二元函数全微分的几何意义是什么

二元函数全微分的几何意义是什么
二元函数全微分的几何意义是什么

二元函数全微分的几何意义是什么二元函数全微分的几何意义是什么

第一幅是图形,第二幅第三幅由于不能捕捉的太大,就给你发了两幅,你对比着把它们凑起

来看吧

反比例函数k的几何意义

反比例函数k 的几何意义 一、教学目标 1.理解反比例函数y=k/x(k ≠0)中比例系数k 的几何意义; 2.通过由特殊到一般,再由一般到特殊的探究方法,感受知识的形成过程,能够根据反比例函数表达式求出相关图形的面积,会根据图形的面积确定反比例函数中k 的值; 3.通过反比例函数与矩形的对应关系渗透数形结合的思想,使学生感受到代数与几何的内在联系,矩形的两条邻边的长度变化而面积不变,渗透了整体思考的数学思想方法。 二、教学过程 (一)、情境引入 1、平面直角坐标系内一点P (x ,y )到x 轴的距离为______,到y 轴的距离为______. 2、反比例函数的定义是什么?如何确定系数k 的值? 3、反比例函数的系数k 能决定函数图像的什么? 反比例函数的比例系数k 有一个很重要的几何意义,这节课我们来共同研究一下: (二)、探究新知 1、已知反比例函数 x y 2 -=图象上任一点A 作x 轴、y 轴的垂线AB 、AC ,垂足为 B 、 C (如下图所示), (1)则矩形ABOC 的面积是否发生变化?若不变,请求出其面积;若改变,请说明理由。 (2)则△AOB 的面积呢? (3)当k=5时呢? 学生自己先完成,在合作讨论展示,最后老师补充; 2、归纳总结: 过双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所 围成的矩形面积为常数 。

过双曲线上任意一点作x 轴(或y 轴)的垂线,连接这点和原点 的线段,它们与x 轴(或y 轴)所围成的三角形的面积为常数21。 在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。现举例说明。 (三)、应用 1、基础练习 (1)若P 点为反比例函数(k <0)上任意一点,过P 点向x 轴作垂线交于A 点,已知S△AOP=4,则反比例函数的解析式为__________ (变式)如下图,在平面直角坐标系中,O 为坐标原点,菱形OABC 的对角线OB 在x 轴上,菱形面积为8,函数的图象经过点A ,则k 的值是_____. (2).如下图所示,设A 为反比例函数图象上一点,且长方形ABOC 的面积为3,则这个反比例函数解析式为______. (变式).如上图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为________. 2、提升练习 (1)、如下图,函数的图象与矩形?OABC 的边AB 、BC 交于M 、N 两点,O 为坐标原点,A 点在x 轴上,C 点在y 轴上,B (4,2),那么四边形OMBN 的面积为_________

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例, 如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x 的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在 处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做 , , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为

记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或 由偏导数的概念可知, 在点处对的偏导数显然就是偏导 函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为

反比例函数比例系数的几何意义

反比例函数比例系数的几何意义 1.如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.Π 1题图3题图4题图5题图 2.对于反比例函数y=,下列说法错误的是() A.函数图象位于第一、三象限B.函数值y随x的增大而减小 C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2 D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值 3.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是() A.4B.6C.4D.12 4.如图,平行于x轴的直线与函数y1=(a>0,x>0),y2=(b>0.x>0)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6B.﹣6C.3D.﹣3 5.如图,函数y=(x>0)和y=(x>0)的图象分别是l1和l2.设点P在l2上,P A∥y轴交l1于点A,PB∥x轴,交l1于点B,△P AB的面积为() A.B.C.D. 6.如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0, x>0),若矩形ABCD的面积为10,则k的值为() A.10B.4C.3D.5 7.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上

B.当k>0时,y随x的增大而减小 C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为k D.反比例函数的图象关于直线y=x和y=﹣x成轴对称 8.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为() A.1B.2C.4D.无法计算 8题图9题图10题图12题图 9.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于() A.4B.4.2C.4.6D.5 10.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是() A.﹣12B.﹣8C.﹣6D.﹣4 11.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上 B.当k>0时,y随x的增大而减小 C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k D.反比例函数的图象关于直线y=﹣x成轴对称 12.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C 在反比例函数y=(x>0)的图象上,则△OAB的面积等于() A.2B.3C.4D.6 13.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数y=在第二象限的图象经过点E,则正方形AOBC和正方形CDEF的面积之

常用微分公式

(1)dx dx =nx n -1 ,n ∈N 。 (2)d x dx n x n N n n =∈-11 1,。 (3)dc dx =0,其中c 为常数。(4)(sin x )/=cos x (5)(cos x )/=-sin x 另一种表示:① (x n )/=nx n -1 ② /)(n x =1n 1 1-x ③ (c )/=0 证明: (2)设a 为f (x )=n x 定义域中的任意点, 则f /(a )=a x →lim f (x )-f (a ) x -a =a x →lim a x a x n n --=a x →lim ] )(....)())[((121---++?+--n n n n n n n n n n n a a x x a x a x =1) (1-n n a n =1n (n a -1)=1n (1 1-a ) (4)设a 为任意实数,f (x )=sin x f (x )-f (a )x -a = sin x -sin a x -a = a x a x a x -+-2cos 2sin 2 计算f /(a )= a x →lim f (x )-f (a )x -a =a x →lim ( a x a x a x -+-2cos 2sin 2)=cos a 。 (1)(3)(5)自证 (1)f (x )与g (x )为可微分的函数。?f (x )+g (x )为可微分的函数。 且d dx (f (x )+g (x ))= d dx (f (x ))+ d dx (g (x ))成立。 另一种表示:(f (x )+g (x ))/=f /(x )+g /(x ) 证明:令h (x )=f (x )+g (x ),设a 为h (x )定义域中的任一点 h /(a )=a x →lim h (x )-h (a )x -a =a x →lim a x a g a f x g x f ---+) ()()()( =a x →lim (f (x )-f (a )x -a + g (x )-g (a )x -a )=a x →lim (f (x )-f (a )x -a )+a x →lim (g (x )-g (a )x -a ) =f /(a )+g /(a ) 例:求=+)(35x x dx d ? 推论:dx d (f 1(x )+f 2(x )+...+f n (x )) = dx x df dx x df dx x df n )() ()(21+???++

反比例函数K的几何意义

反比例函数K 的几何意义 知识引入 反比例函数)0(≠= k x k y 中k 的几何意义:双曲线)0(≠=k x k y 上任意一点向两坐标轴作垂线,两垂线与坐标轴围成的矩形面积为k 。 理由:如下图,过双曲线上任意一点P 作x 轴、y 轴的垂线PM PN 、所得的矩形 PMON 的面积 PMON S PM PN y x xy =?=?=矩形; k y x = ,xy k ∴=即S k =,即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积均为k 。 下面两个结论是上述结论的拓展: 如下图,则有k xy S S AOB OPA 2 121== =?? (1)如图①,OPA OCD OPC ADCP S S S S ???==梯形; 图①图② (2)如图②,BPE ACE OAPB OBCA S S S S ??==梯形梯形;

典型例题 题型一:K 意义的直接运用 【例1】(2013?宜昌)如图,点B 在反比例函数()02 >= x x y 的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A C 、,则矩形OABC 的面积为_______ 2、(2013?淄博)如图,矩形AOBC 的面积为4,反比例函数x k y =的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是__________ 【变式练习】: 1、如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上:ABP ?的面积为2,则这个反比例函数的解析式为______________.

2、如图,A B 、为双曲线x y 12 - =上的点,AD x ⊥轴于D ,BC y ⊥轴于点C ,则四边形ABCD 的面积为。 题型二:知K 求面积 【例2】①双曲线x y 4 = 在第一象限内的图像如图所示,作一条平行于x 轴的直线分别交双曲线于A 点,交y 轴于B 点,点C 为x 轴上一点,连结AC 交y 轴于D 点,连结BC ,若 DBC ?的面积为3,则ABD ?的面积为。

反比例函数k的几何意义试题汇编

2016年12月07日反比例函数K的几何意义 一.选择题(共30小题) 1.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在 第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为() A.36 B.12 C.6 D.3 2.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S =2,则k的值为() △AOB A.2 B.3 C.4 D.5 3.如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为() A.4 B.6 C.﹣4 D.﹣6 4.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()

A.﹣4 B.4 C.﹣2 D.2 5.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面 积为() A.2 B.4 C.5 D.8 6.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上, 当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积() A.减小 B.增大 C.先减小后增大 D.先增大后减小 7.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分 别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC 的面积为S3,则有() A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3

偏导数的几何意义教学内容

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做

, , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为 记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或

由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在 变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求 时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为 = 其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求的偏导数 解= , = 二偏导数的几何意义

2019年深圳中考复习《反比例函数K的几何意义》专题

2019年深圳中考复习反比例函数K的几何意义专题 一、选择题 1、如图1,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点 P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横 坐标逐渐增大时,四边形OAPB的面积将会() A、逐渐增大 B、不变 C、逐渐减小 D、先增大后减小 2、如图2,已知P是反比例函数y=(x>0)图象上一点,点B的坐 标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3, 那么四边形AOBP的面积为() A、16 B、20 C、24 D、28 3、如图3,△OAC和△BAD都是等腰直角三角形, ∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则 △OAC与△BAD的面积之差S△OAC﹣S△BAD为() A、36 B、12 C、6 D、3 图1 图2 图3 4、如图4,反比例函数y= 的图象经过矩形OABC的边AB的中点D, 则矩形OABC的面积为() A、2 B、4 C、5 D、8 5、如图5,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数 (k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积 为12,则k的值为()A、4 B、6 C、8 D、12 6、如图6,A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为 B,向y轴作垂线,垂足为C,则四边形OBAC的面积为() A、6 B、5 C、10 D、﹣5 图4 图5 图6 7、如图7,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于 点B,连接AO,若S△AOB=2,则k的值为() A、2 B、3 C、4 D、5 8、如图8,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反 比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C 为OA中点,则图中阴影部分的面积为() A、4 ﹣ B、4 C、2 D、2 图7 图8

2019届中考复习反比例函数K的几何意义专题试卷含答案

2019届中考复习反比例函数K的几何意义专题试卷含答案 一、选择题 1、如图1,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会() A、逐渐增大 B、不变 C、逐渐减小 D、先增大后减小 2、如图2,已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为() A、16 B、20 C、24 D、28 3、如图3,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为() A、36 B、12 C、6 D、3 图1 图2 图3 4、如图4,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为() A、2 B、4 C、5 D、8 5、如图5,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数 (k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A、4 B、6 C、8 D、12 6、如图6,A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为B,向y轴作垂线,垂足为C,则四边形OBAC的面积为() A、6 B、5 C、10 D、﹣5

图4 图5 图6 7、如图7,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于 点B,连接AO,若S△AOB=2,则k的值为() A、2 B、3 C、4 D、5 8、如图8,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反 比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C 为OA中点,则图中阴影部分的面积为() A、4 ﹣ B、4 C、2 D、2 图7 图8 二、填空题 9、如图9,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反 比例函数y= 的图象交PM于点A,交PN于点B.若四边形OAPB的面积为 12,则k=________. 10、如图10,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直 角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数 的图象交BC于D,连接AD,则四边形AOCD的面积是 ________. 11、如图11,在平面直角坐标系中,反比例函数(x>0)的图象交矩形 OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为 6,则k=________ .] 图9 图10 图11 12、如图12,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l ∥y轴,且直线l分别与反比例函数(x>0)和(x>0)的图象交于P、 Q、两点,若S△POQ=14,则k的值为________ .

高数微分公式

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-1/2[ cos(α-β)-cos(α+β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2 只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。 3诱导公式: 记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割 即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的) 1 ο45 2 1 ο45 1 2 ο30 ο60 3

偏导数的几何意义

偏导数得几何意义 ?实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件?背景知识: 一偏导数得定义 在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义 定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量 - , 如果(1) 存在,则称此极限为函数=在点处对得偏导数,记做 , ,,或 例如,极限(1)可以表为 = 类似得,函数z=在点处对得偏导数定义为 记做,,或 如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做 , ,,或 类似得,可以定义函数= 对自变量得偏导函数,记做 ,,,或 由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、

至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、 偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为= 其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题 例求得偏导数 解= , = 二偏导数得几何意义 二元函数= 在点得偏导数得几何意义 设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率 三偏导数得几何意义 我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数 = ={ 在点(0,0)对得偏导数为 同样有 但就是我们在前面得学习中知道这函数在点(0,0)并不连续 四二阶混合偏导数 设函数= 在区域D内具有偏导数 =, =

偏导数的几何意义.doc

Ax 偏导数的儿何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二 阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一无函数吐我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论 它的变化率.但多元函数的变化量不只一个,因变量与自变最的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一-个自变量的变化率,以二元函数z= /(了疗)为例, 如果只有自变量工变化,而自变量y 固定(即看作常量),这时它就是X 的一元函数,这函数 对X 的导数,就称为二元函数Z 对于才的偏导数,即有如下定义 定义设函数z= *')在点的某一?邻域内有定义,当y 固定在V 。,而工在工。 处有增量? A*时,相应的函数有增量 /(x 0 4-Ax,^) _ /(x 0,^0) f(x 0 +Ax,y 0)-f(x 0,y 0) lim --------------------------------- 如果 Ax (1) 存在,则称此极限为函数z=在点”°疗°)处对汗的偏导数,记做 例如,极限(1)可以表为 f(x 0 +Ax,y 0)-f(x 0,y 0) hgy°)蚣。 类似的,函数z= ,(兀、)在点(冲疗°)处对歹的偏导数定义为 尚 栈尚九(%必) dz

lim 敏T O Rxo,Vo +Ay)?地, dz 记做分5 X■命 如果函数2= 了3疗)在区域D内每一点(&')处对工的偏导数都存在,那么这个偏导数就是工溜的函数,它就称为函数Z = /(工1)对自变量式的偏导函数,记做 & 堂 凯瓦,气或九(")类似的,可以定义函数z= /(兀力对自变量W的偏导函数,记做dz 山偏导数的概念可知,/3'力在点(如儿)处对工的偏导数九成。/)显然就是偏导函数九3',)在点成°疗°)处的函数值,就像-?元函数的导函数-?样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求z=的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外 dz 一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求欲时,只要把*暂时看 作常最而对工求导;求莎时,则只要把式智时看作是常量,而对V求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数〃 = /(兀MZ)在点(、,yz)处对式的偏导数定义为 岫Rx +Ax, y ,z)?Rx ,y ,z) 九(X'V’z) = A XT O A X 其中(X'W'Z)是函数〃 = /3,V,z)的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求z = / sin 2y的偏导数 dz

反比例函数k的几何意义试题汇编

反比例函数K的几何意义 一.选择题(共30小题) 1.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在 第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为() A.36 B.12 C.6 D.3 2.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S =2,则k的值为() △AOB A.2 B.3 C.4 D.5 3.如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为() A.4 B.6 C.﹣4 D.﹣6 4.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()

A.﹣4 B.4 C.﹣2 D.2 5.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面 积为() A.2 B.4 C.5 D.8 6.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上, 当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积() A.减小 B.增大 C.先减小后增大 D.先增大后减小 7.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分 别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC 的面积为S3,则有() A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3

微分和导数的几何解释和物理解释

微分和导数的几何解释和物理解释 1.微分和导数的几何解释 莱布尼茨当初是借助几何直观定义函数的微分和导数.近代微积分是借助极限定义函数的微分和导数.如图2-4,因为比值y x ??是弦PA 的斜率,当0→?x 时,点A 沿曲线无限接近点P , 所以曲线)(x y y =在点P 处切线PT 的 斜率就是导数 00d ()lim d x x x y y y x x x ?→=?'== ? 根据直线方程的点斜式,切线PT 的方程 就是 000()()y y y x x x '-=- 其中00()y y x =,x 和y 为切线上流动点 的坐标. 我们可以得出下面的结论: 曲线()y y x =在点00(,)x y 处有不垂直于Ox 轴的切线,充分必要条件是函数()y x 在点0 x 可微分;当0||||h x x =-很小时,曲线()y y x =接近它在点x y 00(,)处的切线 000()()y y y x x x '=+- [其中00()y y x =] 这就是说,在点00(,)P x y 近旁,曲线段()y y x =看作直线段(切线)是合理的. 【注】 当00()lim x y y x x ?→?'==∞?(无穷导数)时,说明曲线()y y x =在点00(,)x y 处有垂直于Ox 轴的切线 0x x =. 在点P 处垂直于切线的直线PQ ,称为曲线)(x y y =在点P 处的法线(图2-4).因此,当 0()0y x '≠时,曲线)(x y y =在点00(,)P x y 处法线的斜率为01 () y x - '(相互垂直两直线斜率的乘积等于1-),从而法线方程就是 0001 ()() y y x x y x -=- -' (点斜式) 其中x 和y 为法线上流动点的坐标. 其次,在图2-4中,从初等数学的角度说,把“微分三角形”PBT 和“增量三角形”PBA 看作全等当然是不对的.但从变量数学的观点来说,把y d 和y ?看作“相等”是合理的 [因为 )0(d →??≈x y y ],所以三角形PBT 和三角形PBA “全等”(这里说的“全等”是指对应边为 等价无穷小量).于是,把弧 PA 的长度s ?、弦长||PA 和微分三角形PBT 的斜边长||PT 都看作“相等”是合理的.因此,在微积分中就认为 2 2 2 )d ()d ()(d y x s += 或 )0d (d 1)d ()d (d 222>'+=+= x x y y x s (2-4) 我们就称式(2-4)为弧长的微分形式或弧微分. 图2-4 y

反比例函数是K的几何意义及其应用

反比例函数K的几何意义及应用 一、指导思想与理论依据 义务教育数学(7-9年级)教学指导意见(2012年版)提到:数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下的生动活泼地、主动地、富有个性地学习;要创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展。基于此认识本课设计围绕反比例函数中K的几何意义解决简单的图形面积问题为中心,通过情景引入─小组探究─典例分析─反思整合─自我提高等一系列活动,采用以“递进探究法”为主,类比法、变式教学法、分组合作交流法、多媒体辅助教学等多种方法相结合,充分关注学生的个性差异,因材施教,由易到难突出重点。引导学生通过观察、思考、探索、交流,获得解决反比例函数与图形面积问题的技能,意在帮助学生理顺知识体系,归纳解题要点及方法。教学中注重师生双边活动、小组交流突破难点,激发不同层次的学生积极参与数学思维活动,而学生更可借助互联网上资源进行二次学习与拓展,充分发挥学生的主体作用。及时评价学生的创新思维,让学生建立起自信心,逐次营造“会学”、“乐学”的氛围来达成本课教学目标。 二、教学背景分析 北师大版九年级上册第五章反比例函数是在学完平面直角坐标系和一次函数的基础上再加深的函数知识学习,教材只安排6个课时掌握其概念、图象和性质,以及用反比例函数分析和解决实际问题等抽象的新知。大部分学生实在有点吃不消,而反比例函数的图象与几何图形往往结合紧密,如何识别图象中信息来解决数学问题对初学反比例函数的九年级学生来说是一大难点,也是近几年各省市中考数学试题中的热点方向。而这类以反比例函数为背景的图形面积题型在教材中没有系统呈现,但在教辅资料、考题中常见,学生在解此类题型由于缺乏方法而颇感吃力,但它的掌握又直接影响到后续的二次函数的学习及中学会考。我结合平时教学并参考了网上资源而设计了本节课,作为此章知识学习的拓展和补充, 三、教学目标设计 知识与能力目标: 1、了解反比例函数式中的K的几何意义。 2、理解反比例函数与图形面积的内在联系。 3、掌握运用数形结合法双向解决反比例函数与图形的面积数学问题。 过程与方法目标: 1、通过探索反比例函数与图形面积的内在联系,理解反比例函数表达式的中K的几何意义。 2、在解决问题的过程中,体会数形结合思想在数学应用中的重要地位。 3、经历探索反比例函数与图形面积的内在联系,体会函数的思想与建模的思想在数学问题中的运用。 情感态度与价值观: 1、在小组交流学习活动中学会与人合作获得成功的体验,培养学生的合作意识和乐于探究的良好品质。 2、在探究活动中培养学生学会观察、分析、归纳的能力,培养学生数学类比和数学建模思想。感悟数形结合思想方法。 3、在问题变式中感受函数图象的简洁美,激发学生学数学的兴趣。欣赏和感悟,体验数学的价值。 四、教学重点、难点 教学重点:探索反比例函数式中的K与图形的面积联系。 教学难点:分析图象中信息来确定K与图形面积的关系。 五、教学方法:递进探究法类比法,合作交流法,变式教学法,多媒体辅助教学法

二元函数全微分的原函数

(1)引例 ),(y x ),(y x dx y x P ),),(U ),(y x P ) ,(y x Q dy y x Q dx y x P ),(),(+现在要讨论:P ,Q 满足什么条件时?表达式 dy y x Q (+才是某个二元函数 的全微分。 ),(y x (2)定理3: 设开区域G 是一个单连通的区域,函数 , 在G 内具有一阶连续偏导数,则 在G 内是某一函 数的全微分的充要条件是: ),(y x U y P x Q ??=?? 即:等式 y ?),(y x U dy y x Q dx y x P ),(),(P x Q ??=?是等式 =+成立 的充要条件。 (3)证明: 要性: A. 必

如果,(存y x P (),在),(y x U =dy y x Q dx )+成立 则 ),(y x P x U =?,?),(y x Q y U =?? 即:y P y x U ??=???2,x Q ??= x y U ???2 Q 具有一阶连续偏导数,则 y P x ??=Q ?? 因为P 、B. 充分性: (4) 总结: 根据上述定,且理,P 、Q 在单连通区域G 内具有一阶连续偏导数满足 y x ?P Q ?=?,那末, dy y x Q dx y x P ),(),(+是某个函数的全微分。 x ),(),() ,(+来求出这个原函数。因 ?可以用:y x ) ,(00∫ 为满足dy y x Q dx y x P y y P x Q ??=??上述积分是与积分路径无关的,为计可以旋转平行与坐标轴的直线段连成折线作须位于G 内) (5) 方法一: 线段,做定积分,求出),(y x U 二: 算简便起见, 为积分路径(这些折线必取一折 方法

反比例函数的k的几何意义教学设计说课稿

反比例函数K 的几何意义说课稿 尊敬的各位老师: 大家好! 今天我要说课的题目是《反比例函数中K 的几何意义》。。 运用新课标理念,我将从以下五个方面进行说课: 教材分析 教法学法 教学过程设计 板书设计 教学反思 首先先进性教材分析,它分为三个方面: 1、 教材的地位与作用 《反比例函数中K 的几何意义》是北师大版九年级数学第六章第二节的内容,共分为两个课时,我要说的是第二课时。函数本身就是数学学习的重要内容,而反比例函数是在继平面直角坐标系和一次函数的基础上,再次进入函数范畴学习的又一类新的函数。它是初中阶段三大函数之一,是最基本、最初步的函数。在此之前,学生已经学习了反比例关系和分式的知识,为本节课的学习打下良好的基础。通过本节课的学习,又为以后更高层次函数的学习做好了铺垫,为以后处理函数、方程、不等式间的关系奠定了基础。因此,本节课在知识结构上呈现了承前启后的重要作用。 2、教学目标: (一)知识与技能 1.理解和掌握反比例函数 =K y X (k ≠0)中k 的几何意义 2.能灵活运用函数图象和性质解决一些较综合的问题 (二)过程与方法 1.让学生自己尝试在 的图象上任取一点P(x 、y),过P 点分别向X 轴、Y 轴作垂线,从而探究求出两垂线与坐标轴形成的矩形的面积及三角形的面积,从而探究所形成的矩形与三角形的面积与k 的关系。 2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法。 (三)情感态度与价值观 通过对图像的研究,培养学生自主探究,合作交流的精神,训练学生语言组织能力和分析、解决问题的能力。 x y 6

3、教学重点、难点: 重点:理解并掌握反比例函数 (k ≠0)中k 的几何意义;并能利用它们解决一些综合问题 难点:学会从图象上分析、解决问题 教法学法分析 教法选择:讲解与引导相结合的教学方法 学法指导:学生已经积累的学习函数的方法,了解函数变化规律和函数的变换趋势等。学生喜欢用探究式的学习方式,通过自己的分析来体验知识间的内在联系。 教学手段:多媒体与黑板相结合 教学过程设计:按照学生复习检测 新知探究 巩固新知 新知运用 (一)创设情境、导入新课 通过检测复习导入为。设计的目的是为了检测上节课的掌握程度,并为本节做好铺垫。 (二)新课探究 探究1 例题讲解 设计的目的是让学生根据矩形的面积确定K 值,学会逆向思考问题。如果以解答题的形式出现,学生不会写格式,这时需要老师规范书写格式。在格式上注意两点地方: (1)设出反比例函数图像上的一点P (a,b ),利用点的横坐标的绝对值表示边OM ,点的纵坐标的绝对值表示边ON ,这样矩形的面积就可以用点P 横纵坐标乘积的绝对值来表示。 (2)设出反比例函数的解析式根据图像的位置确定好K 的正负方便之后的取舍,将点P (a,b )代入所设的解析式建立K 与ab 的关系。 本例2的设计旨在让学生根据K 值确定三角形的面积,与上一题交相呼应。熟悉书写格式,以及注意K 的取舍和点坐标如何表示边的问题。 活动3:快速抢答 题型(一)面积不变 设计的目的:看学生的理解程度和运用能力,用抢答的形式来激发学生的学习兴趣。 题型(二)确定解析式 设计的目的是:让学生理解面积和k 之间的相互之间的联系。变式题型的出现弥补学生在做题过程中的审题不细致的问题,括号里的条件不容忽视。 活动4:变式拔高训练 x k y

(完整版)反比例函数的K的几何意义教学设计

教学目标: (一)知识与技能 1.理解和掌握反比例函数 (k ≠0)中k 的几何意义 2.能灵活运用函数图象和性质解决一些较综合的问题 (二)过程与方法 1.让学生自己尝试在 的图象上任取一点P(x 、y),过P 点分别向X 轴、Y 轴作垂 线,从而探究求出两垂线与坐标轴形成的矩形的面积及三角形的面积,从而探究所形成的矩 形与三角形的面积与k 的关系。 2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法。 (三)情感态度与价值观 培养学生自主探究,合作交流的精神。 学情分析: 知识基础:本节课学习前,学生已经具有了函数概念的知识积累,在上一节课的学习中,学生已经掌握了反比例函数的概念。 学习方法:学生已经积累的学习函数的方法有:画图象,观察图像归纳函数性质,了解函数变化规律和函数的变换趋势等。学生喜欢用探究式的学习方式,通过自己的分析来体验知识间的内在联系。 能力水平:处在这个年龄段的学生多数可以熟练的进行抽象逻辑思维,但其辩证逻辑思维的能力水平还较低。另外,学生参与活动的积极性高,但仍然缺乏合作交流等方面的能力。 教学重点、难点: 1.重点:理解并掌握反比例函数 (k ≠0)中k 的几何意义;并能利用它们解决一些综合问题 2.难点:学会从图象上分析、解决问题 教学过程: (一)创设情境、导入新课 1、反比例函数的解析式是什么?如何确定比例系数K 的值? 2、反比例函数的比例系数K 能决定什么? 反比例函数的比例系数K 除了能确定图像位置和增减性外还能确定什么呢? x y 6 =x k y x k y =

1.如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是. x y o M N p 3 -=∴k . 3||k |,|k S 矩形P m O n =∴=, ,四象限图像在二又Θ. 3 x y -=∴解析式为由题意得: 本节课我们来探究反比例函数的比例系数K 的几何意义。 (二)新课探究 活动1:议一议 如图,已知点P 是反比例函数 的图象上任 意一点,过P 点分别向X 轴、Y 轴作垂线, 垂足分别为M 、N ,那么四边形OMPN 的面积是多 少?△OMP 的面积是多少? 1、学生讨论时出现的问题是OM 应如何表示,教师给予及时点拔,使问题得以解决。 2、学生板演解题过程,教师给予纠正。 师提问:如果解析式中的k=-3呢?所形成的矩形及三角形的面积又是多少?学生计算后 进上步归纳总结反比例函数 (k ≠0)中k 的几何意义。 师板书:反比例函数 (k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积 ,△OMP 的面积S= ∣xy ∣= ∣k ∣ 活动2:例题讲解 本例1设计的目的是让学生根据矩形的面积确定K 值,学会逆向思考问题。如果以解答题的形式出现,学生不会写格式,这时需要老师规范书写格式。在格式上注意两点地方: (1)设出反比例函数图像上的一点P (a,b ),利用点的横坐标的绝对值表示边OM ,点的纵坐标的绝对值表示边ON ,这样矩形的面积就可以用点P 横纵坐标乘积的绝对值来表示。 (2)设出反比例函数的解析式根据图像的位置确定好K 的正负方便之后的取舍,将点P (a,b )代入所设的解析式建立K 与ab 的关系。 x y 6 =x k y =2 1 21x k y = k xy S ==

相关文档
最新文档