2017.4.3-高中物理选修动量守恒(人船模型)(精心整理,直接打印)

2017.4.3-高中物理选修动量守恒(人船模型)(精心整理,直接打印)
2017.4.3-高中物理选修动量守恒(人船模型)(精心整理,直接打印)

人船模型问题

说明:若系统在全过程中动量守恒(包括单方向),则这一系统在全过程中的平均动量也必定守恒。 推导:若两物体组成的系统相互作用前静止,则有:

0 = m 1?v 1 + m 2?v 2 即:m 1?|S 1|= m 2?|S 2|

例1. 静止在水面上的船长为L ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,船移动了多大距离?

分析:将人和车作为系统,动量守恒,设车向右移动的距离为s 船=s ,则人向左移动的距离为s 人=L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m (L -s )=0,从而可解得s. 注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分。

L m

M m

s +=

说明:

(1)此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

(2)做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。

(3)以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

例2. 在光滑水平面上静止着一辆长为L 的小车,其一端固定着靶牌,另一端有一人手拿手枪站在车上,车、靶、人(不含子弹)总质量为M ,如图。人开枪,待子弹射中靶牌后再开枪,每发子弹均留在靶中,这样将枪中N 发质量为m 的子弹全部射出。求:在射击过程中车的位移多大?

要点:由守恒,知道每一次子弹打入靶中时

刻,车的速度都是零。 分析:

解法1:与N 发齐发等同,即: N ?m ?v 1 + M ?v 2 = 0

而 t =L /(|v 1|+|v 2|)

且 |S 1|=|v 1|?t ,|S 2|=|v 2|?t |S 1|+|S 2|=L

联立解得:Nm

M NmL

S +=

1

解法2:设第一颗子弹射出后船的后退速度为v 1',每发效果相同,即:

m ?v 1 = [M +(N -1)m ]?v 1'

在时间t 内船的后退距离 s 1=

v 1't

子弹前进的距离d= v 1 t

如图L = d +s 1,即L= v 1 t + v 1't 子弹全部射出后船的后退距离S 1=N

?s 1

联立解得:Nm

M NmL

S +=

1

小结:对本题物理过程分析的关键,是要弄清子弹射向靶的过程中,子弹与船运动的关系,而这一关系如果能用几何图形加以描述,则很容易找出子弹与船间的相对运动关系。可见利用运动的过程草图,帮助我们分析类似较为复杂的运动关系问题,是大有益处的。

解题方法指导

例题3、质量为M 的平板车在光滑的水平面上。车平台高是h =1.25米,车以V 0=4m /s 的速度向右运动。某时刻质量为m =M /2的木块轻放在车的右端,m 落地时距平板车左端S =0.5米。求:

(1)木块离开平板车时平板车和木块的速度;

(2)若平板车长L =2米,则平板车与木块间的动摩擦因数μ是多少?

解析:

(1)M 、m 在相对运动的过程中,系统不受外

力,所以系统动量守恒。木块离开平板车后做平抛运动,木块落地时距平板车左端的距离就是木块的水平位移与平板车的位移的和。

由系统动量守恒: MV 0=MV 1-mV 2

由运动学知识知: h =1/2 gt 2

S = V 1t + V 2t

解以上三式得: V 1=3m /s V 2=-2m /s (负2说明木块速度是向前的)

(2)由能量守恒知:μmgL =21MV 02-2

1

MV 12-

2

1

mV 22 解以上式子得:μ=0.25 小结:

(1)解此类问题,关键是要看清系统动量是否守恒,特别注意地面是否光滑。从而判断能否用动量守恒列方程。如不守恒往往要用动量定理和动能定理。

(2)要注意两物体间运动时间的关系、位移关系、能量关系及其与对应功的关系。

(3)滑动摩擦力和相对位移的乘积等于摩擦生的热。这是常用的一个关系。

课后作业

1、,一车厢长度为L 、质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢来回碰撞n 次后静止于车厢中,这时车厢的速度为

A . v 0,水平向右

B . 零

C .m M m v +0

D . m

M m v -0

2、一门旧式大炮,炮身的质量为M ,射出炮弹的质量为m ,对地的速度为v ,方向与水平方向成α角,若不计炮身与水平地面的摩擦,则炮身后退速度的大小为

A. M mv /

B. M mv /cos α

C. )/(cos m M mv -α

D. )/(cos m M mv +α

3、质量相等的三个小球a 、b 、c 在光滑的水平面上以相同的速率运动,它们分别与原来静止的三个球A 、B 、C 相碰(a 与A 碰,b 与B 碰,c 与C 碰)。碰后,a 球继续沿原来的方向运动,b 球静止不动,c 球被弹回而向反方向运动。这时,A 、B 、C 三球中动量最大的是

A . A 球

B . B 球

C . C 球

D . 由于A 、B 、C 三球的质量未知,无法判定

4、一平板小车静止在光滑水平面上,车的右端安有一竖直的板壁,车的左端站有一持枪的人,此人水平持枪向板壁连续射击,子弹全部嵌在板壁内未穿出,过一段时间后停止射击。则

A . 停止射击后小车的速度为零

B . 射击过程中小车未移动

C . 停止射击后,小车在射击之前位置的左方

D . 停止射击后,小车在射击之前位置的右方

5、质量相等的A 、B 两球在光滑水平面上沿同一直线、向同一方向运动,A 球的动量为7 kg ·m /s ,B 球的动量为 5 kg ·m /s ,当A 球追上B 球发生碰撞后,A 、B 两球的动量可能为

A . p A =6 kg ·m /s p

B =6 kg ·m /s

B . p A =3 kg ·m /s p B =9 kg ·m /s

C . p A =-2 kg ·m /s

p B =14 kg ·m /s D . p A =-4 kg ·m /s p B =16 kg ·m /s

6、如图所示,质量为M 的滑块静止在光滑的水平面上,滑块的光滑弧面底部与桌面相切,一质量为m

的小球以速度v 0向滑块滚来,设小球不能越过滑块,小球滑到最高点时的速度大小为_______,此时滑块速度大小为_______。

7、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的总质量共为

M =30kg ,乙和他的冰车的总质量也是30kg ,甲推着一个质量为m =15kg 的箱子,和他一起以大小为v 0=2m /s 的速度滑行,乙以同样大小的速度迎面滑来,为了避免相碰,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。若不计冰面的摩擦力,求甲至少要以多大的速度(相对于冰面)将箱子推出,才能避免与乙相撞。

8、小车静置在光滑水平面上,站在车上的人练习打靶,人站在车的一端,靶固定在车的另一端,如图,已知车、人、靶和枪的总质量为M (不包括子弹),每颗子弹质量为m ,共n 发,打靶时每颗子弹击中靶后,就留在靶内,且待前一发击中靶后,再打下一发,打完n 发后,小车移动的距离为多少?

9、质量为M 的木块放在水平地面上,处于静止状态,木块与地面间动摩擦因数为μ,一颗质量为m 的子弹水平射入木块后,木块沿水平地面滑行了距离s 后停止,试求子弹射入木块前速度v 0。

10、如图,质量为M 的平板车的长度为L ,左端放一质量为m 的小物块,今使小物块与小车一起以共同速度v 0沿光滑水平面向右运动,小车将与竖直墙发生弹性碰撞,而小物块最终又恰与小车相对静止于小车的最右端,求小物块与小车上表面间的动摩擦因数。

11、质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x 0,如图所示。一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最低点后又向上运动。已知物块质量也为m 时,它们恰能回到O 点。若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度。求物块向上运动到达的最高点与O 点的距离。

12、一段凹槽A 倒扣在水平长木板C 上,槽内有一小物块B ,它到槽两内侧的距离均为2,如图所示。木板位于光滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的摩擦系数为μ。A 、B 、C 三者质量相等,原来都静止。现使槽A 以大小为v 0的初速向右运动,已知v 0

(1)从A 、B 发生第一次碰撞到第二次碰撞的时间内,木板C 运动的路程。

(2)在A 、B 刚要发生第四次碰撞时,A 、B 、C 三者速度的大小。

《推荐》微学霸——碰撞与动量守恒定律第八部分人船模型小车模型Word版含解析

第八部分人船模型小车模型人船模型 人船模型是两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。将速度与质量的关系推广到位移与质量,做这类题目,首先要画好示意图,要注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系; 人船问题的适用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的总动量为零,利用平均动量守恒表达式解答。 小车模型 动量守恒定律在小车介质上的应用,求解时注意:(1)初末动量的方向及大小;(2)小车的受力情况分析,是否满足某一方向合外力为零;(3)结合能量规律和动量守恒定律列方程求解。 人船模型 【典例1】静止在水面上的船长为L、质量为M,一个质量为m的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离是 A.B.C.D. 【答案】B 【解析】对于人船整体来说动量守恒,设船移动距离为s,人移动的距离为L-s,作用时间为t,根据动量守恒条件可知:,解得,故选B。 【名师点睛】本题考查相互作用的系统的动量守恒,体现任一时刻总动量都为零,这类问题的特点:两物体同时运动,同时停止。 【典例2】气球质量200 kg载有质量为50 kg的人,静止在空中距地面20 m高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长? 【答案】25 m 【解析】人与气球组成的系统动量守恒,设人的速度v1,气球的速度v2,设运动时间为t,以人与气球组成的系统为研究对象,以向下为正方向 由动量守恒得:,则

代入数据得 气球和人运动的路程之和为绳子的长度,则绳子长度,即绳子至少长25 m长 【名师点睛】本题人船模型的变形。 小车模型 【典例3】如图所示,两车厢的质量相同,其中一个车厢内有一人拉动绳子使两车厢相互靠近。若不计绳子质量及车厢与轨道间的摩擦,下列对于哪个车厢里有人的判断正确的是 A.绳子的拉力较大的那一端车厢里有人 B.先开始运动的车厢里有人 C.后到达两车中点的车厢里有人 D.不去称量质量无法确定哪个车厢有人 【答案】C 【解析】若不计绳子质量及车厢与轨道间的摩擦,根据牛顿第三定律,两车之间的拉力大小相等,且两车同时受到拉力,同时开始运动,故AB错误;两车之间的拉力大小相等,根据牛顿第二定律,质量大,加速度小,由位移公式,可知相同时间内位移小,所以后到达中点,即后到达两车中点的车厢里有人,故C正确,D错误。 【名师点睛】本题是牛顿运动定律和运动学公式结合应用,有人的车厢总质量大,绳子对两车厢的拉力大小相等,方向相反,同时产生,同时消失,根据牛顿第三定律和第二定律分析两车加速度大小,再运用运动学位移公式,可以得到正确的结论。 1.质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,则小船的运动速率和方向为 A.0.6 m/s,向左B.3 m/s,向左 C.0.6 m/s,向右D.3 m/s,向右 【答案】A 【解析】甲、乙和船组成的系统动量守恒,以水平向右为正方向,开始时总动量为零,根据动量守恒定律有:0=–m甲v甲+m乙v乙+mv,解得:,代入数据解得v=–0.6 m/s,负号说明

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

高中物理《人船模型》精讲

高中物理《人船模型》精讲 人船模型“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。解答:设人在运动过程中,人和船相对于水面的速度分别为v和u,则由动量守恒定律得:mv=Mu 由于人在走动过程中任意时刻人和船的速度v和u均满足上述关系,所以运动过程中,人和船平均速度大小也应满足相似的关系,即mv=Mu而v=x/t,u=y/t,所以上式可以转化为:mx=My 又有,x+y=L,得:X=ML/(M+m Y=mL/(M+m以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向动量守恒。2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。得:mx=My x+y=L这与“人船模型”的结果一样。变形2:如图所示,质量为M的圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=My x+y=L这又是一个“人船模型”。(1)关于“人船模型”典型的力学过程通常是典型的模型所参与和经历的,而参与和经历力学过程的模型所具备的特征,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,在下列 力学问题中我们将面临着一个典型的“人船模型”。问题:如图—1所示,质量为M的小船长L,静止于水面,质量为M的小船长为L,静止于水面,质量为m的人从船左端走到船右端,不计水对船的运动阻力,则这过程中船将移动多远?分析思路:①分析“人船模型”运动过程中的受力特征,进而判断其动量守恒,得:mυ=Mu②由于运动过程中任一时刻人,船速度大小υ和u均满足上述关系,所以运动过程中,人、船平均速度大小,和也应满足相似的关系。

动量守恒四人船模型)

动量守恒(四)――人船模型 两个原来静止的物体(人和船)发生相互作用时 ,不受其它外力,对这两个物体组成的 系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几 何关系) 基本题型:如图所示,长为L ,质量为M 的船停在静火中,一个质量为?的人站在船头,若 不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? ?? 贝U mv — Mv = 0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故 mvt — Mvt = 0,即ms 2 —Ms = 0,而几何关系满足:S i + S 2= L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量 为M,枪内有n 颗子弹,每颗子弹的质量为 m 枪口到靶的距离为L ,子弹水平射出枪口相 对于地的速度为V0,在发射后一发子弹时,前一发子弹已射入靶中,在射完 n 颗子弹时, 小船后退的距离为多少? 变化2: 一个质量为M,底面边长为b 的劈静止在光滑的水平面上,如图,有一质量为m 的 3: —只载人的热气球原来静止于空中,热气球本 质量是M,人的质量是m?,已知气球原来离地高H, 若人想沿软梯着地,这软梯至少应为多长 变化4:如图所示,质量为M,半径为R 的光滑圆环静止在光滑水平面上,有一质量为m 的 小滑块从与环心0等高处开始无初速下滑到达最低点时,圆环发生的位移为多少? 变化5:如图所示,一质量为ml 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上, 槽半径为R.现有一质量为m2的光滑小球B 由静止沿槽顶滑下,设 A 和B 均为弹性体,且 不计空气物块 多 变化 身的 由斜面顶部无初速滑到底部时,劈移动的距离是 少?

经典高中物理模型--人船模型之二

人船模型之二 动量守衡定律是自然界最重要最普遍的归律之一,利用该定律只考虑相互作用物体作用前后动量变化的关系,省去了具体细节的讨论,为我们解决力学问题提供了一种简捷的方法和思路。人船模型问题是一种很常见的题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到的效果。 [例1] 如图1所示,静水面上停有一小船,船长L = 3米,质量M = 120千克,一人从船头走到船尾,人的质量m = 60千克。那么,船移动的距离为多少?(水的阻力可以忽略不计) 过程分析当人从船头走到船尾,通过脚与船发生了作用(也可以认为走动过程就是人与船发生间歇性碰撞的过程)。选取人和船为研究对象,由于不计水的阻 力,所以系统在水平方向上动量守恒。 解:设人从船头走到船尾,船对地的就离为S,则人对地移动了L - S, 根据动量守恒定律可得 M S/t - m (L - S)/t = 0 解得 S = ML/(M + m) = 60*3/(120 + 60) = 1米 此题虽然很简单,但所展示的物理模型很重要,如果真正掌握了此题的解法,那么,下面几道题完全可以做到同法炮制,快速求解。 ※[例2] 一质量为M的船,静止于湖水中,船身长L,船的两端点有质量分别为m1和m2的人,且m1>m2,当两人交换位置后,船身位移的大小是多少?(不计水的阻力)过程分析此题初看上去较上题繁杂得多,物理模型也迥然相异,但实质上是大同小异,如出一辙。试想,若把质量大的人换成两个人,其中一个人的质量为m2,另一个人的质量为m = m1 - m2。由上一题可知,当两个质量都为m2的人互换位置之后,船将原地不动。这样一来,原来的问题就转化为上题所示的物理模型了,当质量为m = m1 - m2的人从船的一端走到另一端,求船的位移。 解:设船对地移动的位移为S,则质量为m = m1 - m2的人对地移动的位移就是L - S,由动量守恒定律可得 (M + 2m2)S/t – (m1 - m2) (L - S)/t = 0

1人船模型-动量守恒定律

v 1.如图所示,F 1、F 2等大反向,同时作用于静止在光滑水平面上的A 、B 两物体上,已知M A >M B ,经过相同时间后撤去两力.以后两物体相碰并粘成一体,这时A 、B 将 ( ) A .停止运动 B .向右运动 C .向左运动 D .仍运动但方向不能确定 2.如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑斜面由静止自由滑下,下滑到达斜面底端的过程中 A.两物体所受重力做功相同 B.两物体到达斜面底端时动量相同 C.两物体所受合外力冲量相同 D.两物体到达斜面底端时动量变化量的大小相等 3.如图,质量为m 的人在质量为M 的平板车上从左端走到右端,若不计平板车与地面的摩擦,则下列说法不正确... 的是( ) A .人在车上行走时,车将向左运动 B .当人停止走动时,由于车的惯性大,车将继续后退 C .人以不同速度从车的左端走到右端,车在地面上移动的距离不变 D .不管人在车上行走的速度多大,车在地面上移动的距离都相同 4. 下列情形中,满足动量守恒的是 A. 铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量 B. 子弹水平穿过放在光滑水平桌面上的木块过程中,子弹和木块的总动量 C. 子弹水平穿过墙壁的过程中,子弹和墙壁的总动量 D. 棒击垒球的过程中,棒和垒球的总动量 5.把皮球从地面以某一初速度竖直上抛,经过一段时间后皮球又落回抛出点,上升最大高度的一半处记为A 点。以地面为零势能面。设运动过程中受到的空气阻力大小与速率成正比,则 A .皮球上升过程中的克服重力做功大于下降过程中重力做功 B .皮球上升过程中重力的冲量大于下降过程中重力的冲量 C .皮球上升过程与下降过程空气阻力的冲量大小相等 D .皮球下降过程中重力势能与动能相等的位置在A 点下方 6.如图所示,轻弹簧下悬重物m 2。m 2与m 1之间用轻绳连接。剪断m 1与m 2间的轻绳,经较短时 间m 1有速度u ,m 2有速度大小为v ,求这段时间内弹力的冲量及弹力的平均值。 7.如图所示,气球吊着A 、B 两个物体以速度v 匀速上升,A 物体与气球的总质量为m 1, 物体B 的质量为m 2,m 1>m 2。某时刻A 、B 间细线断裂,求当气球的速度为2v 时,求物体B 的速度大小并判断方向。(空气阻力不计)

高中物理动量守恒定律人船模型

人船模型 “人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。 1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于 水面移动的距离 说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。 变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离 M L m M L

变形2:如图所示,质量为M 的 1 4 圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离 “人船模型”的应用 ① 等效思想” 如图所示,长为L 质量为M 立质量为m 1、m 2(m 1>m 2后,船在水平方向移动了多少 ②“人船模型”和机械能守恒的结合 如图所示,质量为 M 的物体静止于光滑水平面上,其上有一个半径为R 的光滑半圆形轨道,现把质量为m 的小球自轨道左测最高点静止释放,试计算: 1.摆球运动到最低点时,小球与轨道的速度是多少 2.轨道的振幅是多大? M

人船模型之二 动量守衡定律是自然界最重要最普遍的归律之一,利用该定律只考虑相互作用物体作用前后动量变化的关系,省去了具体细节的讨论,为我们解决力学问题提供了一种简捷的方法和思路。人船模型问题是一种很常见的题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到的效果。 [例1] 如图1所示,静水面上停有一小船,船长L = 3米,质量M = 120千克,一人从船头走到船尾,人的质量m = 60千克。那么,船移动的距离为多少(水的阻力可以忽略不计) ※[例2] 一质量为M的船,静止于湖水中,船身长L,船的两端点有质量分别为m 和m的人,且m>m,当两人交换位置后,船身位移的大小是多少(不计水的阻力) ※[例3] 某人在一只静止的小船上练习射击,船和人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹射出枪口时相对地面的速度为v,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少(不计水的阻力)。 ※[例4] 如图2所示,在光滑水平地面上,有两个光滑的直角三形 木块A和B,底边长分别为a、b,质量分别为M、m,若M = 4m,且不 计任何摩擦力,当B滑到底部时,A向后移了多少距离

高中物理反冲习题课-人船模型2

人船模型与反冲运动 知识目标 一、人船模型 1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。 2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零. 二、反冲运动 1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象 2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态. 教学过程 规律方法 1、人船模型及其应用 【例1】如图所示,长为l 、质量为M 的小船停在静水中, 一个质量为m 的人站在船头,若不计水的阻力,当人从船 头走到船尾的过程中,船和人对地面的位移各是多少? 解析:当人从船头走到船尾的过程中,人和船组成的系统在 水平方向上不受力的作用,故系统水平方向动量守恒,设某 时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m. 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t=0,即ms 2-Ms 1=0,而s 1+s 2=L 所以1,m s L M m =+2M s L M m =+ 【例2】载人气球原静止于高h 的高空,气球质量为M ,人的质量 为m .若人沿绳梯滑至地面,则绳梯至少为多长? 解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑 过程中系统动量守恒,人着地时,绳梯至少应触及地面,因为人下 滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中 系统平均动量守恒.若设绳梯长为l ,人沿绳梯滑至地面的时间为 t , 由图4—15可看出,气球对地移动的平均速度为(l -h )/t ,人对地 移动的平均速度为-h/t (以向上为正方向).由动量守恒定律,有 M (l -h )/t -m h/t=0.解得 l=M m M +h . 答案:M m M +h 说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解. (2)画出反映位移关系的草图,对求解此类题目会有很大的帮助. (3)解此类的题目,注意速度必须相对同一参照物.

动量守恒 四人船模型

动量守恒(四)——人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系) 基本题型:如图所示,长为L,质量为M的船停在静火中,一个质量为的人站在船头,若不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少 则mv 2-Mv 1 =0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t-Mv 1 t=0,即ms 2 -Ms 1=0,而几何关系满足:s 1 +s 2 =L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹水平射出枪口相对于地的速度为v0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n颗子弹时,小船后退的距离为多少 变化2:一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,如图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少 变化3:一只载人的热原来静止于空中,热气球本身的质量是M,人的质量是m,已知气球原来离地高H,若人想沿软梯着地,这软梯至少应为多长。 变化4:如图所示,质量为M,半径为R的光滑圆环静止在光滑水平面上,有一质量为 m 的

小滑块从与环心O等高处开始无初速下滑到达最低点时,圆环发生的位移为多少 变化5:如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽顶滑下,设A和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动的最大距离. 参考答案: 基本题型:s1=ML/(M+m) s2=mL/(M+m) 变化1:s2=nmL/(M+m) 变化2:s2=mb/(M+m) 变化3:L=(M+m)H/M 变化4:s2=mR/(M+m) 变化5:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s1,则m1s1=m2s2, 又因为s1+s2=2R,所以s1=m 2R /(m1+m2) 2

0衡水中学物理最经典-物理建模系列(十) 人船模型问题

物理建模系列(十) 人船模型问题 1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键: (1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系. ①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率. ②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有 m 1v 1-m 2v 2=0. ③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2 t =0,即m 1x 1-m 2x 2=0. (2)画出各物体的位移关系图,找出它们相对地面的位移的关系. 4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题. 例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少? 【思路点拨】 【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对

高中物理人船模型 应用动量守恒处理问题

人船模型应用动量守恒处理问题 动量守恒定律的要点: 1。矢量表达式:m1v1+m2v2=m1v1/+m2v2/ 2。条件:⑴系统不受合外力或系统所受合外力为零。 ⑵系统在某一方向合外力为零,则该方向动量守恒 ⑶系统内力远大于外力(如爆炸过程中的重力、碰撞过程中的摩擦力等) 3、各物体的速度应取地为参考系 4、系统在一维空间相互作用,应规定正方向,以确定每个动量的正、负。若待求量的方向未知,直接代入该量的符号,所求结果为正值,则该量的方向与规定方向相同,所求结果为负值,则该量的方向与规定方向相反。 应用平均动量守恒处理问题的方法 若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒。如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则 由0=m1v1-m2v2(其中v1、v2是平均速度) 得推论:m1s1=m2s2,使用时应明确s1、s2必须是相对同一参照物体的大小。 人船模型 在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的 人,开始时人和船都静止。若人匀速从船尾走到船头,不计水的阻力。则船将()(A)后退0.5m (B)后退0.6m (C)后退0.75m (D)一直匀速后退 在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。若人匀速从船尾走到船头,不计水的阻力。则船将( A )(A)后退0.5m (B)后退0.6m (C)后退0.75m (D)一直匀速后退 分析与解:取人和小船为对象,它们所受合外力为零,初动量m人v人+m船v船=0 (均静止)

经典物理模型人船模型之一

1 / 2 人船模型之一 “人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。 1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离? 分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。 解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得: m v =Mu 由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即 m ν=M u 而x t ν = ,y u t =,所以上式可以转化为:mx=My 又有,x+y=L,得: M x L m M = + m y L m M =+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。 该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。 2、“人船模型”的变形 变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离? 分析:由于开始人和气球组成的系统静止在空中, 竖直方向系统所受外力之和为零,即系统竖直方 向系统总动量守恒。得: mx=My x+y=L 这与“人船模型”的结果一样。 变形2:如图所示,质量为M 的 1 4 圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=My x+y=L 3、“人船模型”的应用 ①“等效思想” 如图所示,长为L 质量为M 的小船停在静水中,船头船尾分别站立质量为m 1、m 2(m 1>m 2)的两个人,那么,当两个人互换位置后,船在水平方向移动了多少? 分析:将两人和船看成系统,系统水平方向总动量守恒。本题可以理解为是人先后移动,但本题又可等效成质量为 M L m M L x y m M x y m 1 m 2 M 'M m ? x y L m ? 'M

动量守恒(四)--人船模型

动量守恒(四)——人船模型 ——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系) 基本题型:如图所示,长为L,质量为M的船停在静火中,一个质量为的人站在船头,若不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? 则mv 2-Mv 1 =0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t-Mv 1 t= 0,即ms 2-Ms 1 =0,而几何关系满足:s 1 +s 2 =L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹水平射出枪口相对于地的速度为v0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n颗子弹时,小船后退的距离为多少? 变化2:一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,如图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少? 变化3:一只载人的热气球原来静止于空中,热气球本身的质量是M,人的质量是m ,已知气球原来离地高H,若人想沿软梯着地,这软梯至少应为多长。

变化4:如图所示,质量为M,半径为R的光滑圆环静止在光滑水平面上,有一质量为 m 的小滑块从与环心O等高处开始无初速下滑到达最低点时,圆环发生的位移为多少? 变化5:如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽顶滑下,设A 和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动的最大距离. 参考答案: 基本题型:s1=ML/(M+m) s2=mL/(M+m) 变化1:s2=nmL/(M+m) 变化2:s2=mb/(M+m) 变化3:L=(M+m)H/M 变化4:s2=mR/(M+m)

动量守恒四人船模型

动量守恒四人船模型文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

动量守恒(四)——人船模型 ——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系) 基本题型:如图所示,长为L ,质量为M 的船停在静火中,一个质量为的人站在船头,若不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少 则mv 2-Mv 1=0, 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t =0,即ms 2-Ms 1=0,而几何关系满足:s 1+s 2=L 变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M ,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为多少

变化2:一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,如图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少 变化3:一只载人的热原来静止于空中,热气球本身的质量是M,人的质量是m,已知气球原来离地高H,若人想沿软梯着地,这软梯至少应为多长。 变化4:如图所示,质量为M,半径为R的光滑圆环静止在光滑水平面上,有一质量为 m 的小滑块从与环心O等高处开始无初速下滑到达最低点时,圆环发生的位移为多少

变化5:如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置 于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽 顶滑下,设A和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动 的最大距离. 参考答案: 基本题型:s1=ML/(M+m) s2=mL/(M+m) 变化1:s2=nmL/(M+m) 变化2:s2=mb/(M+m) 变化3:L=(M+m)H/M 变化4:s2=mR/(M+m) 变化5:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s1,则m1s1=m2s2, 2R /(m1+m2) 又因为s1+s2=2R,所以s1=m 2

高中物理模型组合讲解——人船模型

模型组合讲解——人船模型 [模型概述] “人船”模型极其应用如一人(物)在船(木板)上,或两人(物)在船(木板)上等,在近几年的高考中极为常见,分值高,区分度大,如果我们在解题中按照模型观点处理,以每题分布给分的情况来看还是可以得到相当的分数。 [模型讲解] 例. 如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少 图1 解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速度为v ,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:0'=-Mv mv ,即M m v v =' 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中,人的平均速度v 与船的平均速度v 也与它们的质量成反比,即M m v v =,而人的位移t v s =人,船的位移t v s =船,所以船的位移与人的位移也与它们的质量成反比,即><=1M m s s 人船 <1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,

在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出:><=+2L s s 人船 由<1><2>两式解得L m M m s L m M M s +=+= 船人, [模型要点] 动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。这类问题的特点:两物体同时运动,同时停止。 动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。 两个推论:①当系统的动量守恒时,任意一段时间内的平均动量也守恒; ②当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。 适用范围:动量守恒定律虽然是由牛顿第二定律推导得到的,但它的适用范围比牛顿第二定律更广泛,它既适用于宏观也适用于微观,既适用于低速也适用于高速。 [误区点拨] 动量守恒的研究对象是一个系统,对一个物体就不能谈动量守恒问题。动量守恒定律是一个矢量表达式;动量守恒定律是一个状态量表达式,它只与系统的初末状态有关;动量守恒定律具有相对性,表达式中的速度应是对应同一参照系的速度;动量守恒定律具有同时性,表达式中的初状态的动量应该是指同一时刻的各个物体动量的矢量和,末状态也是如此。 [模型演练] 如图2所示,质量为M 的小车,上面站着一个质量为m 的人,车以v 0的速度在光滑的水平地面上前进,现在人用相对于小车为u 的速度水平向后跳出后,车速增加Δv ,则计算Δv 的式子正确的是:( )

应用动量守恒定律研究人船模型问题

分宜中学 卢海波 动量守衡定律是自然界最重要最普遍地归律之一,利用该定律只考虑相互作用物体作用前后动量变化地关系,省去了具体细节地讨论,为我们解决力学问题提供了一种简捷地方法和思路.资料个人收集整理,勿做商业用途人船模型问题是一种很常见地题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到地效果.资料个人收集整理,勿做商业用途[例] 如图所示,静水面上停有一小船,船长 米,质量 千克,一人从船头走到船尾,人地质量 千克.那么,船移动地距离为多少?(水地阻力可以忽略不计)资料个人收集整理,勿做商业用途过程分析 当人从船头走到船尾,通过脚与船发生了作用(也可以认为走动过程就是人与船发生间歇性碰撞地过程).选取人和船为研究对象,由于不计水地阻力,所以系统在水平方向上动量守恒.资料个人收集整理,勿做商业用途解:设人从船头走到船尾,船对地地就离为,则人对地移动了 , 根据动量守恒定律可得 ( ) 解得 ( ) *( ) 米 此题虽然很简单,但所展示地物理模型很重要,如果真正掌握了此题地解法,那么,下面几道题完全可以做到同法炮制,快速求解.资料个人收集整理,勿做商业用途[例] 一质量为地船,静止于湖水中,船身长,船地两端点有质量分别为和地人,且>,当两人交换位置后,船身位移地大小是多少?(不计水地阻力)资料个人收集整理,勿做商业用途过程分析 此题初看上去较上题繁杂得多,物理模型也迥然相异,但实质上是大同小异,如出一辙.试想,若把质量大地人换成两个人,其中一个人地质量为,另一个人地质量为 .由上一题可知,当两个质量都为地人互换位置之后,船将原地不动.这样一来,原来地问题就转化为上题所示地物理模型了,当质量为 地人从船地一端走到另一端,求船地位移.资料个人收集整理,勿做商业用途解:设船对地移动地位移为,则质量为 地人对地移动地位移就是 ,由动量守恒定律可得资料个人收集整理,勿做商业用途 ( 2m2) – ( ) ( ) 解得 ( )( ) [例] 某人在一只静止地小船上练习射击,船和人连同枪(不包括子弹)及靶地总质量为,枪内装有颗子弹,每颗子弹地质量为,枪口到靶地距离为,子弹射出枪口时相对地面地速度为,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完颗子弹后,小船后退地距离为多少(不计水地阻力).资料个人收集整理,勿做商业用途过程分析 子弹发射时在枪内地运动,和击靶地过程,类似于人船模型中相互作用.连发颗子弹,相当于个人从船头走到船尾.把船、人、枪、靶和子弹作为一个系统进行研究,因该系统在水平方向上不受外力,所以在这个方向上总动量守恒.资料个人收集整理,勿做商业用途解:设一颗子弹完成射击过程地历时为,小船移动,由动量守恒定律可得 [ ( ) ] – ( ) 解方程可得 ( )

模型组合讲解人船模型

模型组合讲解一一人船模型 申健 [模型概述] “人船”模型极其应用如一人(物)在船(木板)上,或两人(物)在船(木板)上等, 在近几年的高考中极为常见,分值高,区分度大,如果我们在解题中按照模型观点处理,以每题分布给分的情况来看还是可以得到相当的分数。 [模型讲解] 例?如图1所示,长为L、质量为M的小船停在静水中,质量为m的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少? 解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做 加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速度为v,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:mv 即V m v M 的位移S船vt,所以船的位移与人的位移也与它们的质量成反比,即 <1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出: s船s 人L 2 [模型要点] 动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。这类问题的特点:两物体同时运动,同时停止。 动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。 两个推论:①当系统的动量守恒时,任意一段时间内的平均动量也守恒; Mv' 0, 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速 度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中, 均速度v与船的平均速度v也与它们的质量成反比,即 v詁,而人的位移s A 人的平 vt,船 s A L,-J^L M m

关于人船模型的几个实例

关于人船模型的几个实例 在中学物理各知识章节中,都有典型的物理模型。人船模型就是动量守恒定律一章中的理想模型。 一.人船模型适用条件是由两个物体组成的系统,在水平方向动量守恒,在人与船相互作用前,都是静止的。 例1.如图(一)长为L 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少? 解析:以人和船组成的系统为研究对象,在人从船头走到船尾的过程中,系统在水平方向上不受外力,所以在水平方向上动量守恒。人起步前系统的总动量为零。当人加速前进时,船同时向后加速运动,当人匀速前进时,船同时向后匀速运动,当人停下来时,船也停下来。设某一时刻人对地的速度为v 2,船对地的速度为v 1,以人前进的方向为正方向,根据动量守恒定律有:mv 2-Mv 1=0,大小关系可以写成mv 2=Mv 1,在人从船头走到穿尾的过程中的每一时刻都满足动量守恒,因此每时每刻人和船的速度之比都与它们的质量成反比。我们知道若系统在全过程中动量守恒(或在某一方向动量守恒),那系统在全过程中的平均动量也守恒。在相互作用的过程中人和船所用时间是相等的,可以得出人的位移s 2与船的位移s 1之比,也等于它们的质量比,即ms 2=Ms 1.由图可以看出s 1+s 2=L 解之得s 1=mL/(m+M ),s 2=ML/(m+M )。 在习题中,不乏出现人船模型的变形习题。 二.人船模型的变形. 例2.如图(二)气球的质量为M ,下面拖一条质量不计的软梯,质量为m 的人站在软梯上端距地面为H ,气球保持静止状态,求: 1)人安全到地面软梯的最小长度。 2)若软梯的长为H ,则人从软梯上端到下端时,人距地面多高。 解:1)令气球上升的距离为h ,而人对地下降H ,根据人船模型的结论有mH=Mh ,L=H+h ,L=(M+m )H/M 2)令气球上移S 1,人下降S 2,根据人船模型的结论有:MS 1=mS 2,S 1+S 2=H ,h 1=H-S 2,解之得h 1=mH/(m+M ) 例3.如图(三)一个质量为M ,底边边长为b 的劈静止在光滑的水平面上,有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移 动的距离是多少? 解析:劈和小球组成的系统在水平面不受外力,故在水平方向动量守恒, 令s 1和s 2为m 和M 对地的位移。 根据推论有:ms 1=Ms 2 根据题意有:s 1+ s 2=b 解之得s 2=mb/(M+m ) 例4.如图(四)质量为M 的均匀方形盒静置于光滑的水平面上,在其顶部的中

相关文档
最新文档