污水厂污泥计算

污水厂污泥计算
污水厂污泥计算

污泥是水处理过程的副产物,包括筛余物、沉泥、浮渣和剩余污泥等。污泥体积约占处理水量的0.3%~0.5%左右,如水进行深度处理,污泥量还可能增加0.5~1倍。

是使污泥减量、稳定、无害化及综合利用。

(1)确保水处理的效果,防止二次污染;

(2)使容易腐化发臭的有机物稳定化;

(3)使有毒有害物质得到妥善处理或利用;

(4)使有用物质得到综合利用,变害为利。

(1)按成分不同分:

污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为1.02~1.006),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。

沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。

(2)按来源不同分:

初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。

剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。

腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。

消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。

化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。

(3)城市污水厂污泥的特性见表8-1

表8-1 城市废水厂污泥的性质和数量

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。

1污泥中水的存在形式有:

空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离;

毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离;

颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。

通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。

2污泥体积、重量及所含固体物浓度之间的关系:

V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1)

式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度;

p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度;

说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。

例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。

解:由式(8-1)

V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。

(2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。

(3)可消化程度:表示污泥中可被消化降解的有机物数量。

消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。

消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2)

式中:R d——可消化程度,%;

p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%;

p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。

消化污泥量的计算公式:V d= V1(100-p1)/(100-p d)[(1- p V1/100)+ p V1/100

(1- R d/100)] (8-3)

式中:V d——消化污泥量,m3/d;

p d——消化污泥含水率,%,取周平均值;

V1——生污泥量,m3/d;

p1——生污泥含水率,%,取周平均值;

p V1——生污泥有机物含量,%;

R d——可消化程度,%,取周平均值;

(4)湿污泥比重与干污泥比重:

湿污泥重量等于污泥所含水分重量与干固体重量之和。湿污泥比重等于湿污泥重量与同体积的水重量之比值。干固体物质包括有机物(即挥发性固体)和无机物(即灰分)。确定湿污泥比重和干污泥比重,对于浓缩池的设计、污泥运输及后续处理,都有实用价值。

经综合简化后,湿污泥比重(γ)和干污泥比重(γs)的计算公式分别为:

γ=(100γs)/[γs p+(100-p)] (8-4)或γ=25000/[250p+(100-p)(100+1.5p V)] (8-8)γs=250/(100+1.5p V)(8-7)

式中:γ——湿污泥比重;

γs——污泥中干固体物质平均比重,即干污泥比重;

p——湿污泥含水率,%;

p V——污泥中有机物含量,%;

(5)污泥肥分:污泥中含有大量植物生长所必需的肥分(N、P、K)、微量元素及土壤改良剂(有机腐殖质)。我国城市污水处理厂各种污泥所含肥分见表8-2。

及工业性质。污水经二级处理后,污水中重金属离子约有50%以上转移到污泥中。若污泥作为肥料使用时,要注意重金属是否超过我国农林业部规定的《农用污泥标准》(GB4284-84)。表8-3列举我国北京、上海、天津、西安、兰州、沈阳、黄石等几个城市污水处理厂污泥中重金属含量的范围。

(1)污泥量计算

1初次沉淀污泥量和二次沉淀污泥量的计算公式:

V=100C0ηQ/1000(100-p)ρ(8-9)式中:V——初次沉淀污泥量,m3/d;

Q——污水流量,m3/d;

η——去除率,%;(二次沉淀池η以80%计)

C0——进水悬浮物浓度,mg/L;

P——污泥含水率,%;

ρ——沉淀污泥密度,以1000kg/m3计。

2剩余活性污泥量的计算公式:

Q s=ΔX/fX r(4-113)

式中:Q s——每日从系统中排除的剩余污泥量,m3/d;

ΔX——挥发性剩余污泥量(干重),kg/d;

f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此;

X r——回流污泥浓度,g/L。

3消化污泥量的计算公式:见公式(8-3)。

(2)污水处理厂干固体物质平衡:

污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。(见P332 图8-1)

设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为r g=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为:

进入污泥浓缩池的悬浮物量:X1=ΔX+X R(8-10)

X R=Xˊ2+ Xˊ3+ Xˊ4 (8-11)

式中:X1——进入浓缩池的固体物量;

ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量;

X R——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。

进入消化池的悬浮物量:X2= X1 r1(8-12)

浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13)

消化池悬浮物减量:G= X2r g= X1 r1r g(8-14)

进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15)

消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16)

脱水泥饼固体物量:X4= X3 r3

机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17)

回流至沉砂池前的上清液中所含悬浮物总量:

X R=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1r g-r1r2r3+r1r2r3r g)

(X1- X R)/ X1= r1r g+r1r2r3-r1r2r3r g=ΔX/ X1

X1=ΔX/ r1[r g+r2r3(1-r g)] (8-18)

(1)污泥输送的方法:管道输送(重力管道和压力管道);卡车;驳船等。

管道输送:适用于污泥输送的目的地相当稳定;污泥的流动性能较好,含水率较高;污泥所含油脂分成较少,不会粘附于管壁缩小管径增加阻力;污泥的腐蚀性低,不会对管材造成腐蚀或磨损;污泥的流量较大,一般应超过30m3/h。优

污水厂污泥计算书

污泥是水处理过程的副产物,包括筛余物、沉泥、浮渣和剩余污泥等。污泥体积约占处理水量的0.3%~0.5%左右,如水进行深度处理,污泥量还可能增加0.5~1倍。 是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为1.02~1.006),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 (1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度;

污泥量计算

污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量; XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg) (X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1 X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)

自来水厂污泥产生量计算

自来水厂排泥水处理污泥量的确定方法 实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对计算法 的结果进行校核。 实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规模。污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。 1排泥水总量确定 排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。 通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够准 确。 已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排泥或冲洗的次数, 然后进行计算。 尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自来水 厂实际运行资料进行估算。 排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水截留 池和浓缩池设计规模有很大帮助。 2干污泥产量确定 2.1计算法 根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简化为:

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

污水厂污泥计算

是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为~),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 表8-1 城市废水厂污泥的性质和数量

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可 通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起 附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒 相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中 细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中: p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很 多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1()/(100-95)=(1/2)V1 可见污泥含水率从%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物 含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另 一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%;

城市污水污泥量计算

城市污水污泥量计算Prepared on 21 November 2021

1 国际通用污泥量计蒜方法 如今,世界各国污泥量计蒜的方法有两个,一是根据污水处理量和含固率进行估蒜。比如某城市平均污水含固率0.02%,日处理量为60万t,污泥含固率20%,则年产湿泥饼:6.0 x 105x 0.02%x 360/20%=2.16x105t/a (1) 二是根据人口估蒜。比如某城市240万人口.典型人均日产污泥(干)50g.污泥含固率20%,年产湿泥饼:2.4X 105 X 50/1.0 X 106 X 360/20%=2.16x105t/a (2) 第二种方法是国外通行的蒜式,欧洲国家14国的人均污泥日产量按58g(干)物质,2000年数据)计蒜。我国人均日产污泥通常按照50g(干物质)测蒜。 但是.这两个计蒜方法都存在一定的错误。 一是实际上进入环境的并不干物质,主要是含水率在96%左右的(_zuo3 you4 de0)粪便,由不易被消化、吸收的大分子蛋白质、纤维素以及各种菌落组成。 二是粪便首先进入下水管网后.是落入化粪池沉降下来,避免堵塞,使上层的污水能够流动到污水处理厂。 三是蒜式(1)的“污水含固率0.02%”.以及蒜式(2)的“人均日产污泥(干)50g”,应该换蒜成与脱水污泥20%的固含率一样时,才能实现物料平衡。拿蒜式(2)来说: 50g(干物质)/20%(固含率)二250g(固含率20%) 蒜式(2)应该改写成(3):2.4 x 105x 50/20%/1.0 x 106 x 360/20%=2.4x 105x0.45:1.08x 106t/a(3) 而在蒜式(3)每年108万t的污泥中,有28%在下水管网中被微生(_zai xia shui guan wang zhong bei wei sheng)物分解,符合“黄金分割”。 2 合理的计蒜方法 只要知道城市常住人口数(H),就能求得该城市每年产生的污泥量(W1),即: W1=kH=0.45H (4) 其中: k=50/u/1.0 x 106 x 365(d)/u:0.45 W1——城市总的污泥量(t/a) H——城市常住人口数

污水处理厂各构筑物的设计计算

山东理工大学 《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计 学院:资环学院 专业班级:环本0803班 姓名:李聪聪 序号:27号 指导教师:尚贞晓 课程设计时间:2011年12月12日~2011年12月30号共3周

第一章设计任务及资料 1.1设计任务 孤岛新镇6.46万吨/日污水处理厂工艺设计。 1.2设计目的及意义 1.2.1设计目的 孤岛新镇位于山东省黄河入海口的原黄泛区内。东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。 该镇附近区域为胜利油田所属的孤岛油田和两桩油田。地下蕴藏着丰富的石油资源。为了开发这些油田并考虑黄河下游三角洲的长远发展。胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。 因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。 1.2.2设计意义 设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。 我国城市污水处理相对于国外发达国家、起步较晚。近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。虽然如此,我国的污水处理还是落后于许多国家。在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。 其次,做本设计可以使我得到很大的提高,可在不同程度上提高调查研究,查阅文献,收集资料和正确熟练使用工具书的能力,提高理论分析、制定设计

污水处理厂污泥处理分析

污水处理厂污泥处理分析 摘要:随着现代化建设的发展和城市化进程的加速,城市污水的排放量与日俱增,同时也带来了污水处理副产品污泥产量的增加,如果污泥处置不当,将对大气、水体、土壤等都造成污染和危害,导致在处理污水的同时制造出新的更为严 重的污染。但城市污水处理厂项目的可研和环评阶段普遍存在“重水轻泥”现象, 对污泥处理处置的论述均过于简单;本文通过对污泥处理经济方面,技术可行性,环境因素等方面进行比选分析,得到污水处理厂污泥处理的最佳方案。 关键词:污泥处理污泥干化比选城镇污水处理厂 1 调研背景 据估算,目前我国城市污水处理厂每年排放的污泥量(干重)大约为130× 10? t,而且年增长 率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥出路问题已经十分突出。如果城市污水全部得到处理,则将产生污泥量(干重)为840× 10? t,占我国总固体废弃物的3.2%。 因此,对处理厂水处理过程中产生的污泥进行处理是一项紧迫而重要的工作。随着国家对污 泥处理处置的重视,污泥处理技术不断创新发展。实现污泥处理多元化,但各种处理工艺存 在一定的优缺点,各项污泥处理工艺的选择就成为了关键所在。 2 污泥处理基本工艺及处置方法 2.1 污泥处理 (1)污泥浓缩。 污泥处理系统产生的污泥,含水率高,体积大,对于输送、处理或处置都不方便。污泥 浓缩可使污泥初步减容,减轻后续工艺的处理或处置压力。目前城市污水处理厂污泥浓缩的 主流工艺是传统的重力浓缩、气浮浓缩和离心浓缩。对于重力浓缩工艺,适用于单独处理初 沉污泥,而对剩余污泥的浓缩效果不理想,由于占地面积大、操作维护简单,比较适用中小 城市新建的污水处理厂; 离心浓缩和气浮浓缩比较适合处理剩余污泥及剩余污泥与初沉污泥组成的混合污泥。这两种工艺占地面积小、易于改造,比较适合大中城市新建或改扩建的污水 处理厂。 (2)污泥脱水。 污泥经过浓缩后,其含水率依然较高,一般在 97% ~99. 6% ,是流动的粒状或絮状的疏 松结构,体积庞大,难以处置消纳,为此需要进行污泥脱水处理,降低后续污泥的处置难度,污泥脱水的方法,一般有机械脱水、污泥干化污泥烘干及焚烧等方法。目前国内城市污水处 理厂常用的污泥脱水方式为机械脱水,处理后的污泥含水率一般只能达到 78% 左右。污泥经 过化学药剂调理后再通过板框压滤机处理,泥饼的含水率下限可达60% 以下。但仅靠单独的 机械脱水已经不能满足我国污泥处理处置的长期发展。 (3)厌氧消化。 污泥厌氧消化是一个多级过程阶段,利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥 中有机质,并产生可以再次利用的甲烷气体,实现污泥的稳定化、无害化和资源化。污泥厌 氧消化是目前国际上常用的污泥生物处理方法,同时也是一种应用于大型污水处理厂中较为 经济的污泥处理方法。 (4)污泥好氧消化污泥。 好氧消化实质上是活性污泥法的继续,其工作原理是污泥中的微生物有机体的内源代谢 过程。传统污泥好氧消化工艺主要通过曝气使微生物在进入内源呼吸期后进行自身氧化,从 而使污泥减量。剩余污泥好氧消化具有稳定和灭菌的双重作用,而且具有投资少、运行管理 方便、工艺简单等优点,多用于一些小型的污水厂。 2.2 污泥处置 (1)卫生填埋。 污泥填埋分位单独填埋和混合填埋,目前我国经常采用的是脱水污泥和城市垃圾混合填埋。填埋是一项具有投资少、容量大、见效快和适应性强等优点的污泥处置技术。但是其需 占用土地面积大,渗滤液很容易进入地表水和地下水,造成水体污染,再次,污泥含有的很

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。 加药泵的流量为1.2m3/h,每天运行8小时,则PAM溶液用量为1.2*8=9.6m3。

北京市污水处理厂污泥处理与处置探讨

北京市污水处理厂污泥处理与处置探讨崔小浩1 李五勤1 谢文征2 张军2 崔希龙2 邓茜2 熊建新3 黄鸥4 黄炳彬5 (1 北京市发展和改革委员会,北京100031 ; 2 北京城市排水集团有限责任公司,北京100044 ; 3 北京市水务局,北京100038 ; 4 北京市市政工程设计研究总院,北京100082 ; 5 北京市水利科学研究所,北京100048) 摘要通过对北京市城市污水处理与污泥处理处置现况的分析,结合北京市城市污泥的特性,参照国内外污泥处理处置技术,提出适合北京市的污泥处理处置技术路线,并对北京市的污泥处置的规划原则、方案进行初步探讨,同时提出北京市污泥处置工作的建议和意见,为今后的污泥处置规划、项目建设、运行监管等提供参考。 关键词污水处理厂污泥处理处置堆肥干化焚烧北京市 自20 世纪80 年代末以来,北京市以举办亚运会和奥运会为契机,加大污水处理和污水资源化工作力度,实现了跨越式发展。到2008 年,中心城区建成污水处理厂9 座,处理能力254 万m3 / d ,污水处理率达93 % ,郊区卫星城建成污水处理厂16 座,乡镇建成42 座,村级污水处理站370 座,污水处理率达48 %。全市年污水处理能力达到10. 5 亿m3 ,其中中心城区8. 4 亿m3 ,郊区2. 1 亿m3 。 对于北京市的污水处理厂,目前每处理1 万m3污水约产生10 t 含水率80 %的泥饼,而随着污水处理量和处理标准的提高,污水处理的副产物污泥产量将进一步攀升。产量巨大的污泥如不经妥善处置和管理,将对首都污水处理厂的安全稳定运行带来巨大压力,并对北京市周边环境构成严重威胁。因此,如何合理规划城市污泥的处置方案,加快建设污泥处理处置设施,健全污泥处理处置的监管体系和政策支持,已成为北京市城市发展的重要 课题。 1 北京市污泥处置现况及存在问题

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 2009-12-10 18:11:24| 分类:工作日记| 标签:|举报|字号大中小订阅 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。

城镇污水处理厂污泥泥质与处置污泥泥质标准修订稿

城镇污水处理厂污泥泥质与处置污泥泥质标准 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

政策法规及标准:标准 城镇污水处理厂污泥泥质(GB24188-2009) 本标准规定了城镇污水处理厂污泥泥质的控制指标及限值;适用于城镇污水处理厂的污泥,居民小区的污水处理设 城镇污水处理厂污泥处置分类(CJ/T239-2007) 本标准规定了城镇污水处理厂污泥处置方式的分类和范围;适用于城镇污水处理厂污泥处置工程的建设、运营河管理。 土地利用

城镇污水处理厂污泥处置农用泥质(CJ/T309-2009) 本标准规定了城镇污水处理厂污泥农用泥质指标、取样与监测等要求,其中要求含水率≤60%; 适用于城镇污水处理厂污泥处置时污泥农用的泥质要求。 城镇污水处理厂污泥处置土地改良用泥质(CJ/T291-2008) 本标准规定了用于土地(盐碱地、沙化地和废弃矿场土壤)改良的城镇污水处理厂污泥泥质准入标准,规定了污泥施用时的技术要求和注意事项,其中要求含水率<65%; 适用于城镇污水处理厂污泥处置规划、设计和管理。 城镇污水处理厂污泥处置园林绿化用泥质(GB/T23486-2009) 本标准规定了城镇污水处理厂污泥园林绿化利用的泥质指标及限值、取样和监测等,其中要求含水率<40%; 适用于城镇污水处理厂污泥的处置和污泥园林绿化利用。 填埋 城镇污水处理厂污泥处置混合填埋用泥质(GB/T23485-2009) 本标准规定了城镇污水处理厂污泥进入生活垃圾卫生填埋场混合填埋处置和用作覆盖土的泥质指标及限值、取样和

监测等,其中提到,混合填埋时含水率应<60%,作覆盖材料时含水率应<45%; 适用于城镇污水处理厂污泥的处置和污泥与生活垃圾的混合填埋。 建材利用 城镇污水处理厂污泥处置制砖用泥质(CJ/T289-2008) 本标准规定了城镇污水处理厂污泥制烧结砖利用的泥质指标、取样和监测等技术要求,其中要求含水率≤40%; 适用于城镇污水处理厂污泥的处置和污泥制烧结砖利用。 城镇污水处理厂污泥处置水泥熟料生产用泥质(CJ/T314-2009) 本标准规定了城镇污水处理厂污泥用于水泥熟料生产的泥质指标及限值、取样和监测等,其中要求含水率≤80%,窑头喷嘴添加要含水率≤12%; 适用于城镇污水处理厂污泥的处置和污泥水泥熟料生产利用。 焚烧 城镇污水处理厂污泥处置单独焚烧用泥质(CJ/T290-2008)

污泥量计算

污泥量计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

污泥量计算????????????????????????????污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量;XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量 Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg)

污水处理剩余污泥量计算

活性污泥工艺中剩余污泥量计算 我国大部分城市(镇)污水处理厂采用的是传统活性污泥法或其变型工艺,其生物系统产生的剩余污泥量往往存在着设计值与实际值相差较为悬殊的现象,这在不设初沉池系统的活性污泥工艺,如A/O法、A2/O法、AB法、氧化沟、SBR中更为普遍。究其根源,或是污泥产率系数的设计取值与实际运行有差距,或是没有考虑进水中不可降解及惰性悬浮固体对剩余污泥量的影响。本文就上述两个问题进行讨论。 1剩余污泥量计算方法 在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。因此,剩余干污泥量可以用式(1)计算: ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1) 式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d; Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数; Kd———污泥自身氧化率,d-1; θc———污泥龄(生物固体平均停留时间),d; Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs); Q———污水流量,m3/d; BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3; fP———不可生物降解和惰性部分占SSi的百分数; SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。 德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作: YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2) FT=1 702(T-15)(3) 式中fb———微生物内源呼吸形成的不可降解部分,取值0 1; FT———温度修正系数。 比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式: ΔX=YobsQ(BODi-BODo)f(4) 式中f=MLVSSMLSS;其他符号意义同前。 式(4)与式(1)是一致的,均需确定Yobs。 2Yobs的确定表观产率 Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6 .6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0 .4~0.8。如处理系统无初次沉淀池,Y值必须通过试验确定。”同款还规定了Kd20℃的常数值0.04~0 .075d-1。从中可以看出,Y值变化幅度达100%,Kd的变化幅度达87 5%。对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。 对于运行中的污水处理厂,可通过长期运行工况参数,如θc,F(污泥负荷,kgBOD/(kgMLVSS·d))求得Yobs实际值,或回归出适用于该厂的Y,Kd值。Yobs用θc,F表示为:Yobs=1θcF(5)据实际运行参数并利用式(5)计算得出的北京市方庄污水处理厂(传统活性污泥工艺)和酒仙桥污水处理厂(氧化沟工艺)的污泥净产率系数,见表

污泥处理工艺计算 2

第三章污泥处理设计计算 5.1污泥处理(sludge treatment)的目的与处理方法 5.1.1污泥处理的目的 污水厂在处理污水的同时,每日要产生产生大量的污泥,这些污泥含有大量的易分解的有机物质,对环境具有潜在的污染能力,若不进行有效处理,必然要对环境造成二次污染。同时,污泥含水率高,体积庞大,处理和运输均很困难。因此,在最终处置前必须处理,以降低污泥中的有机物含量,并减少其水分。使之在最终处置时对环境的危害减少之限度。 1、减量:降低污泥含水率,减小污泥体积; 2、稳定(satabilization):去除污泥中的有机物,使之稳定; 3、害化:杀灭寄生虫卵和病原菌; 4、污泥综合利用。 剩余污泥来自氧化沟,活性污泥微生物在降解有机物的同时,自身污泥量也在不断增长,为保持曝气池内污泥量的平衡,每日增加的污泥量必须排除处理系统,这一部分污泥被称作剩余污泥。剩余污泥含水率较高,需要进行浓缩处理,然后进行脱水处理。 5.1.2污泥处理的原则 1、城镇污水污泥,应根据地区经济条件和环境条件进行减量化、稳定化和无害化处理,并逐步提高资源化程度。 2、污泥的处置方式包括用作肥料、作建材、作燃料和填埋等,污泥的处理流程应根据污泥的最终处置方式选定。 3、污泥作肥料时,其有害物质含量应符合国家现行标准的规定。 4、污泥处理构筑物个数不宜少于2个,按同时工作设计。污泥脱水机械可考虑一台备用。 5、污泥处理过程中产生的污泥水应返回污水处理构筑物进行处理。 污泥处理过程中产生的臭气,宜收集后进行处理。 5.1.3污泥处理方法的选择 污泥处理的一般方法与流程的选择、当地条件、环境保护要求、投资情况、运行费用及维护管理等多种因素有关。 5.2污泥泵房设计 污泥泵房的设计包括回流污泥泵的选择和剩余污泥泵的选择计算。

污水处理厂污泥处理分析

污水处理厂污泥处理分析 发表时间:2018-04-25T10:33:06.433Z 来源:《知识-力量》2018年2月上作者:杨翔鹏 [导读] 随着现代化建设的发展和城市化进程的加速,城市污水的排放量与日俱增,同时也带来了污水处理副产品污泥产量的增加杨翔鹏 (郑州大学水利与环境学院,河南郑州 450001) 摘要:随着现代化建设的发展和城市化进程的加速,城市污水的排放量与日俱增,同时也带来了污水处理副产品污泥产量的增加,如果污泥处置不当,将对大气、水体、土壤等都造成污染和危害,导致在处理污水的同时制造出新的更为严重的污染。但城市污水处理厂项目的可研和环评阶段普遍存在“重水轻泥”现象,对污泥处理处置的论述均过于简单;本文通过对污泥处理经济方面,技术可行性,环境因素等方面进行比选分析,得到污水处理厂污泥处理的最佳方案。 关键词:污泥处理污泥干化比选城镇污水处理厂 1 调研背景 据估算,目前我国城市污水处理厂每年排放的污泥量(干重)大约为130× 10? t,而且年增长率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥出路问题已经十分突出。如果城市污水全部得到处理,则将产生污泥量(干重)为840× 10? t,占我国总固体废弃物的3.2%。因此,对处理厂水处理过程中产生的污泥进行处理是一项紧迫而重要的工作。随着国家对污泥处理处置的重视,污泥处理技术不断创新发展。实现污泥处理多元化,但各种处理工艺存在一定的优缺点,各项污泥处理工艺的选择就成为了关键所在。 2 污泥处理基本工艺及处置方法 2.1 污泥处理 (1)污泥浓缩。 污泥处理系统产生的污泥,含水率高,体积大,对于输送、处理或处置都不方便。污泥浓缩可使污泥初步减容,减轻后续工艺的处理或处置压力。目前城市污水处理厂污泥浓缩的主流工艺是传统的重力浓缩、气浮浓缩和离心浓缩。对于重力浓缩工艺,适用于单独处理初沉污泥,而对剩余污泥的浓缩效果不理想,由于占地面积大、操作维护简单,比较适用中小城市新建的污水处理厂; 离心浓缩和气浮浓缩比较适合处理剩余污泥及剩余污泥与初沉污泥组成的混合污泥。这两种工艺占地面积小、易于改造,比较适合大中城市新建或改扩建的污水处理厂。 (2)污泥脱水。 污泥经过浓缩后,其含水率依然较高,一般在 97% ~99. 6% ,是流动的粒状或絮状的疏松结构,体积庞大,难以处置消纳,为此需要进行污泥脱水处理,降低后续污泥的处置难度,污泥脱水的方法,一般有机械脱水、污泥干化污泥烘干及焚烧等方法。目前国内城市污水处理厂常用的污泥脱水方式为机械脱水,处理后的污泥含水率一般只能达到 78% 左右。污泥经过化学药剂调理后再通过板框压滤机处理,泥饼的含水率下限可达60% 以下。但仅靠单独的机械脱水已经不能满足我国污泥处理处置的长期发展。 (3)厌氧消化。 污泥厌氧消化是一个多级过程阶段,利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机质,并产生可以再次利用的甲烷气体,实现污泥的稳定化、无害化和资源化。污泥厌氧消化是目前国际上常用的污泥生物处理方法,同时也是一种应用于大型污水处理厂中较为经济的污泥处理方法。 (4)污泥好氧消化污泥。 好氧消化实质上是活性污泥法的继续,其工作原理是污泥中的微生物有机体的内源代谢过程。传统污泥好氧消化工艺主要通过曝气使微生物在进入内源呼吸期后进行自身氧化,从而使污泥减量。剩余污泥好氧消化具有稳定和灭菌的双重作用,而且具有投资少、运行管理方便、工艺简单等优点,多用于一些小型的污水厂。 2.2 污泥处置 (1)卫生填埋。 污泥填埋分位单独填埋和混合填埋,目前我国经常采用的是脱水污泥和城市垃圾混合填埋。填埋是一项具有投资少、容量大、见效快和适应性强等优点的污泥处置技术。但是其需占用土地面积大,渗滤液很容易进入地表水和地下水,造成水体污染,再次,污泥含有的很高有机物量,极易散发恶臭,同时自然发酵会产生甲烷等温室气体,而且污泥填埋费用高。 (2)污泥焚烧。 污泥焚烧是一种有效且较为成熟的处理城市污泥的方法,污泥焚烧过程的核心设备是焚烧炉。污泥焚烧后不仅有机物全部碳化,而且还杀死了各种病原体并且最大限度地减少了污泥体积,其最终产物为含固率 99%以上的无菌、无臭的无机灰烬。但污泥焚烧焚烧过程中产生的粉尘、二噁英、酸性气体等大气污染物和焚烧后的飞灰、炉渣等固体污染物都会再次对环境造成污染,而且焚烧设备能耗和运行费用高,投资大,不适合我国国情。 (3)土地利用。 污泥的土地利用主要包括污泥农用。污泥中含有大量的氮、磷、钾等植物营养元素,有硼、钼、锌、锰等对植物生长有利的微量元素,其丰富的有机质和腐殖质能有效的改善土壤结构,增加土壤肥力,促进农作物的生长。然而大量施用污泥必然产生高浓度重金属所带来的问题,一般认为污泥农用会出现重金属下渗污染地下水和连续使用导致重金属累积超标等问题。 (4)综合利用。 因为污泥成分和建筑材料常用原料成分相近,利用污泥中含有硅、铝、铁、钙等无机物,可作为替代原料制造建筑材料。污泥制砖是污泥烧成焚烧灰后,在焚烧灰中加入一定量的骨材,注入模具,在 900-1000℃下烧结成砖。把污泥作为建材产品的掺合料一起焚烧,可以充分利用污泥中有机物辅助燃料,减少煤耗,同时充分利用污泥中无机物,可补充当前水泥生产紧缺的泥源。

相关文档
最新文档