.49 2002 121717.4 43499.91 2003 137422 55566.61 2004 161840.2 70477.43 2005 187318.9 88773.61 2006 219438.5 109998.16 2007 270232.3 137323.94 2008 319515.5 172828.4 2009 349081.4 224598.77 2010 413030.3 251683.77 2011 489300.6 311485.13 2012 540367.4 374694.74 2013 595244.4 446294.09 1数据来源于国家统计局网站年度数据

1、普通最小二乘法回归结果如下: 方程初步估计为: GDP=75906.54+1.1754PI (32.351) R2=0.9822F=1046.599 DW=0.3653 2、异方差的检验与修正 首先,用图示检验法,生成残差平方和与解释变量PI的散点图如下:

从上图可以看出,残差平方和与解释变量的散点图主要分布在图形的下半部分,有随PI的变动增大的趋势,因此,模型可能存在异方差。但是否确定存在异方差,还需作进一步的验证。 G-Q检验如下: 去除序列中间约1/4的部分后,1996-2003年的OLS估计结果如下所示:

线性回归模型的研究毕业论文

线性回归模型的研究毕业论文 1 引言 回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。他把儿子跟父母身高这种现象拟合成一种线性关系。但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。于是“线形回归”的术语被沿用下来了。 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。按照参数估计方法可以分为主成分回归、偏最小二乘回归、和岭回归。 一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。模型的各个参数可以根据实测数据解。接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。 回归分析是重要的统计推断方法。在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。从而推动了回归分析的快速发展。 2 回归分析的概述 2.1 回归分析的定义 回归分析是应用极其广泛的数据分析方法之一。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。 2.2 回归分析的主要容

计量经济学习题与解答

第五章经典单方程计量经济学模型:专门问题 一、内容提要 本章主要讨论了经典单方程回归模型的几个专门题。 第一个专题是虚拟解释变量问题。虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。 第二个专题是滞后变量问题。滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS法进行估计。由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。 第三个专题是模型设定偏误问题。主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。本专题最后介绍了一个关于选取线性模型还是双对数线性模型的一个实用方法。 第四个专题是关于建模一般方法论的问题。重点讨论了传统建模理论的缺陷以及为避免这种缺陷而由Hendry提出的“从一般到简单”的建模理论。传统建模方法对变量选取的

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

线性回归模型

线性回归模型 1.回归分析 回归分析研究的主要对象是客观事物变量之间的统计关系,它是建立在对客观事物进行大量试验和观察的基础上,用来寻找隐藏在那些看上去是不确定的现象中的统计规律性的方法。回归分析方法是通过建立模型研究变量间相互关系的密切程度、结构状态及进行模型预测的一种有效工具。 2.回归模型的一般形式 如果变量x_1,x_2,…,x_p与随机变量y之间存在着相关关系,通常就意味着每当x_1,x_2,…,x_p取定值后,y便有相应的概率分布与之对应。随机变量y与相关变量x_1,x_2,…,x_p之间的概率模型为 y = f(x_1, x_2,…,x_p) + ε(1) f(x_1, x_2,…,x_p)为变量x_1,x_2,…,x_p的确定性关系,ε为随机误差项。由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。 当概率模型(1)式中回归函数为线性函数时,即有 y = beta_0 + beta_1*x_1 + beta_2*x_2 + …+ beta_p*x_p +ε (2) 其中,beta_0,…,beta_p为未知参数,常称它们为回归系数。当变量x个数为1时,为简单线性回归模型,当变量x个数大于1时,为多元线性回归模型。 3.回归建模的过程 在实际问题的回归分析中,模型的建立和分析有几个重要的阶段,以经济模型的建立为例:

(1)根据研究的目的设置指标变量 回归分析模型主要是揭示事物间相关变量的数量关系。首先要根据所研究问题的目的设置因变量y,然后再选取与y有关的一些变量作为自变量。通常情况下,我们希望因变量与自变量之间具有因果关系。尤其是在研究某种经济活动或经济现象时,必须根据具体的经济现象的研究目的,利用经济学理论,从定性角度来确定某种经济问题中各因素之间的因果关系。(2)收集、整理统计数据 回归模型的建立是基于回归变量的样本统计数据。当确定好回归模型的变量之后,就要对这些变量收集、整理统计数据。数据的收集是建立经济问题回归模型的重要一环,是一项基础性工作,样本数据的质量如何,对回归模型的水平有至关重要的影响。 (3)确定理论回归模型的数学形式 当收集到所设置的变量的数据之后,就要确定适当的数学形式来描述这些变量之间的关系。绘制变量y_i与x_i(i = 1,2,…,n)的样本散点图是选择数学模型形式的重要手段。一般我们把(x_i,y_i)所对应的点在坐标系上画出来,观察散点图的分布状况。如果n个样本点大致分布在一条直线的周围,可考虑用线性回归模型去拟合这条直线。 (4)模型参数的估计 回归理论模型确定之后,利用收集、整理的样本数据对模型的未知参数给出估计是回归分析的重要内容。未知参数的估计方法最常用的是普通最小二乘法。普通最小二乘法通过最小化模型的残差平方和而得到参数的估计值。即 Min RSS = ∑(y_i – hat(y_i))^2 = 其中,hat(y_i)为因变量估计值,hat(beta_i)为参数估计值。 (5)模型的检验与修改 当模型的未知参数估计出来后,就初步建立了一个回归模型。建立回归模型的目的是应用它来研究经济问题,但如果直接用这个模型去做预测、控制和分析,是不够慎重的。因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。统计检验通常是对回归方程的显著性检验,以及回归系数的显著性检验,还有拟合优度的检验,随机误差项的序列相关检验,异方差性检验,解释变量的多重共线性检验等。 如果一个回归模型没有通过某种统计检验,或者通过了统计检验而没有合理的经济意义,就需要对回归模型进行修改。 (6)回归模型的运用 当一个经济问题的回归模型通过了各种统计检验,且具有合理的经济意义时,就可以运用这个模型来进一步研究经济问题。例如,经济变量的因素分析。应用回归模型对经济变量之间的关系作出了度量,从模型的回归系数可发现经济变量的结构性关系,给出相关评价的一些量化依据。 在回归模型的运用中,应将定性分析和定量分析有机结合。这是因为数理统计方法只是从事物的数量表面去研究问题,不涉及事物的规定性。单纯的表面上的数量关系是否反映事物的本质这本质究竟如何必须依靠专门学科的研究才能下定论。 Lasso 在多元线性回归中,当变量x_1,x_2,…,x_3之间有较强的线性相关性,即解释变量间出现严重的多重共线性。这种情况下,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘的效果变得很不理想。为了解决这一问题,可以采用子集选择、压缩估计或降维法,Lasso即为压缩估计的一种。Lasso可以将一些增加了模型复杂性但与模型无关的

计量经济学判断题 )

1. 总离差平方和可分解为回归平方和与残差平方和。( 对 ) 2. 整个多元回归模型在统计上是显着的意味着模型中任何一个单独的解释变量均是统计显着的。( 错 ) 3. 多重共线性只有在多元线性回归中才可能发生。( 对 ) 4. 通过作解释变量对时间的散点图可大致判断是否存在自相关。( 错 ) 5. 在计量回归中,如果估计量的方差有偏,则可推断模型应该存在异方差( 错 ) 6. 存在异方差时,可以用广义差分法来进行补救。( 错 ) 7. 当经典假设不满足时,普通最小二乘估计一定不是最优线性无偏估计量。( 错 ) 8. 判定系数检验中,回归平方和占的比重越大,判定系数也越大。( 对 ) 9. 可以作残差对某个解释变量的散点图来大致判断是否存在自相关。( 错 )做残差 ) n 5、经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量将有偏的。错,,即使经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量仍然是无偏的。 因为222)()?(βμββ=+=∑i i K E E ,该表达式成立与否与正态性无关。 1、在简单线性回归中可决系数2R 与斜率系数的t 检验的没有关系。错误,在简单线性回归 中,由于解释变量只有一个,当t 检验显示解释变量的影响显着时,必然会有该回归模型的可决系数大,拟合优度高。 2、异方差性、自相关性都是随机误差现象,但两者是有区别的。正确,异方差的出现总是与模型中某个解释变量的变化有关。自相关性是各回归模型的随机误差项之间具有相关关

系。3、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。错误,模型有截距项时,如果被考察的定性因素有m个相互排斥属性,则模型中引入m-1个虚拟变量,否则会陷入“虚拟变量陷阱”;模型无截距项时,若被考察的定性因素有m个相互排斥属性,可以引入m个虚拟变量,这时不会出现多重共线性。 4、满足阶条件的方程一定可以识别。错误,阶条件只是一个必要条件,即满足阶条件的的方程也可能是不可识别的。 5、库依克模型、自适应预期模型与局部调整模型的最终形式是不同的。错误,库依克模型、自适应预期模型与局部调整模型的最终形式是相同的,其最终形式都是一阶自回归模型。2、多重共线性问题是随机扰动项违背古典假定引起的。错误,应该是解释变量之间高度相关引起的. (3) 线性回归模型意味着因变量是自变量的线性函数。(错) (4) 在线性回归模型中,解释变量是原因,被解释变量是结果。(对) 1、虚拟变量的取值只能取0或1(对) 2、通过引入虚拟变量,可以对模型的参数变化进行检验(对) 1、简单线性回归模型与多元线性回归模型的基本假定是相同的。错 在多元线性回归模型里除了对随机误差项提出假定外,还对解释变量之间提 出无多重共线性的假定。 2、在模型中引入解释变量的多个滞后项容易产生多重共线性。对 在分布滞后模型里多引进解释变量的滞后项,由于变量的经济意义一样,只

线性回归模型的研究毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

计量经济学多元线性回归

低碳农业发展影响因素分析——以新疆南疆五地州为例 学生姓名方芳 学号1075717008 所属学院经济与管理学院 专业农村与区域发展 塔里木大学教务处制

目录 1 引言 (1) 2 数据来源和研究方法 (1) 2.1数据来源 (1) 2.2研究方法 (2) 3 模型检验与结果 (3) 3.1初始模型计量 (3) 3.2检验 (3) 4 结论与建议 (4) 5 参考文献 (4)

低碳农业发展影响因素分析 --以新疆南疆五地州为例 方芳 摘要:全球变暖问题引起世界各国的广泛关注,这一变化使得自然灾害频发,甚至危及人类安全,因此解决这一问题迫在眉睫。通过对新疆南疆五地州的农业总产值与化肥施用量、农用机械总动力及农作物总播种面积进行回归分析后,发现化肥施用量对农作物的总产值影响极大,是其主要的制约因素。要发展低碳农业应转变农业生产方式,实施保护性耕作;应推广施肥新技术,提高化肥利用率;应改进装置,利用新技术生产化肥;发展生态农业,实现经济循环发展。 关键字:低碳农业影响因素回归分析 1 引言 近年来气候变化所导致的高温热潮、暴雨连连、旱灾、沙尘暴频发事件的概率持续增加,CO2是造成该现象的源头之一,因此,发展低碳经济、发展节能减排成为全球关注的热点。2014 年《中美气候变化联合声明》提出我国将于2030 年左右达到碳排放峰值的庄严承诺,2015 年12 月12 日,195个缔约方在巴黎达成了新的全球气候协议———《巴黎协议》,提出努力将气温升幅限制在1.5℃内的目标。农业碳排放量介于电热生产和尾气之间,成为第二大排放源,占我国碳排放总量的17%。新疆位于亚欧大陆腹地,地处中国西北边陲,是中国面最大、交界邻国最多、陆地边境线最长的省区,肩负着与重要世界经济资源大国沿边开放的重任。同时,新疆作为我国重要的种植业和畜牧业基地,以8%的绿洲面积承载了90%以上的人口、耕地和生产总值,绿色生态压力相当严峻。新疆南疆位于天山以南的塔里木盆地 ,四周高山环抱。在行政区划上包括巴音郭楞、阿克苏、喀什、克孜勒苏、和田等五地州及生产建设兵团的四个农业师。塔里木河是我国最大的内陆河,它由西向东1321km,流域覆盖新疆南部地区,面积102万km2,人口825.7万 ,分别占新疆自治区的61%和 47%,是我国重要的棉花基地。冉锦成、苏洋等人研究表明,南疆各地 (州,市) 区域差异明显,喀什地区属碳排放量、碳排放强度“双高”型地区,因此,通过对农业产值与化肥施用量、机械总动力以及农作物播种面积的回归分析,试图找到影响低碳农业发展的主要因素,并提出相关的建议,促进农业实现低碳生产。 2 数据来源和研究方法 2.1数据来源 本文选取的是新疆2006--2016年的农业生产数据,其中包括:农业总产值(亿)Y,化肥施用量(万吨)(X1)、农用机械总动力(万千瓦)(X2)、农作物总播种面积(万公顷)(X3),数据来源于《中国统计年鉴》和《新疆统计年鉴》(2006--2016),数据见表1。 表1 新疆统计年鉴2006-2016样本数据

相关文档
最新文档