带宽的两种概念

带宽的两种概念
带宽的两种概念

在各类电子设备和元器件中,我们都可以接触到带宽的概念,例如我们熟知的显示

器的带宽、内存的带宽、总线的带宽和网络的带宽等等;对这些设备而言,带宽是一个

非常重要的指标。不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率

的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域,带宽的描述单位又变成了MHz、GHz??这两种不同单位的带宽表达的是同一个内涵么?二者存在哪些方面的联系呢?本文就带你走入精彩的带宽世界。

一、带宽的两种概念

如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固

有通频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂

的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电

感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成

电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会

对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电

信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路

自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保

持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。

而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带

宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起

这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据

传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。

对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的

特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分

内容涉及到电路设计的知识,对此我们就不做深入的分析。而对于总线、内存中的带宽,决定其数值的主要因素在于工作频率和位宽,在这两个领域,带宽等于工作频率与位宽

的乘积,因此带宽和工作频率、位宽两个指标成正比。不过工作频率或位宽并不能无限

制提高,它们受到很多因素的制约,我们会在接下来的总线、内存部分对其作专门论述。

二、总线中的带宽

在计算机系统中,总线的作用就好比是人体中的神经系统,它承担的是所有数据传

输的职责,而各个子系统间都必须籍由总线才能通讯,例如,CPU 和北桥间有前端总线、北桥与显卡间为AGP 总线、芯片组间有南北桥总线,各类扩展设备通过PCI、PCI-X 总线与系统连接;主机与外部设备的连接也是通过总线进行,如目前流行的USB 2.0、IEEE1394 总线等等,一句话,在一部计算机系统内,所有数据交换的需求都必须通过总

线来实现!

按照工作模式不同,总线可分为两种类型,一种是并行总线,它在同一时刻可以传

输多位数据,好比是一条允许多辆车并排开的宽敞道路,而且它还有双向单向之分;另

一种为串行总线,它在同一时刻只能传输一个数据,好比只容许一辆车行走的狭窄道路,数据必须一个接一个传输、看起来仿佛一个长长的数据串,故称为“串行”。

并行总线和串行总线的描述参数存在一定差别。对并行总线来说,描述的性能参数

有以下三个:总线宽度、时钟频率、数据传输频率。其中,总线宽度就是该总线可同时

传输数据的位数,好比是车道容许并排行走的车辆的数量;例如,16 位总线在同一时刻

传输的数据为16 位,也就是2 个字节;而32 位总线可同时传输4 个字节,64 位总线可以同时传输8 个字节......显然,总线的宽度越大,它在同一时刻就能够传输更多的数

据。不过总线的位宽无法无限制增加。时钟频率和数据传输频率的概念在上一期的文章

中有过详细介绍,我们就不作赘述。

总线的带宽指的是这条总线在单位时间内可以传输的数据总量,它等于总线位宽与

工作频率的乘积。例如,对于64 位、800MHz 的前端总线,它的数据传输率就等于

64bit×800MHz÷8(Byte)=6.4GB/s;32 位、33MHz PCI 总线的数据传输率就是

32bit×33MHz÷8=133MB/s,等等,这项法则可以用于所有并行总线上面——看到这里,

读者应该明白我们所说的总线带宽指的就是它的数据传输率,其实“总线带宽”的概念

同“电路带宽”的原始概念已经风马牛不相及。

对串行总线来说,带宽和工作频率的概念与并行总线完全相同,只是它改变了传统

意义上的总线位宽的概念。在频率相同的情况下,并行总线比串行总线快得多,那么,

为什么现在各类并行总线反而要被串行总线接替呢?原因在于并行总线虽然一次可以

传输多位数据,但它存在并行传输信号间的干扰现象,频率越高、位宽越大,干扰就越

严重,因此要大幅提高现有并行总线的带宽是非常困难的;而串行总线不存在这个问题,总线频率可以大幅向上提升,这样串行总线就可以凭借高频率的优势获得高带宽。而为

了弥补一次只能传送一位数据的不足,串行总线常常采用多条管线(或通道)的做法实

现更高的速度——管线之间各自独立,多条管线组成一条总线系统,从表面看来它和并

行总线很类似,但在内部它是以串行原理运作的。对这类总线,带宽的计算公式就等于“总线频率×管线数”,这方面的例子有PCI Express 和HyperTransport,前者有×1、

×2、×4、×8、×16 和×32 多个版本,在第一代PCI Express 技术当中,单通道的单

向信号频率可达2.5GHz,我们以×16 举例,这里的16 就代表16 对双向总线,一共64 条线路,每4 条线路组成一个通道,二条接收,二条发送。这样我们可以换算出其总线

的带宽为2.5GHz×16/10=4GB/s(单向)。除10 是因为每字节采用10 位编码。

三、内存中的带宽

除总线之外,内存也存在类似的带宽概念。其实所谓的内存带宽,指的也就是内存

总线所能提供的数据传输能力,但它决定于内存芯片和内存模组而非纯粹的总线设计,

加上地位重要,往往作为单独的对象讨论。

SDRAM、DDR 和DDRⅡ的总线位宽为64 位,RDRAM 的位宽为16 位。而这两者在结构

上有很大区别:SDRAM、DDR 和DDRⅡ的64 位总线必须由多枚芯片共同实现,计算方法

如下:内存模组位宽=内存芯片位宽×单面芯片数量(假定为单面单物理BANK);如果

内存芯片的位宽为8 位,那么模组中必须、也只能有8 颗芯片,多一枚、少一枚都是不

允许的;如果芯片的位宽为4 位,模组就必须有16 颗芯片才行,显然,为实现更高的

模组容量,采用高位宽的芯片是一个好办法。而对RDRAM 来说就不是如此,它的内存总

线为串联架构,总线位宽就等于内存芯片的位宽。

和并行总线一样,内存的带宽等于位宽与数据传输频率的乘积,例如,DDR400 内存

的数据传输频率为400MHz,那么单条模组就拥有64bit×400MHz÷8(Byte)=3.2GB/s 的

带宽;PC 800 标准RDRAM 的频率达到800MHz,单条模组带宽为16bit×800MHz÷

8=1.6GB/s。为了实现更高的带宽,在内存控制器中使用双通道技术是一个理想的办法,

所谓双通道就是让两组内存并行运作,内存的总位宽提高一倍,带宽也随之提高了一倍!

带宽可以说是内存性能最主要的标志,业界也以内存带宽作为主要的分类标准,但

它并非决定性能的唯一要素,在实际应用中,内存延迟的影响并不亚于带宽。如果延迟

时间太长的话相当不利,此时即便带宽再高也无济于事。

四、带宽匹配的问题

计算机系统中存在形形色色的总线,这不可避免带来总线速度匹配问题,其中最常

出问题的地方在于前端总线和内存、南北桥总线和PCI 总线。

前端总线与内存匹配与否对整套系统影响最大,最理想的情况是前端总线带宽与内

存带宽相等,而且内存延迟要尽可能低。在Pentium4 刚推出的时候,Intel 采用RDRAM

内存以达到同前端总线匹配,但RDRAM 成本昂贵,严重影响推广工作,Intel 曾推出搭

配PC133 SDRAM 的845 芯片组,但SDRAM 仅能提供1.06GB/s 的带宽,仅相当于400MHz 前端总线带宽的1/3,严重不匹配导致系统性能大幅度下降;后来,Intel 推出支持

DDR266 的845D 才勉强好转,但仍未实现与前端总线匹配;接着,Intel 将P4 前端总线

提升到533MHz、带宽增长至5.4GB/s,虽然配套芯片组可支持DDR333 内存,可也仅能

满足1/2 而已;现在,P4 的前端总线提升到800MHz,而配套的865/875P 芯片组可支持

双通道DDR400——这个时候才实现匹配的理想状态,当然,这个时候继续提高内存带宽

意义就不是特别大,因为它超出了前端总线的接收能力。

南北桥总线带宽曾是一个尖锐的问题,早期的芯片组都是通过PCI 总线来连接南北

桥,而它所能提供的带宽仅仅只有133MB/s,若南桥连接两个ATA-100 硬盘、100M 网络、IEEE1394 接口......区区133MB/s 带宽势必形成严重的瓶颈,为此,各芯片组厂商都发

展出不同的南北桥总线方案,如Intel 的Hub-Link、VIA 的V-Link、SiS 的MuTIOL,

还有AMD 的HyperTransport 等等,目前它们的带宽都大大超过了133MB/s,最高纪录

已超过1GB/s,瓶颈效应已不复存在。

PCI 总线带宽不足还是比较大的矛盾,目前PC 上使用的PCI 总线均为32 位、33MHz

类型,带宽133MB/s,而这区区133MB/s 必须满足网络、硬盘控制卡(如果有的话)之

类的扩展需要,一旦使用千兆网络,瓶颈马上出现,业界打算自2004 年开始以PCI Express 总线来全面取代PCI 总线,届时PCI 带宽不足的问题将成为历史。

五、显示器中的带宽

以上我们所说的“带宽”指的都是速度概念,但对CRT 显示器来说,它所指的带宽

则是频率概念、属于电路范畴,更符合“带宽”本来的含义。

要了解显示器带宽的真正含义,必须简单介绍一下CRT 显示器的工作原理——由灯

丝、阴极、控制栅组成的电子枪,向外发射电子流,这些电子流被拥有高电压的加速器

加速后获得很高的速度,接着这些高速电子流经过透镜聚焦成极细的电子束打在屏幕的

荧光粉层上,而被电子束击中的地方就会产生一个光点;光点的位置由偏转线圈产生的

磁场控制,而通过控制电子束的强弱和通断状态就可以在屏幕上形成不同颜色、不同灰

度的光点——在某一个特定的时刻,整个屏幕上其实只有一个点可以被电子束击中并发

光。为了实现满屏幕显示,这些电子束必须从左到右、从上到下一个一个象素点进行扫

描,若要完成800×600 分辨率的画面显示,电子枪必须完成800×600=480000 个点的

顺序扫描。由于荧光粉受到电子束击打后发光的时间很短,电子束在扫描完一个屏幕后

必须立刻再从头开始——这个过程其实十分短暂,在一秒钟时间电子束往往都能完成超

过85 个完整画面的扫描、屏幕画面更新85 次,人眼无法感知到如此小的时间差异会“误

以为”屏幕处于始终发亮的状态。而每秒钟屏幕画面刷新的次数就叫场频,或称为屏幕

的垂直扫描频率、以Hz(赫兹)为单位,也就是我们俗称的“刷新率”。以800×600

分辨率、85Hz 刷新率计算,电子枪在一秒钟至少要扫描800×600×85=40800000 个点的

显示;如果将分辨率提高到1024×768,将刷新率提高到100Hz,电子枪要扫描的点数

将大幅提高。

按照业界公认的计算方法,显示器带宽指的就是显示器的电子枪在一秒钟内可扫描

的最高点数总和,它等于“水平分辨率×垂直分辨率×场频(画面刷新次数)”,单位

为MHz(兆赫);由于显像管电子束的扫描过程是非线性的,为避免信号在扫描边缘出现

衰减影响效果、保证图像的清晰度,总是将边缘扫描部分忽略掉,但在电路中它们依然

是存在的。因此,我们在计算显示器带宽的时候还应该除一个取值为0.6~0.8 的“有效

扫描系数”,故得出带宽计算公式如下:“带宽=水平像素(行数)×垂直像素(列数)

×场频(刷新频率)÷扫描系数”。扫描系数一般取为0.744。例如,要获得分辨率

1024×768、刷新率85Hz 的画面,所需要的带宽应该等于:1024×768×85÷0.744,结

果大约是90MHz。

不过,这个定义并不符合带宽的原意,称之为“像素扫描频率”似乎更为贴切。带

宽的最初概念确实也是电路中的问题——简单点说就是:在“带宽”这个频率宽度之

内,放大器可以处于良好的工作状态,如果超出带宽范围,信号会很快出现衰减失真现象。从本质上说,显示器的带宽描述的也是控制电路的频率范围,带宽高低直接决定显

示器所能达到的性能等级。由于前文描述的“像素扫描频率”与控制电路的“带宽”基

本是成正比关系,显示器厂商就干脆把它当作显示器的“带宽”——这种做法当然没有

什么错,只是容易让人产生认识上的误区。当然,从用户的角度考虑没必要追究这么多,毕竟以“像素扫描频率”作为“带宽”是很合乎人们习惯的,大家可方便使用公式计算

出达到某种显示状态需要的最低带宽数值。

但是反过来说,“带宽数值完全决定着屏幕的显示状态”是否也成立呢?答案是不

完全成立,因为屏幕的显示状态除了与带宽有关系之外,还与一个重要的概念相关——

它就是“行频”。行频又称为“水平扫描频率”,它指的是电子枪每秒在荧光屏上扫描

过的水平线数量,计算公式为:“行频=垂直分辨率×场频(画面刷新率)×1.07”,

其中1.07 为校正参数,因为显示屏上下方都存在我们看不到的区域。可见,行频是一

个综合分辨率和刷新率的参数,行频越大,显示器就可以提供越高的分辨率或者刷新率。例如,1 台17 寸显示器要在1600×1200 分辨率下达到75Hz 的刷新率,那么带宽值至少需要221MHz,行频则需要96KHz,两项条件缺一不可;要达到这么高的带宽相对容易,而要达到如此高的行频就相当困难,后者成为主要的制约因素,而出于商业因素考虑,

显示器厂商会突出带宽而忽略行频,这种宣传其实是一种误导。

六、通讯中的带宽

在通讯和网络领域,带宽的含义又与上述定义存在差异,它指的是网络信号可使用

的最高频率与最低频率之差、或者说是“频带的宽度”,也就是所谓的“Bandwidth”、

“信道带宽”——这也是最严谨的技术定义。

在100M 以太网之类的铜介质布线系统中,双绞线的信道带宽通常用MHz 为单位,

它指的是信噪比恒定的情况下允许的信道频率范围,不过,网络的信道带宽与它的数据

传输能力(单位Byte/s)存在一个稳定的基本关系。我们也可以用高速公路来作比喻:

在高速路上,它所能承受的最大交通流量就相当于网络的数据运输能力,而这条高速路

允许形成的宽度就相当于网络的带宽。显然,带宽越高、数据传输可利用的资源就越多,

因而能达到越高的速度;除此之外,我们还可以通过改善信号质量和消除瓶颈效应实现

更高的传输速度。

网络带宽与数据传输能力的正比关系最早是由贝尔实验室的工程师Claude

Shannon 所发现,因此这一规律也被称为Shannon 定律。而通俗起见普遍也将网络的数

据传输能力与“网络带宽”完全等同起来,这样“网络带宽”表面上看与“总线带宽”

形成概念上的统一,但这两者本质上就不是一个意思、相差甚远。

七、总结:带宽与性能

对总线和内存来说,带宽高低对系统性能有着举足轻重的影响——倘若总线、内存

的带宽不够高的话,处理器的工作频率再高也无济于事,因此带宽可谓是与频率并立的

两大性能决定要素。而对CRT 显示器而言,带宽越高,往往可以获得更高的分辨率、显

示精度越高,不过现在CRT 显示器的带宽都能够满足标准分辨率下85Hz 刷新率或以上

的显示需要(相信没有太多的朋友喜欢用非常高的分辨率去运行程序或者游戏),这样

带宽高低就不是一个太敏感的参数了,当然,如果你追求高显示品质那是另一回事了。

首先,DB 是一个纯计数单位:dB = 10logX。dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。如:X = 1000000000000000(多少个了?)= 10logX = 150 dB X = 0.000000000000001 = 10logX = -150 dB dBm 定义的是miliwatt。0 dBm = 10log1 mw;dBw 定义watt。0 dBw = 10log1 W = 10log1000 mw = 30 dBm。DB在缺省情况下总是定义功率单位,以10log 为计。当然某些情况下可以用信号强度(Amplitude)来描述功和功率,这时候就用20log 为计。不管是控制领域还是信号处理领域都是这样。比如有时候大家可以看到dBmV 的表达。在dB,dBm 计算中,要注意基本概念。比如前面说的0dBw = 10log1W = 10log1000mw = 30dBm;又比如,用一个dBm 减另外一个dBm时,得到的结果是dB。如:30dBm - 0dBm = 30dB。一般来讲,在工程中,dB和dB之间只有加减,没有乘除。而用得最多的是减法:dBm 减dBm 实际上是两个功率相除,信号功率和噪声功率相除就是信噪比(SNR)。dBm 加dBm 实际上是两个功率相乘,这个已经不多见(我只知道在功率谱卷积计算中有这样的应用)。dBm 乘dBm 是什么,1mW 的1mW 次方?除了同学们老给我写这样几乎可以和歌德巴赫猜想并驾齐驱的表达式外,我活了这么多年也没见过哪个工程领域玩这个。dB是功率增益的单位,表示一个相对值。当计算A的功率相比于B大或小多少个dB时,可按公式10 lg A/B计算。例如:A功率比B功率大一倍,那么10 lg A/B = 10 lg 2 = 3dB。也就是说,A的功率比B的功率大3dB;如果A的功率为46dBm,B的功率为40dBm,则可以说,A比B大6dB;如果A天线为12dBd,B天线为14dBd,可以说A比B小2dB。dBm是一个表示功率绝对值的单位,计算公式为:10lg功率值/1mW。例如:如果发射功率为1mW,按dBm单位进行折算后的值应为:10 lg 1mW/1mW = 0dBm;对于40W的功率,则10 lg(40W/1mW)=46dBm。

3dB就是2倍啦。一般来说,频谱密度是一个类似“拱形”的形状。在某个频点频谱密度最大(即拱形顶端)。

两侧则逐渐减小。设频谱密度最大处的值为A,则3dB带宽就是频谱密度大于A/2的频带。其实与其说叫“3dB带宽”不如叫“-3dB带宽”更容易理解,因为是以最大值的一半为衡量标准嘛。

3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度。

幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半的功率。dB是功率增益的单位,表示一个相对值。当计算A的功率相比于B大或小多少个dB时,可按公式10lgA/B计算。例如:A功率比B功率大一倍,那么10lgA/B=10lg2=3dB,也就是说,A的功率比B的功率大3dB;如果A的功率为46dBm,B的功率为40dBm则可以说,A比B 大6dB;如果A天线为12dBd,B天线为14dBd,可以说A比B小2dB。

dBm是一个表示功率绝对值的单位,计算公式为:10lg功率值/1mW。例如:如果发射功率为1mW,按dBm单位进行折算后的值应为:10lg 1mW/1mW=0dBm;对于40W的功率,则10lg(40W/1mW)=46dBm。

按照单位的换算公式,以功率计算就按-3dB=10lg(Px/Pref)

以电压计算就按-3dB=20lg(Ux/Uref),实际上是同一个位置

数字通信系统中带宽的概念培训讲学

引言 在通信系统中我们经常会遇到“带宽”(Bandwidth)这个词,但我们也会遇到“带宽”的单位有时用赫兹(Hz)表示,而有时却用比特/秒(bit/S)表示,那么我们平时所说的“带宽”到底指的是什么呢? 1、数字通信系统中带宽的概念 早期的电子通信系统都是模拟系统。当系统的变换域研究开始后,人们为了能够在频域定义系统的传递性能,便引进了“带宽”的概念。当输入的信号频率高或低到一定程度,使得系统的输出功率成为输入功率的一半时(即 3dB),最高频率和最低频率间的差值就代表了系统的通频带宽,其单位为赫兹(Hz)。比如在传统的固定电话系统中,从固定话机终端到交换中心的双绞线路系统(Twist pair),所能提供的通信带宽可以到2MHz以上,其中我们的语音通信只使用了从300Hz~3400Hz的频段,使用的通信带宽约为3KHz。现在,基于双绞线传输的xDSL接入网技术,能够充分使用语音带宽以外的频率,高速传送数据业务,实现宽带网接入。 图1 模拟电话线的频带 (300Hz~3400Hz为语音通信频带,25KHz~1.1MHz为ADSL频带) 数字通信系统中“带宽”的含义完全不同于模拟系统,它通常是指数字系统中数据的传输速率,其表示单位为比特/秒(bit/S)或波特/秒(Baud/S)。带宽越大,表示单位时间内的数字信息流量也越大;反之,则越小。衡量二进制码流的基本单位称为“比特”,若传输速率达到64kb/s,就表示二进制信息的流量是每秒64,000比特。衡量多进制码流的的基本单位为“波特”,若多进制码流的传输速率达80KB/S,就表示多进制符号的信息流量是每秒80,000波特,如果将多进制码,比如四进制码(22),换算成的二进制来衡量,则信息比特流量为80X2=160Kb/S。 不同的数字业务其提供或需求的带宽也不一样。如前面所说在固定电话网中的局与局

全方位讲述带宽概念

全方位讲述带宽概念 在各类电子设备和元器件中,我们都可以接触到带宽的概念,例如我们熟知的显示器的带宽、内存的带宽、总线的带宽和网络的带宽等等;对这些设备而言,带宽是一个非常重要的指标。不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域,带宽的描述单位又变成了MHz、GHz……这两种不同单位的带宽表达的是同一个内涵么?二者存在哪些方面的联系呢?本文就带你走入精彩的带宽世界。 一、 带宽的两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。 对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识,对此我们就不做深入的分析。而对于总线、内存中的带宽,决定其数值的主要因素在于工作频率和位宽,在这两个领域,带宽等于工作频率与位宽的乘积,因此带宽和工作频率、位宽两个指标成正比。不过工作频率或位宽并不

3dB带宽定义和理解

3dB带宽定义和理解 3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半的功率。 1、dBm dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)。 [例1] 如果发射功率P为1mw,折算为dBm后为0dBm。 [例2] 对于40W的功率,按dBm单位进行折算后的值应为: 10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。 2、dBi 和dBd dBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。 [例3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi(一般忽略小数位,为18dBi)。 [例4] 0dBd=2.15dBi。 [例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为15dBd(17dBi)。 3、dB dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率) [例6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。 [例7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。 [例8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。[例9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。 4、dBc

带宽定义和理解

-3dB带宽定义和理解 -3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度。 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半的功率。 3dB--指的是比峰值功率小3dB(就是峰值的50%)的频谱范围的带宽;6dB--同上,6dB对应的是峰值功率的25%。 截止频率 用来说明电路频率特性指标的特殊频率。当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍,或某一特殊额定值时该频率称为截止频率。在高频端和低频端各有一个截止频率,分别称为上截止频率和下截止频率。两个截止频率之间的频率范围称为通频带。 关于通频带,3dB带宽,三阶截点和1dB压缩点 1.通频带 通频带用于衡量放大电路对不同频率信号的放大能力。由于放大电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号频率较低或较高时,放大倍数的数值会下降并产生相移。通常情况下,放大电路只适用于放大某一个特定频率范围内的信号。 如图所示为某放大电路的幅频特性曲线。 f1-f2之间为通频带

下限截止频率fL:在信号频率下降到一定程度时,放大倍数的数值明显下降,使放大倍数的数值等于0.707倍的频率称为下限截止频率fL。 上限截止频率fH:信号频率上升到一定程度时,放大倍数的数值也将下降,使放大倍数的数值等于0.707倍的频率称为上限截止频率fH。 通频带fbw:fL与fH之间形成的频带称中频段,或通频带fbw。fbw=fH -fL或者定义为: 在信号传输系统中,系统输出信号从最大值衰减3dB的信号频率为截止频率,上下截止频率之间的频带称为通频带,用BW表示 通频带越宽,表明放大电路对不同频率信号的适应能力越强。"通频带"英文:passband;transmission bands;pass band; 2.3dB带宽 3dB--指的是比峰值功率小3dB(就是峰值的50%)的频谱范围的带宽;6dB--同上,6dB对应的是峰值功率的25%。 3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半 的功率。 3.关于三阶截点和1dB压缩点1dB压缩点(P1dB)是输出功率的性能参数。压缩点越高意味着输出功率越高。P1dB是指与在 很低的功率时相比增益减少1dB时的输入(或输出)功率点。 三阶截取点(IP3)是表示线性度或失真性能的参数。IP3越高表示线性度越好和更少的失真。

各种带宽概念详解,适合初学者

?什么是带宽? ? 在各类电子设备和元器件中,我们都可以接触到带宽的概念,例如我们熟知的显示器的带宽,内存的带宽,总线的带宽和网络的带宽等等;对这些设备而言,带宽是一个 非常重要的指标.不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率 的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域, 带宽的描述单位又变成了MHz,GHz……这两种不同单位的带宽表达的是同一个内涵么 二者存在哪些方面的联系呢本文就带你走入精彩的带宽世界. 一, 带宽的两种概念 第一种如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释.大家都知道,各类复杂 的电子电路无一例外都存在电感,电容或相当功能的储能元件,即使没有采用现成的电 感线圈或电容,导线自身就是一个电感,而导线与导线之间,导线与地之间便可以组成 电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容,电感,都会 对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质.这种效应与交流电 信号的频率成正比关系,当频率高到一定程度,令信号难以保持稳定时,整个电子电路 自然就无法正常工作.为此,电子学上就提出了"带宽"的概念,它指的是电路可以保 持稳定工作的频率范围.而属于该体系的有显示器带宽,通讯/网络中的带宽等等. 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽,总线带宽,网络带宽等等,都是以"字节/秒"为单位.我们不清楚从什么时候起 这些数据传输率的概念被称为"带宽",但因业界与公众都接受了这种说法,代表数据 传输率的带宽概念非常流行,尽管它与电子电路中"带宽"的本意相差很远. 区别:对于电子电路中的带宽,决定因素在于电路设计.它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多.这部分 内容涉及到电路设计的知识,对此我们就不做深入的分析.而对于总线,内存中的带宽, 决定其数值的主要因素在于工作频率和位宽,在这两个领域,带宽等于工作频率与位宽 的乘积,因此带宽和工作频率,位宽两个指标成正比.不过工作频率或位宽并不能无限制提高,它们受到很多因素的制约。 我们会在接下来的总线,内存部分对其作专门论述. 二, 总线中的带宽 在计算机系统中,总线的作用就好比是人体中的神经系统,它承担的是所有数据传输的职责,而各个子系统间都必须籍由总线才能通讯,例如,CPU和北桥间有前端总线, 北桥与显卡间为AGP总线,芯片组间有南北桥总线,各类扩展设备通过PCI,PCI-X总 线与系统连接;主机与外部设备的连接也是通过总线进行,如目前流行的USB 2.0, IEEE1394总线等等,一句话,在一部计算机系统内,所有数据交换的需求都必须通过总 线来实现! 按照工作模式不同,总线可分为两种类型,一种是并行总线,它在同一时刻可以传输多位数据,好比是一条允许多辆车并排开的宽敞道路,而且它还有双向单向之分;另 一种为串行总线,它在同一时刻只能传输一个数据,好比只容许一辆车行走的狭窄道路, 数据必须一个接一个传输,看起来仿佛一个长长的数据串,故称为"串行". 并行总线和串行总线的描述参数存在一定差别.对并行总线来说,描述的性能参数 有以下三个:总线宽度,时钟频率,数据传输频率.其中,总线宽度就是该总线可同时

带宽的两种概念

在各类电子设备和元器件中,我们都可以接触到带宽的概念,例如我们熟知的显示器的带宽、内存的带宽、总线的带宽和网络的带宽等等;对这些设备而言,带宽是一个非常重要的指标。不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域,带宽的描述单位又变成了MHz、GHz??这两种不同单位的带宽表达的是同一个内涵么?二者存在哪些方面的联系呢?本文就带你走入精彩的带宽世界。 一、带宽的两种概念如果从电子电路角度出发,带宽(B a n d w i d t h)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。

dB带宽定义和理解

d B带宽定义和理解 Th e document was prepared on January 2, 2021

-3dB带宽定义和理解 -3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度。 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半的功率。 3dB--指的是比峰值功率小3dB(就是峰值的50%)的频谱范围的带宽;6dB--同上,6dB对应的是峰值功率的25%。 截止频率 用来说明电路频率特性指标的特殊频率。当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的倍,或某一特殊额定值时该频率称为截止频率。在高频端和低频端各有一个截止频率,分别称为上截止频率和下截止频率。两个截止频率之间的频率范围称为通频带。 关于通频带,3dB带宽,三阶截点和1dB压缩点1.通频带 通频带用于衡量放大电路对不同频率信号的放大能力。由于放大电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号频率较低或较高时,放大倍数的数值会下降并产生相移。通常情况下,放大电路只适用于放大某一个特定频率范围内的信号。 如图所示为某放大电路的幅频特性曲线。 f1-f2之间为通频带 下限截止频率fL:在信号频率下降到一定程度时,放大倍数的数值明显下降,使放大倍数的数值等于倍的频率称为下限截止频率fL。

上限截止频率fH:信号频率上升到一定程度时,放大倍数的数值也将下降,使放大倍数的数值等于倍的频率称为上限截止频率fH。 通频带fbw:fL与fH之间形成的频带称中频段,或通频带fbw。fbw=fH-fL或者定义为: 在信号传输系统中,系统输出信号从最大值衰减3dB的信号频率为截止频率,上下截止频率之间的频带称为通频带,用BW表示 通频带越宽,表明放大电路对不同频率信号的适应能力越强。"通频带"英文:passband;transmissionbands;passband; 带宽 3dB--指的是比峰值功率小3dB(就是峰值的50%)的频谱范围的带宽; 6dB--同上,6dB对应的是峰值功率的25%。 3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带 宽度,表示在该带宽内集中了一半 的功率。 3.关于三阶截点和1dB压缩点1dB压缩点(P1dB)是输出功率的性能参数。 压缩点越高意味着输出功率越高。P1dB是指与在 很低的功率时相比增益减少1dB时的输入(或输出)功率点。 三阶截取点(IP3)是表示线性度或失真性能的参数。IP3越高表示线性度越好和更少的失真。 IIP3:Input3rdorderinterceptpoint;

3dB带宽截止频率通频带等概念定义

3dB带宽的定义、理解 dB是功率增益的单位,表示一个相对值。当计算A的功率相比于B大或小多少个dB时,可按公式10lgA/B计算。例如:A功率比B功率大一倍,那么10lgA /B=10lg2=3dB,也就是说,A的功率比B的功率大3dB;如果A的功率为46dBm,B的功率为40dBm,则可以说,A比B大6dB;如果A天线为12dBd,B天线为14dBd,可以说A比B小2dB。 dBm是一个表示功率绝对值的单位,计算公式为:10lg功率值/1mW。例如:如果发射功率为1mW,按dBm单位进行折算后的值应为:10lg1mW/1mW0dBm;对于40W的功率,则10lg(40W/1mW)=46dBm。 3dB带宽是通过功率得出的,简单的讲就是指损耗下降3dB时对应的频率间隔,是带宽的定义,你可以把13GHz带宽示波器前端看作是一带通滤波器,若该滤波器的带宽足够高,所有信号会都进来,反之,信号的高频成分会被滤掉(衰减掉),因此您可以画一个功率/幅值vs频率曲线图,当输入一13GHz正弦波,其示波器上显示的幅值是被测对象实际幅值的70.7%左右,换算成dB值是, -3dB,换算成功率是半功率点,这就是-3dB带宽的定义。 -3dB带宽的理解 -3dB带宽指幅值等于最大值的二分之根号二倍时对应的频带宽度。 幅值的平方即为功率,平方后变为1/2倍,在对数坐标中就是-3dB的位置了,也就是半功率点了,对应的带宽就是功率在减少至其一半以前的频带宽度,表示在该带宽内集中了一半的功率。 3dB--指的是比峰值功率小3dB(就是峰值的50%)的频谱范围的带宽; 6dB--同上,6dB对应的是峰值功率的25%。 截止频率 用来说明电路频率特性指标的特殊频率。当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍,或某一特殊额定值时该频率称为截止频率。 在高频端和低频端各有一个截止频率,分别称为上截止频率和下截止频率。两个截止频率之间的频率范围称为通频带。

带宽计算公式

交换机性能参数学习总结 一、交换机背板是设计值,可以大于等于交换容量(此为达到线速交换机的一个标准)。厂家在设计的时候考虑了将来模块的升级,比如模块从开始的百兆升级到支持千兆、万兆,端口密度增加等。背板带宽一般是指模块化交换机。它决定了各模板与交换引擎间的连接带宽的最高上限。是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽。 二、交换容量(最大转发带宽、吞吐量)是指系统中用户接口之间交换数据的最大能力,用户数据的交换是由交换矩阵实现的。交换机达到线速时,交换容量等于端口数×相应端口速率×2(全双工模式)。 三、包转发率它体现了交换引擎的转发性能。标准的以太网帧尺寸在64字节到1518字节之间,在衡量交换机包转发能力时应当采用最小尺寸的包进行评价。指基于64字节分组,在单位时间内交换机转发的数据总数。当交换机达到线速时包转发率=千兆端口数量×1.488Mpps+百兆端口数量×0.1488Mpps+其余类型端口数×相应计算方法 四、转发带宽与包转发速率关系 8*(64+8+12)*2*包转发速率/1024=转发带宽 注:最大传输带宽=交换容量(交换容量用单工计算) 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit 为单位 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344 =交换机包转发率*1344 带宽计算公式说明 长空发表于2006-1-15 11:44:00 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下:

带宽和位宽

带宽和位宽? 回答: 1.带宽和位宽的概念不同,带宽是指显卡传输数据的速度,单位是 “每秒多少字节(GByte/S)”;位宽是指显卡每一次传输数据的宽度,单位是“位(bit)”。如果用公路作比喻,带宽就是每秒过了多少辆车;位宽就是公路的宽度,能并排过几辆车。 2.带宽和位宽的性质不同,带宽是理论值,数据的实际传输速度 是不可能高于带宽的;而位宽是实际值。 3.带宽可以通过超频来提高,而位宽是固定不变的。 4.带宽的计算要看显存类型,一楼的朋友提供的公式用来计算SD 显存的带宽,如果是DDR显存,其带宽是相同SD显存的两倍。 5.带宽的确很重要,一般情况下,如果显存类型相同,128位64M 的性能优于64位128M,就是因为高位宽能带来高带宽。 位宽 显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。目前市场上的显存位宽有64位、128位和256位三种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。显存位宽越高,性能越好价格也就越高,因此256位宽的显存更多应用于高端显卡,而主流显卡基本都采用128位显存。 一般出现在同品牌上的显存位宽上,例如同为一款ATI RADEON9200但是在显存位宽上有所不同,有些为128bit、有些为64bit,而销售人员就经常把64bit当作128bit来卖,外观上几乎没有区别,有区别的就是在显存的个数上,而普通的消费者往往不能正确的辨识。在这里小编可以给大家介绍一种最基本的方法来比对,如果显卡上显存颗粒数为8颗,那么该显卡的位宽基本为128bit,如果显卡上显存颗粒数为4颗,则为64bit。以上方法只用于TSOP-II显存的辨认,而采用mBGA封装形式的显存通常都为128bit因为

带宽的两种概念

带宽的两种概念 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

在各类和元中,我们都可以接触到的,例如我们熟知的显示 器的带宽、内存的带宽、的带宽和网络的带宽等等;对这些设备而言,带宽是一个 非常重要的指标。不过容易让人迷惑的是,在显示器中它的单位是MHz,这是一个频率 的概念;而在总线和内存中的单位则是GB/s,相当于数据传输率的概念;而在通讯领域,带宽的描述单位又变成了MHz、GHz??这两种不同单位的带宽表达的是同一个内涵么? 二者存在哪些方面的联系呢?本文就带你走入精彩的带宽世界。 一、带宽的两种概念 如果从电子角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固 有通频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂 的电子电路无一例外都存在电感、电容或相当的储能元件,即使没有采用现成的电 感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成 电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会 对起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电 信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路 自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保 持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带 宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起

信号带宽的定义

Power Spectrum and Bandwidth Ulf Henriksson,2003 Translated by Mikael Olofsson,2005 Power Spectrum Consider a pulse amplitude modulated signal Y(t)= ∞ n=?∞A n p(t?nT), where{A n}is the sequence that is supposed to be transmitted and where p(t)is a pulse shape on the interval(0,T).The Fourier transform of p(t)is P(f). Suppose that{A n}is a sequence of independent variables with mean zero and varianceσ2A for all n.Then the power spectral density is given by R A(f)=1 T |P(f)|2σ2A. |P(f)|is called the energy spectrum or the Wiener spectrum of the pulse p(t).Thus,with the given properties of{A n},the power spectral density of the signal has the same shape as the energy spectrum of the pulse. The power spectral density represents the distribution of the signal power over the fre-quency interval(?∞,∞),i.e.over both positive and negative frequencies.The power of the signal in the frequency band(?W,W)is given by P W= W?W R Y(f)d f. The total power of the signal is therefore P= ∞?∞R Y(f)d f=σ2A T ∞?∞|P(f)|2d f=σ2A T T0p2(t)dt, where the last equality follows from Parseval’s relation. 1

放大器中关于带宽和增益带宽等的主要指标

放大器中关于带宽和增益带宽等的主要指标: 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率SR达到6000V/μs。这用于大信号处理中运放选型。 全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。 建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

数字通信系统中的“带宽”

数字通信系统中的“带宽” 数字通信系统中的“带宽” 引言 在通信系统中我们经常会遇到“带宽”(Bandwidth)这个词,但我们也会遇到“带宽”的单位有时用赫兹(Hz)表示,而有时却用比特/秒(bit/S)表示,那么我们平时所说的“带宽”到底指的是什么呢, 1、数字通信系统中带宽的概念 早期的电子通信系统都是模拟系统。当系统的变换域研究开始后,人们为了能够在频域定义系统的传递性能,便引进了“带宽”的概念。当输入的信号频率高或低到一定程度,使得系统的输出功率成为输入功率的一半时(即,3dB),最高频率和最低频率间的差值就代表了系统的通频带宽,其单位为赫兹(Hz)。比如在传统的固定电话系统中,从固定话机终端到交换中心的双绞线路系统(Twist pair),所能提供的通信带宽可以到2MHz以上,其中我们的语音通信只使用了从300Hz~3400Hz的频段,使用的通信带宽约为3KHz。现在,基于双绞线传输的xDSL接入网技术,能够充分使用语音带宽以外的频率,高速传送数据业务,实现宽带网接入。 图1 模拟电话线的频带

(300Hz~3400Hz为语音通信频带,25KHz~1.1MHz为ADSL频带) 数字通信系统中“带宽”的含义完全不同于模拟系统,它通常是指数字系统中数据的传输速率,其表示单位为比特/秒(bit/S)或波特/秒(Baud/S)。带宽越大,表示单位时间内的数字信息流量也越大;反之,则越小。衡量二进制码流的基本单位称为“比特”,若传输速率达到64kb/s,就表示二进制信息的流量是每秒 64,000比特。衡量多进制码流的的基本单位为“波特”,若多进制码流的传输速 率达80KB/S,就表示多进制符号的信息流量是每秒80,000波特,如果将多进制码,比 2如四进制码(2),换算成的二进制来衡量,则信息比特流量为 80X2=160Kb/S。 不同的数字业务其提供或需求的带宽也不一样。如前面所说在固定电话网中的局与局之间的中继接口,所提供的带宽为64Kb/S;ISDN网中的用户网络侧接口(UNI)中的U接口(2B1Q码),带宽为80KB/S(160Kb/S);局间E1接口所提供的带宽为 2Mb/S;同步数字传输网(SDH)中的STM,1 信号速率为155Mb/S,等等。有时对于某一种业务却很难给出其带宽的确切 值,因为数字信号的传输还与业务的带宽需求、传输质量、传输时间等因素有关。对于数字通信系统来说,一般情况下系统所提供的带宽越宽,其业务的实时性也越好。图2给出了各种业务与相应传输速率间的大略对应关系。

带宽计算公式

一、交换机背板是设计值,可以大于等于交换容量(此为达到线速交换机的一个标准)。厂家在设计的时候考虑了将来模块的升级,比如模块从开始的百兆升级到支持千兆、万兆,端口密度增加等。背板带宽一般是指模块化交换机。它决定了各模板与交换引擎间的连接带宽的最高上限。是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽。 二、交换容量(最大转发带宽、吞吐量)是指系统中用户接口之间交换数据的最大能力,用户数据的交换是由交换矩阵实现的。交换机达到线速时,交换容量等于端口数×相应端口速率×2(全双工模式)。 三、包转发率它体现了交换引擎的转发性能。标准的以太网帧尺寸在64字节到1518字节之间,在衡量交换机包转发能力时应当采用最小尺寸的包进行评价。指基于64字节分组,在单位时间内交换机转发的数据总数。当交换机达到线速时包转发率=千兆端口数量× +百兆端口数量× +其余类型端口数×相应计算方法 四、转发带宽与包转发速率关系 8*(64+8+12)*2*包转发速率/1024=转发带宽 注:最大传输带宽=交换容量(交换容量用单工计算) 我的公式推算: 假设交换机有A、B、C三种接口各一个,它们的包转发率分别是X、Y、Z 64+8+12的意思为:基于64字节分组测试(以太网传输最小包长就是64字节);8以太网中,每个帧头都要加上了8个字节的前导符;帧间隙最小为12字节。再乘8是转换为Bit为单位 所以得: 交换机转发带宽=X*8*(64+8+12)+Y*8*(64+8+12)+Z*8*(64+8+12) =(X+Y+Z)*1344 =交换机包转发率*1344 带宽计算公式说明 长空发表于 2006-1-15 11:44:00 一、计算公式说明 交换机的背板带宽,是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。背板带宽标志了交换机总的数据交换能力,单位为Gbps,也叫交换带宽,一般的交换机的背板带宽从几Gbps到上百Gbps不等。一台交换机的背板带宽越高,所能处理数据的能力就越强,但同时设计成本也会越高。 一般来讲,计算方法如下: (1)线速的背板带宽

带宽的含义

https://www.360docs.net/doc/8b1278947.html,/s/blog_87b0850d0100zyb0.html 带宽的含义 带宽的概念在不同领域有非常不同的含义(参见维基百科“带宽”条目: https://www.360docs.net/doc/8b1278947.html,/wiki/带宽),对伺服系统来说,带宽就是伺服系统能响应的最大正弦波频率。用专业一些的语言描述,就是幅频响应衰减到-3dB时的频率(-3dB带宽),或者相频响应滞后90度时的频率。这是个很抽象的概念,为了清楚的说明这个概念,也为了后面几篇文章的深入讨论,有必要介绍几个基本概念(不好意思,还是要用到一些数学):(1)信号的频率成分。任何信号都是由有限个或无限个正弦信号叠加而成,这些正弦信号的频率各不相同,这些频率就是信号的频率成分。举个例子,方波信号可以分解为无限多个频率的正弦波,如图1所示,这些都是组成它的频率成分。将这些频率成分由低频开始逐次叠加,叠加的过程如图2所示。图3显示了前25次谐波叠加的动态过程。可见,叠加的频率成分越多,原来的波形就能得到越好的还原。如果方波通过一个带宽无限的系统,那么所有频率成分都可以顺利通过,方波会无失真的被再现。如果方波通过一个带宽有限的系统,则带宽之外的频率成分会损失掉,方波就会发生失真。带宽越大,损失掉的频率成分就越少,失真也就越小。 图1 频率成分分解

图2 频率成分叠加 图3 频率成分逐次叠加的动态过程 (2)分贝。分贝用来衡量增益(放大倍数)的单位,是一个比值,没有量纲。对于振幅类的变量,把放大倍数取对数(以10为底),然后乘以20,就得到了用分贝描述的增益。因此,-3dB实际上就是0.707倍,二者是一回事,感兴趣的读者可以自己换算一下。 (3)增益。实际上就是放大倍数,是一个无量纲的数字,经常用分贝表示。 (4)伯德图(对数频响图)。伯德图是用来描述系统频率响应特性的图,其横坐标轴是频率,纵坐标轴是增益(也就是放大倍数)或相位,坐标轴刻度以对数坐标表示。一个典型的伯德图如图4所示.

带宽换算

带宽换算 许多人对kbps、kb、mbps 等速度单位有所误解,以下简单解释一下所谓的1.5m、3m、6m 如何计算。 所谓1.5m 宽带,其实是指 1.5mbps (bits per second),亦即1.5 x 1024 / 8 = 192kb/sec, 但这只是理论上的速度,实际上则要再扣约12% 的ethernet header, ip header, tcp header, atm header 等控制讯号,故其传输速度上限应为169kb/sec 左右。 在传输单位的写法上,b和 b 分别代表bytes 和bits,两者的定义是不同的,千万不要混淆。1 byte = 8 bits 1 kb = 1024 bits 1 kb = 1024 bytes 1 mb = 1024 kb 1 mb = 1024 kb 宽带下载理论值基本上这样都算正常了 1.5 m =169 kb/s 3 m =338 kb/s 6 m =676 kb/s 10 m =1126 kb/s 100 m =11260kb/s 以上谈到的是理论值,对于实际的连接速度可以通过下载文件的方法来测试,看看离理论值有多远,另外有一些网速测试网站,也可以测试家中正在使用的宽带服务质量 1Byte=8bit(位) 1KB=1024Byte(字节) 1MB=1024KB 1GB=1024MB TB、Tera byte : 1TB=1024GB 1字节=一个二进制位,只有0和1两种状态1字节=8比特 1K字节=1024字节(字节英文为byte,注意与bit区分) 1M字节=1024字节 带宽与速率不一样。带宽表示传输能力,而速率是实际数据流通的速度。 带宽的单位是bit/s(bps)而速度单位是Byte/s(Bps) 例如:2Mbps=256KB/s也就是说2M的带宽在理论值上下速度能到256KB每秒。 -------------------------------------------------- -------------------- 1MBPS=0.125M/S MBPS/8=M/S 即: 带宽除于8 就等于传输速率了 人家说的100M带宽他最高的传输速率就是:12.5M -------------------------------------------------- 网速换算小贴士: 通常使用IE浏览器在网站下载时所看到的速度单位为byte/秒(以字节为单位,而此为电脑技术专业术语)。 byte/秒,这个是电脑技术中的常用术语,为了换算为常用的网速单位bit/秒,需要将使用byte

显示器中的带宽

显示器中的带宽 对CRT显示器来说,它所指的带宽则是频率概念、属于电路范畴,更符合“带宽”本来的含义。 要了解显示器带宽的真正含义,必须简单介绍一下CRT显示器的工作原理——由灯丝、阴极、控制栅组成的电子枪,向外发射电子流,这些电子流被拥有高电压的加速器加速后获得很高的速度,接着这些高速电子流经过透镜聚焦成极细的电子束打在屏幕的荧光粉层上,而被电子束击中的地方就会产生一个光点;光点的位置由偏转线圈产生的磁场控制,而通过控制电子束的强弱和通断状态就可以在屏幕上形成不同颜色、不同灰度的光点——在某一个特定的时刻,整个屏幕上其实只有一个点可以被电子束击中并发光。为了实现满屏幕显示,这些电子束必须从左到右、从上到下一个一个象素点进行扫描,若要完成800×600分辨率的画面显示,电子枪必须完成800×600=480000个点的顺序扫描。由于荧光粉受到电子束击打后发光的时间很短,电子束在扫描完一个屏幕后必须立刻再从头开始——这个过程其实十分短暂,在一秒钟时间电子束往往都能完成超过85个完整画面的扫描、屏幕画面更新85次,人眼无法感知到如此小的时间差异会“误以为”屏幕处于始终发亮的状态。而每秒钟屏幕画面刷新的次数就叫场频,或称为屏幕的垂直扫描频率、以Hz(赫兹)为单位,也就是我们俗称的“刷新率”。以800×600分辨率、85Hz刷新率计算,电子枪在一秒钟至少要扫描800×600×85=40800000个点的显示;如果将分辨率提高到1024×768,将刷新率提高到100Hz,电子枪要扫描的点数将大幅提高。 按照业界公认的计算方法,显示器带宽指的就是显示器的电子枪在一秒钟内可扫描的最高点数总和,它等于“水平分辨率×垂直分辨率×场频(画面刷新次数)”,单位为MHz(兆赫);由于显像管电子束的扫描过程是非线性的,为避免信号在扫描边缘出现衰减影响效果、保证图像的清晰度,总是将边缘扫描部分忽略掉,但在电路中它们依然是存在的。因此,我们在计算显示器带宽的时候还应该除一个取值为0.6~0.8的“有效扫描系数”,故得出带宽计算公式如下:“带宽=水平像素(行数)×垂直像素(列数)×场频(刷新频率)÷扫描系数”。扫

相关文档
最新文档