超高分子量聚乙烯

超高分子量聚乙烯
超高分子量聚乙烯

超高分子量聚乙烯纤维的生产和改

性研究

轻化143王子3140302304

摘要:本文主要参照了《超高分子量聚乙烯纤维的发展状况》对超高分子量聚乙烯纤维的发展及性能研究历程进行了详细概述;通过查阅《超高分子量聚乙烯纤维性能及生产现状》和《超高分子量聚乙烯纤维制造及应用探讨》了解了三种制备超高分子量聚乙烯纤维的主要方法;参考了《超高分子量聚乙烯纤维的表面改性》和《超高分子量聚乙烯纤维的表面改性研究》等论文,了解到超高分子量聚乙烯三种表面改性方法;通过查阅《纳米改性增强超高分子量聚乙烯复合材料研究进展》了解到纳米材料对超高分子量聚乙烯纤维的改性机理,并对改性前后性能变化做出细致比较和概述;针对多巴胺对超高分子量聚乙烯纤维的影响参照了《多巴胺仿生修饰及聚乙烯亚胺二次功能化表面改性超高分子量聚乙烯纤维》了解到两种改性方式,并对两种改性方式优劣做出对比;参考了《Investigation of the ballistic performance of ultra high molecular weight polyethylene composite panels》了解到超高分子量聚乙烯纤维的防弹性能及在其他领域的应用情况。

关键词:超高分子量聚乙烯纤维(UHMWPE);纳米材料;多巴胺

1前言

以“惊异塑料”著称的UHMWPE具有与聚乙烯(CPE)一样的线性结构。UHMWPE极高的分子量(分子量在150万以上)赋予其优异的使用性能,而且属于价格适中、性能优良的热塑性工程塑料,它凡乎集中了各种塑料的优点,具有普通聚乙烯和其它工程塑料无可比拟的耐磨、耐冲击、自润滑、耐腐蚀、吸收冲击能、耐低温、卫生无毒、不易粘附、不易吸水、密度较小等综合性能。事实上,目前还没有一种单纯的高分子材料兼有如此众多的优异性能。

2超高聚乙烯纤维生产方法

2.1表面结晶生长法

表面结晶生长法是由荷兰Groningen州立大学高分子化学系A.J.Pennings和A.ZWijnenburg首先提出并加以研究的。将UHMWPE用二甲苯等作为溶剂加热溶解成为浓度为0.4%-1.0%的溶液,置于Couette装置中,转动纺丝液中的转子,使转子表面生成聚乙烯的冻胶皮膜,接着在均匀流动的纺丝液中加入晶种,在100一125℃下诱导结晶生成和长大,同时进行拉丝,拉丝速度要与结晶速度匹配,并使串晶结构转化为伸直链结构从而赋予纤维很高的强度和模量。

此方法是一种全新型且非常有创造性的纤维制造方法,然而,由于UHMWPE 结晶速度过慢,纤度控制难度较大,因此也难以实现工业化生产。

2.2增塑熔融纺丝法

将UHMWPE与适量的改性剂或稀释剂混合制成纤维的方法一般称为增塑熔融纺丝法。此法中UHMWPE的含量一般在60%}' 80%之间,所采用的稀释剂可以是UHMWPE的溶剂,也可以是固态的蜡质物质。混合物经过熔融挤出成型后,然后在加热介质为萃取剂的介质中进行多级拉伸,也可以先经过萃取剂除去稀释剂后再进行多级拉伸,最终能够获得强度>20cN/dtex,模量>700cN/dtex的UHMWP

2.3凝胶纺丝法

本法是以蔡、石蜡油等碳氢化合物为溶剂,将UHMWPE配制成半稀溶液,浓度为0.5%一10%,一般为1 %^'2%,经喷丝孔挤出后骤冷形成凝胶纤维,对凝胶原丝进行萃取和干燥,随后在90} 150℃的温度下,运用己往的技术进行30倍以上的超拉伸。由于采用的是稀纺丝溶液,所以凝胶纤维分子间的链缠结数明显减少,适宜于超拉伸。随着拉伸倍数的提高,断裂强度增加,断裂伸长率减小。超倍拉伸不仅提高纤维的结晶度和取向度,而且使呈折叠链的聚乙烯片晶(Folded-chain lamellae)结构转化成伸直链(Extended-chain crystal)结构,从而极大提高纤维的强度和模量。

凝胶纺丝工艺有很大的适应性,除了丝的纤度和根数外,其机械性能可根据需要在较大的范围内调节,其它性能,如导电性、粘接强度和阻燃性可用添加剂来控制,还可加入染料或其它载体。

3超高聚乙烯纤维表面改性方法

3.1化学试剂处理

化学试剂处理是研究较多的一个方面,其原理是通过强氧化作用在纤维表而导入羧基、羰基,磺酸基等含氧极性基团;同时纤维表血弱界面层因溶于处理液中而被破坏,甚至分子链断裂,形成凹凸不平的表面,增加纤维的比表面积,提高与树脂基体的接触面积,改善纤维的粘结性。在通过化学试剂处理UHMWPE纤维表面的过程中,影响因素主要有:处理液配方、处理时问、温度、材料的种类等。化学试剂处理法中最常用的是液相氧化法和表面涂层法。其中,液相氧化法中又可分为铬酸溶液处理、有机过氧化处理、氯磺酸处理等。

3.2等离子体处理

等离子体处理仅作用在材料表面有限深度内数个分子,因此经处理后的纤维力学性能不会受太大的影响。按处理方式,可分为低压等离子体和高压等离子体两种。一般来说低压等离子体是指处理压强低于130Pa。这种方法处理效果较好,但需要较高真空,难以实现连续化生产,工业化难度较大。按处理性质又可分为两类:(1)表面不形成聚合物;(2)表面形成聚合物。区别在于处理气氛的不同,如在O2 , N2 , H2 , Ar, NH3等气氛中处理,纤维表面不形成聚合物而采用有机气体或蒸气(如烯丙胺)来产生等离子体,在纤维表面会因聚合反应沉积一层涂层,这种涂层会在纤维和基体间形成很好的粘结层,提高交合材料的

柔韧性。

3.3电晕放电处理

电晕放电处理是将2-100KV, 2-1OKHz的高频高电压施加于带电电极上,于电极表面附近的电场很强,电极附近的气体介质会被局部击穿而产生电晕放电现象。气体介质电离后产生大量的粒子,与材料表面的分子发生直接或间接的作用,对材料表面的物化性能产生一定的影响。由于电晕放电产生的粒子成分很复杂,操作上也很困难,因此其作用机理还没有得到统一的认识。长期以来研究人员根据各自的试验结果,建立了多种理论来解释电晕放电的作用机理。其中影响较大的有自粘理论、氧化理论和降解理论等,但是这些理论的研究对象主要是聚乙烯薄膜,对UHMWPE纤维电晕处理方面的研究还没有深入进

行。

电晕放电处理UHMWPE纤维后,用X-射线光电子能谱(X-ray photo electron spectroscopy, XPS)检测纤维表面元素的含量,可以发现纤维表面氧元素含量大大增加。若进一步采用远红外光谱(Fourier transform infrared spectrometer, FTIR)分析会发现处理后的纤维表面出现了羟基、羰基和羧基的吸收峰。此外,纤维表面的粗糙度对复合材料层间剪切强度的提高也有贡献。

4纳米材料改性超高分子量聚乙烯纤维

纳米材料的理化性质能够将无机调料的刚性,尺寸稳定性,热稳定性与高分子聚乙烯的韧性,可加工性,和介电性能结合起来,使其能够更好的发挥特殊性能,但是,当无机纳米材料与高分子量聚乙烯直接混合的时候,还是有一定的缺陷的比如说是共混性差,界面结合强度不高等等。所以,为了解决这样的问题在混合的时候引人人偶联剂对纳米表现进行改性,从而提高两者混合界面的强度。纳米填充高分子量聚乙烯主要是通过高分子聚乙烯与改性纳米材料均匀混合后热压成型,混合的办法包括液相超声分散法,机械共混法,液相辅助熔混法等等,进行热压时的温度要保持在180到200摄氏度之间。

4.1摩擦性能的改变

在实际的应用过程中,虽然高分子量聚乙烯本身就有比较良好的抗磨性以及很低的摩擦因素,但是现如今随着经济科技的不断发展,对于不同的需求需要不同的摩擦性能,所以需要对其进行改进。

利用纳米填充技术可以对其的摩擦性进行改进,比如说如果采用一定是分散方法将GO(氧化石墨烯,一种纳米物质)与UHMWPE进行分散,并且通过球磨混合和热压成型制备两者的复合材料,并且在去离子水以及生理盐水的减摩润滑与氧化错进行滑动摩擦,在摩擦的过程中,复合材料的磨损率比未进行改造之前的磨损率要下降百分之二十左右。

4.2力学性能的转变

总所周知,对于没有改性之前的UHMWPE,由于自身内部结构的原因,导致的硬度比较低,耐冲击的能力较弱。这样的性质直接导致了其在很多行业运用能力的不足。为了满足有关工程的需求,需要对其进行改性研究,通过不同的无机纳米材料,可以使复合材料表现出不同程度的物理性质。比如说通过偶联合剂

改性二硫化钨填充UHMWPE制备复合材料,复合纤维改性之后,复合纤维的抗冲击性显著提高,如果添加量变为百分之四时,其的抗拉伸性会提高百分之十左右。对于纳米材料的添加量来讲,不同比例的添加量也会造成性能的转变。

5多巴胺仿生修饰改性超高分子量聚乙烯纤维

纤维与橡胶复合材料的性能优劣主要靠两者之间的界面粘合性能决定。超高分子量聚乙烯纤维表面光滑,活性基团少,若仅仅采用传统的RFL浸渍处理,达不到理想的粘合效果,因此必须对惰性纤维表面进行改性处理。本课题以此为出发点,提出采用多巴胺仿生修饰的方法,并以多巴胺作为二次功能化平台,分别采用两种不同的方式(“两步法”和“一步法”)在纤维表面接枝活性更高的单体环氧树脂。激活后的纤维可以与RFL浸渍液达到很好的结合作用,从而提高超高分子量聚乙烯纤维与橡胶的界面粘合作用。

5.1两步法接枝环氧树脂改性UHMWPE纤维

两步法接枝环氧树脂改性超高分子量聚乙烯纤维的方法是指:第一步,将超过分子量聚乙烯纤维放在多巴胺溶液中反应一定时间,在纤维表面沉积一层聚多巴胺,然后将多巴胺改性后的纤维从溶液中过滤出来,清洗干净并且烘干。这样可以在纤维表面引入聚多巴胺的活性官能团亚氨基基团,作为二次功能化的平台。第二步,将多巴胺改性后的纤维放入水中搅拌分散均匀,然后在上述溶液中加入一定量的液体环氧树脂,进行接枝反应。加入的环氧树脂链末端含有两个官能团,一端的环氧基团可以与多巴胺改性后的纤维亚氨基基团进行开环反应,将环氧树脂接枝在纤维的表面;另一端的环氧基团活性相对来说下降,不参与开环反应,因此就可以引入纤维表面,从而达到激活纤维表面的作用,为后续与RFL胶乳浸渍处理提供更高的活性基团。

5.2一步法接枝环氧树脂改性UHMWPE纤维

一步法接枝环氧树脂改性UHMWPE纤维的方法是指:将超过分子量聚乙烯纤维放在多巴胺溶液中反应一定时间,在纤维表面沉积一层聚多巴胺,随后直接在反应液中直接滴加一定量的液体环氧树脂,进行接枝反应。一步法的反应机理可能是:溶液中的多巴胺在氧化自聚合反应过程中产生的吲哚结构,一边可以与

加入的环氧树脂进行开环反应,一边可以继续氧化自聚合,沉积在纤维的表面。这样,通过边接枝边聚合的方式,成功地将环氧基团引入纤维的表面。

5.3通过多巴胺仿生修饰的方法对超高分子量聚乙烯纤维((UHMWPE)进行表面改性,通过XPS, FT IR, SEM和接触角测试等表征手段,证明聚多巴胺成功地沉积在UHMWPE纤维的表面。为了进一步提高纤维表面的活性,利用聚多巴胺层作为二次功能化平台,分别采用了两种不同接枝的方法,即“两步法”和“一步法”接枝环氧树脂方法,在沉积了聚多巴胺层的纤维表面接枝了环氧树脂。通过XPS, FT IR, SEM和接触角测试等表征手段,证明“一步法”比“两步法”更加有利于环氧树脂的接枝,成功地在纤维表面引入了活性更高的环氧基团。随后,研究了环氧接枝温度和环氧浓度对接枝效果的影响,经研究发现,随着反应温度的提高,越有利于环氧树脂的接枝,当温度达到80℃的时候,环氧树脂接枝效果最佳;当环氧树脂的浓度达到12岁L的时候,环氧树脂接枝效果最佳。

由于改性后的纤维表面引入了活性很高的环氧基团,环氧基团的高活性可以与RFL胶乳充分反应,产生很好的浸润效果,从而为了制备粘合性能优异的纤维/橡胶复合材料做好了前期的准备工作。最终,本论文选用多巴胺仿生修饰一步法接枝环氧树脂的方法对UHMWPE纤维进行表面改性,选取最佳的改性条件为:环氧树脂接枝温度为800C,接枝浓度为12 g/L。

6结论

高强高模聚乙烯纤维由于分子量极高,主链结合好、取向度、结晶度高,因此它的比强度是当今所有纤维之最,相当于优质钢丝的15倍,普通化学纤维近10倍,而且密度小,模量高,能抗紫外线和耐各种化学腐蚀,具有突出的高冲击、高切割韧性优点和良好的耐候性、高能量吸收性、低导电性等。可广泛应用于国防军需装备:轻质高性能防弹板材、防弹头盔、软质防弹衣、防刺衣、坦克防护板、雷达防护罩等,其中以防弹衣的应用最为引人注目。还可应用于航空航天复合材料、体育用品器材、建筑工程加固等高性能复合材料。因其轻质高强、使用周期长、耐磨、耐湿等特性,又可用于负力绳索、重载绳索、救捞绳、拖拽绳、帆船索和钓鱼线等。UHMWPE纤维的绳索,在自重下的断裂长度是钢绳的8倍,是芳纶纤维的2倍。在远洋航舶、海军舰艇绳缆、远洋捕鱼拖网、深海抗风浪网箱等方面都有应用。

参考文献

[1]尹晔东.超高分子量聚乙烯纤维的发展状况[J].化工新型材料,2015,10:

36-10.

[2]李建利,张新元等. 超高分子量聚乙烯纤维性能及生产现状[J].针织原料,

2016,06.

[3]董建东. 超高分子量聚乙烯纤维制造及应用探讨[J].玻璃钢,2014,01.

[4]赵晓琳,杜建华等. 超高分子量聚乙烯纤维的表面改性[J].粉末冶金技术,

2005,02.

[5]金军,张慧萍等. 超高分子量聚乙烯纤维的表面改性研究[J].产业用纺织品,

2016.

[6]王利朋,赵欣欣. 纳米改性增强超高分子量聚乙烯复合材料研究进展[J].专业

管理,2017,07.

[7]冯霞,胡俊成等.多巴胺仿生修饰及聚乙烯亚胺二次功能化表面改性超高分

子量聚乙烯纤维[J].天津工业大学学报,2016,12.

[8]Tomasz K. C′wik, Lorenzo Iannucci . Investigation of the ballistic performance

of ultra high molecular weight polyethylene composite panels . Composite Structures 149 (2016) 197–212

超高分子量聚乙烯生产工艺的评述

学号: 广东石油化工学院 课程论文 超高分子量聚乙烯生产工艺的评述 学院:化工与环境工程专业:高分子材料与工程班级:高分子10-2 学生:教师: 完成时间:2013 年 6 月16 日

超高分子量聚乙烯生产工艺的评述 高分子10-2 杜龙飞学号:10014010216 摘要:超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。它的平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自 润滑性、耐化学腐蚀等性能,卫生安全、抗冲击性能在所有塑料中为最高值,并可长期在-169至+80℃ 条件下工作,被称为"令人惊异"的工程塑料,而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异, 在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。 关键词:超高分子量聚乙烯性能结构用途反应机理 1 引言 超高分子量聚乙烯是一种性能优良的工程塑料, 广泛应用于化学工业、食品和饮料加工机械、铸件、木材加工工业、散装材料处理、医疗上的人工移植器官、采矿加工机械、纺织机械及交通运输车辆、体育娱乐设备等领域。它的分子结构与普通聚乙烯的基本相同, 但分子量却高达100万以上, 因而具有不同于普通聚乙烯的一些特殊性能, 其中最显著的应用特性就是能代替钢材, 用来制作管材、化工阀门、泵和密封填料、纺织机械的齿轮和皮结、输送机的蜗轮杆、轴承、轴瓦、煤块滑道、各种料斗和筒仓的衬里材料以及食品加工机械的料斗和辊筒、体育用品和溜冰场等, 超高分子量聚乙烯的耐磨性比钢材好, 价格却比钢材低川, 因而受到人们的关注和欢迎。 超高分子量聚乙烯是乙烯等烯烃单体通过淤浆聚合工艺而成,其粘均分子量大于120万,产品外观为白色粉末。 2 超高分子量聚乙烯的生产方法和工艺 目前世界各公司均在采用的低压聚合工艺,超高分子量聚乙烯是由乙烯聚合而成, 其合成反应式如下: 超高分子量聚乙烯的生产过程与普通高密度聚乙烯的生产过程相类似, 都是采用齐格勒催化剂在一定条件下使乙烯聚合的。也就是说, 只要采用齐格勒催化剂并在适当的工艺条件下即可制得超高分子量聚乙烯。 现在,世界上生产超高分子量聚乙烯的各公司均采用齐格勒系催化剂的低压聚合工艺生产超高分子量聚乙烯。该工艺与高密度聚乙烯的低压淤浆法工艺十分相近, 负载型齐格勒系高效催化剂也比过去更能使催化效率大为提高, 并使聚合工艺得以简化, 从

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

超高分子量聚乙烯(UHMWPE)的应用及加工技术

《燕山石化公司2012年度情报论文第号》 超高分子量聚乙烯(UHMWPE)的应用及加工 技术 伟超

树脂应用研究所2012.12.27

目录 1.UHMWPE的性能及应用 (1) 1.1 UHMWPE的性能 (1) 1.2 UHMWPE的应用 (2) 1.2.1 以耐磨性和耐冲击性为主的应用 (2) 1.2.2 以自润滑性和不粘性为主的应用 (3) 1.2.3 以耐腐蚀性和不吸水性为主的应用 (4) 1.2.4 以卫生无毒性为主的应用 (4) 2.UHMWPE的加工特点及加工技术 (4) 2.1 UHMWPE的加工特点 (4) 2.2 UHMWPE的加工技术 (5) 2.2.1 模压成型 (5) 2.2.2 挤出成型 (5) 2.2.3 注塑成型 (7) 2.2.4 UHMWPE纤维的纺丝工艺 (8) 2.3 几种新型挤出方法 (10)

2.3.1 UHMWPE的近熔点挤出技术 (10) 2.3.2 超高分子量聚乙烯加工中的亚稳性现象 (11) 2.3.3 气体辅助挤出成型技术 (11) 2.3.4 超支化聚(酯-酰胺)对UHMWPE的加工流动改性 (12) 2.3.5 数值模拟UHMWPE的柱塞挤出 (12) 3.结论 (13) 参考文献 (14)

超高分子量聚乙烯(UHMWPE)的应用及加工技术摘要:超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料,广泛应用在纺织、造纸、包装、运输、化工、采矿、石油、建筑、电气、食品、医疗、体育、船舶、汽车等领域。由于其相对分子质量大,UHMWPE具有流动性差,临界剪切速率低,分子链易发生断裂等特点,加工困难。本文对超高分子量聚乙烯(UHMWPE)的应用及模压成型、挤出成型、注塑成型、纺丝等加工技术进行了介绍,并特别介绍了近熔点挤出、气体辅助挤出、超支化合物改性等几种较为新颖的UHMWPE加工技术。 关键词:UHMWPE,加工,进展,应用 超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料。最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hercules公司、日本三井石油化学公司等也相继投入工业化生产。我国高桥化工厂于1964年最早研制成功并投入工业化生产,20世纪70年代后期又有塑料厂和助剂二厂投入生产。目前,各国树脂的生产都是采用齐格勒型高效催化剂低压法合成的。 1.UHMWPE的性能及应用 1.1 UHMWPE的性能[1] 1.磨耗性能 UHMWPE的耐磨耗性能居塑料之首,比尼龙66和聚四氟乙烯高4倍,比碳钢高5倍。 2.冲击性能 UHMWPE的冲击强度是市售工程塑料中最高的,为聚碳酸脂(PC)的2倍,ABS的5倍,且能在液氮温度(-℃)下保持高韧性。 3.润滑性能

超高分子量聚乙烯市场分析实施报告.docx

. 超高分子量聚乙烯(UHMWPE)市场分析报告 1国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的T icona 公司、巴西的 Polialden 公司、荷兰的 DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为 11 万吨 / 年(含在中国独资企业产能),Polialden 为 4.5 万吨 / 年,DSM为 1 万吨 / 年,全球总生产能力超过 20 万吨 / 年。Ticona 公司是全球最大的 UHMWPE生产厂,约占全球 50%市场份额,可以生产适用于板材、异型 材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖 全球市场。 DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西 Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万— 600 万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表 1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家)树脂牌号(商标) Ticona (德国)Hostalen GUR Polialden ( 巴西 )UTEC DSM(荷兰)Stamylan UH 三井化学公司(日本)HI-ZEX MILLION 旭化成工业公司(日本)SUNFINE_U 昭和油化(日本)SHOREKSPA-5SSIH 三菱工程塑料公司(日本)Novatec Allied (美国)A-C1200-1232 Usi (美国)LS501 Phillips (美国)Marlex 6002 5003

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

超高分子量聚乙烯市场分析报告修订稿

超高分子量聚乙烯市场 分析报告 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

超高分子量聚乙烯(U H M W P E)市场分析报告 1国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1国外超高分子量聚乙烯的主要生产商及产品牌号 1.1德国Ticona公司 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。

表2Ticona公司主要产品牌号 1.2巴西Polialden公司 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE 技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem公司扩大位于巴西Bahia 州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3Braskem公司的主要产品牌号

超高分子量聚乙烯纤维的发展

超高分子量聚乙烯纤维的发展 在总结阐述超高分子量聚乙烯纤维概念、用途的基础上,分析其在国内外不同国家的发展与应用现状,并重点阐释其在我国的产生、发展历程及取得的巨大成果;对世人了解我国超高分子量聚乙烯纤维发展状况,具有重要的释疑意义。 1超高分子量聚乙烯纤维概述 超高分子量聚乙烯纤维是继碳纤维和芳纶纤维之后的世界第三代高强、高模、高科技的特种纤维。超高分子量聚乙烯纤维在水中的自由断裂长度可以延伸至无限长,而在相同粗细的情况下,超高分子量聚乙烯纤维能承受8倍于钢丝绳的最大质量,在军事、工业、航空、航天等领域均有重要应用。超高分子量聚乙烯纤维最重要的功能就是能够起到防弹、防刺的作用,用其制作的防弹衣质量、强度与传统的防弹衣相比都要轻得多,强度也高很多。超高分子量聚乙烯纤维若按质量计算其强度,要比芳纶高出40%,可以称之为当今世界上强度最高的聚乙烯纤维。在世界三大特种纤维中,超高分子量聚乙烯纤维质量最轻,化学稳定性也最好,而且具有耐磨、耐弯曲性能、张力疲劳性能以及抗切割性能。但超高分子量聚乙烯纤维在世界上也属于稀缺物资,其生产技术难度是很大的,目前,在国际上只有美国、荷兰、日本的三家化工公司能够进行工业化生产,而国内年产量则较少,多存在装置规模小等问题。据预测,在未来10年,世界对超高分子量聚乙烯纤维的年需求量将达到20万吨以上,市场发展潜力巨大。在我国,其已被列为国家"十一五"期间重点研发产品。 2国外超高分子量聚乙烯纤维生产与发展现状 1)超高分子量聚乙烯纤维在荷兰的发展 荷兰帝斯曼公司是世界上生产迪尼玛品牌高性能聚乙烯纤维的最大厂商。该公司于2006年在美国北卡罗来纳州建成并投产了高强聚乙烯纤维迪尼玛的生产线,这是该公司的第三次扩产扩能,这就使该公司生产超高分子量聚乙烯纤维的生产线数量达到了9条。自此,其在全球的迪尼玛纤维生产能力提高了约18%,达到了4700吨/年。而主要应用于单向防弹板制作的此类纤维生产能力则提高25%,达到了2500吨/年。目前,北卡罗来纳州的格里维尔装置可以向全球用户生产供应这种纤维,但必须首先满足美国军事工业的需要。世界对该种纤维的需求正在快速的增长。 2)超高分子量聚乙烯纤维在美国、日本等国家的发展

超高分子量聚乙烯生产技术及新产品开发建议

超高分子量聚乙烯生产技术及新产品开发建议 目录 1前言 (1) 2 UHMWPE分子量及其分布测试方法 (2) 2.1分子量测试方法 (2) 2.2分子量分布测试方法 (4) 2.2.1 GPC法 (4) 2.2.2高温GPC法 (4) 2.2.3弛豫时间谱法 (4) 3国内外UHMWPE开发现状 (5) 3.1国外UHMWPE树脂的生产状况 (5) 3.1.1美国Ticona公司 (6) 3.1.2巴西Braskem公司 (11) 3.1.3荷兰DSM公司 (11) 3.1.4日本三井化学公司 (12) 3.1.5日本三菱化学公司 (14) 3.1.6瑞士Quadrant公司 (15) 3.2国外UHMWPE制品生产厂家 (18) 3.2.1 UHMWPE板材、异型材、管材主要厂家 (18) 3.2.2 UHMWPE薄膜主要生产厂家 (19) 3.2.3 UHMWPE纤维主要厂家 (21) 3.2.4 UHMWPE蓄电池隔板主要厂家 (22) 3.3国内UHMWPE树脂的生产状况 (22) 3.4国内UHMWPE制品生产厂家 (25) 3.4.1 UHMWPE板材、棒材、异型材主要生产厂家 (27) 3.4.2 UHMWPE管材主要生产厂家 (28) 3.4.3 UHMWPE纤维主要生产厂家 (29) 3.4.4 UHMWPE蓄电池隔板主要生产厂家 (31) 3.4.5国内 UHMWPE薄膜主要生产厂家 (32) 4 UHMWPE催化剂进展 (32) 4.1 Ziegler-Natta催化剂及其制备方法 (33) 4.2国外UHMWPE催化剂研究进展 (34) 4.2.1美国Ticona公司 (35) 4.2.2巴西Braskem公司 (36) 4.2.3日本三井化学公司 (37) 4.2.4日本三菱化学公司 (44) 4.2.5日本石油公司 (45) 4.2.6日本旭化成公司 (47) 4.2.7三星综合化学株式会社 (47) 4.3国内UHMWPE催化剂研究进展 (47) 5新产品开发建议 (50) 参考文献 (51)

超高分子量聚乙烯的合成及应用成型研究

超高分子量聚乙烯的合成及应用成型研究 超高分子量聚乙烯(UHMWPE),是乙烯的线性均聚物,与高密度聚乙烯(HDPE)的结构类似,但平均链长为标准等级HDPE的10~100倍,其分子量一般都在300万以上。它最早由Karl Ziegler合成,具有优良的抗张强度、耐冲击、耐滑移、耐磨、耐化学腐蚀以及自润滑等性能,通过了美国FDA和USDA的认证,广泛应用于化工、机械、食品、医疗、军工、纺织、采矿等行业。 1 聚合工艺 乙烯的聚合主要受聚合温度、压力、催化剂组成及用量、外给电子体和氢气的影响,有高压聚合、气相聚合、淤浆聚合与溶液聚合这几种工艺,然而能用于UHMWPE聚合的却只有淤浆聚合与气相聚合。 1.1 淤浆工艺 淤浆工艺主要包括搅拌釜工艺与环管工艺。搅拌釜工艺包括Hostalen工艺和CX工艺,目前大约2/3的UHMWPE聚合采用Hostalen的连续搅拌釜工艺。此工艺最早是由德国Hoechst公司(现Basell公司)为高密度聚乙烯(HDPE)所开发,典型的工艺流程见图1,它使用双釜反应器,可通过串联或并联生产出单峰或者双峰的HDPE产品。而UHMWPE和HDPE淤浆工艺最主要的差别还是在工艺条件的优化、助催化剂/三价钛的配比上。此外,由于UHMWPE产物为粉末状,UHMWPE不需要造粒工序。Sudhakar P通过优化工艺条件而用传统Ziegler-Natta合成了分子量在400万~600万之间的UHMWPE。 上海化工研究院在1996年开发出以氯化镁、四氯化钛、钛酸酯类或苯甲酸酯为催化体系的单釜聚合工艺,经聚合、过滤、汽提、干燥后分子量达500万,产品性能与Hostalen工艺产品相似,填补了国内空白。 1.一号反应器; 2.二号反应器; 3.后反应器; 4.离心分离器; 5.流化床干燥器; 6.粉末处理器; 7.膜回收系统; 8.溶剂精制与单体回收系统; 9.挤压造粒 图1 典型Hostalen工艺流程 环管工艺主要有Phillips公司的Phillips单环管工艺和Ineos公司的InnoveneS双环管工艺。Phililips公司利用改性后的二氧化硅或氧化铝固定的Ti、Zr、Hf来生产UHMWPE,聚合中不需加入氢气,投资少,但对催化剂的要求较高。 在UHMWPE淤浆聚合过程中,控制反应热是聚合成败的关键。通过调节乙烯在溶剂中的浓度和催化剂的加入量可以达到控制反应热的效果,如果反应中的热量不能及时移出,将会造成催化剂失活。另外,控制反应器中铝的加入量,对增加分子量也具有显著的效果。 1.2 气相工艺

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

超高分子量聚乙烯耐磨材料的综述报告

超高分子量聚乙烯(UHMWPE)耐磨材料的综述报告 超高分子量聚乙烯,英文名称Ultra-High Molecular Weight Polyethylene (简称UHMWPE ),是一种线型结构的具有优异综合性能的热塑性工程塑料,它的分子结构和普通聚乙烯完全相同,在分子主链上带有(-CH 2-CH 2-)的链节,并具有106以上极大的分子量。因其相对于其它工程材料而言,具有优异的耐磨性、自润滑性和耐冲击性等独特性能而广泛应用于通用机械、农业机械、纺织机械、汽车、采矿、造纸、化工、食品工业等作不粘、耐磨、低噪音和自润滑部件等领域。此外还可用作特种薄膜、大型容器、大型异形管材和板材等,用于货物装卸溜槽、漏斗、货仓的衬里。1.UHMWPE 的基本性能 超高分子量聚乙烯一般是指相对分子质量在 100万以上的聚乙烯,德国生 产的超高分子量聚乙烯相对分子质量早已高达1000万以上。它具有以下优点:(1)耐磨损非常卓越,砂浆磨损试验表明,比一般碳钢和铜等金属要耐磨数倍、 比尼龙耐磨 4倍;(2)冲击强度极高,比 PA6和 PP 大 10倍;(3)能吸收震动冲击和防噪声;(4)摩擦系数很低,远较尼龙及其他塑料为小,能润滑;(5)不易粘附异物,滑动时有极优良的抗粘着特性;(6)耐化学腐蚀,病可屏蔽原子辐射;(7)工作温度范围可自 - 265℃到 +100℃,低温到 - 195℃时,仍能保持很好的韧性和强度,不致脆裂;(8)无毒性、无污染、可再循环回收利用,和其他塑料相比有良好的热稳定性和不吸水性,能保持尺寸精度不变形;(9)成本低廉。因此在工程塑料中超高分子量聚乙烯是综合性能最佳的工程塑料,它几乎集中了各种塑料的优点。事实上,目前还没有一种单纯的高分子材料兼有如此众多的优异性能。但它也有不足之处,主要在于耐温性能差、硬度低、拉伸强度低以及阻燃性能差等。2.UHMWPE 历史发展概况及现状评述 上世纪30年代最早有人提出关于超高分子量聚乙烯纤维的基础理论,随后凝胶纺丝法和增塑纺丝法的出现使超高分子量聚乙烯在技术上取得重大突破,、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

超高分子量聚乙烯

超高分子量聚乙烯 超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万以上的聚乙烯。分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。 热变形温度(0.46MPa)85℃,熔点130~136℃。 超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国AlliedChemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国于1964年最早研制成功并投入工业生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前产品分子量可达100万~400万以上。 超高分子量聚乙烯(UHMW-PE)的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。 超高分子量聚乙烯(UHMW-PE)平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。 超高分子量聚乙烯(UHMW-PE)优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高分子量聚乙烯(UHMW-PE)优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节 由于超高分子量聚乙烯(UHMW-PE)熔融状态的粘度高达108Pa*s,流动性极差, 其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,超高分子 量聚乙烯(UHMW-PE)的加工技术得到了迅速发展,通过对普通加工设备的改造, 已使超高分子量聚乙烯(UHMW-PE)由最初的压制-烧结成型发展为挤出、吹塑和注 射成型以及其它特殊方法的成型。 一般加工技术 (1)压制烧结

国内超高分子量聚乙烯纤维生产概况

国内超高分子量聚乙烯纤维生产概况 超高分子量聚乙烯纤维是一种新材料,它的应用领域很广泛,从航空航天到国 防军事,再到民用绳网,都有着它广阔的应用市场和开发领域。目前国内此纤维的年了。早期投产的有三家,分别在宁波、湖南、北京。三产业化生产,大约已有13家的生产方式各有不同,产品也各有千秋。但是,由于此种纤维的自身特性和超高的总欠伸][短纤分子量的特点,它与一般常规化纤的生产有着很大差异。常规化纤多倍,为100倍就可以了,而这种冻胶纤维的总欠伸倍数要倍数一般为:几倍--20何要拉伸这麽多倍呢?这是由于溶剂的存在,使纤维中链缠结交联点的数目减少而至。也就是说,此种纤维,它从纺丝喷丝板到产品成型需要一段漫长的过程才能实现,过程长了,环节就多了,控制起来,困难自然也就多了。它就像一条链子,不论少了哪一环,整条链子都会断裂。了解在生产的每一个过程中,要严格控制纤维的外在技术指标,更要掌握、 纤维的内在分子结构变化,看它内在结构的变化,符合不符合它在这一工段中所能达到的工艺要求。换句话说:纤维在每一道生产过程中,它的内外技术指标变化是不是人们所希望应达到的状态。所以,在生产过程中,半成品的物检、化验是不可缺少的中间控制手段。 要想生产出合格的产品,并且要达到一定的制成率,确实不易。目前,在这一领域的理论认知程度,还有待于进一步的研究提高,特别是成熟的大规模产业化生产技术,还不是十分成熟。情况不一,大体上分析:有技术问题,有设备问题,还有的是控制方法问题。当然,人员、资金问题也不能排除。 超高分子量聚乙烯纤维的生产是高科技,生产过程中每一道环节的控制,都很严谨,控制精度很高。有的工段,温度相差1度,线速度相差 0.1米/分,就会产生大量毛丝及断头,造成缠辊现象,而常规化纤的生产就不需如此严格。 它的主要生产工序如下:纤维的制作,总体上说与常规聚酯短纤的制作有相似之处。原料的制备——双螺杆挤压机——纺丝箱——喷丝板——萃取——干燥——加热牵伸——卷绕成型。 目前,国内外原料的制备方法不一,采用的溶剂不同,含固量也不一原料的制备:样。所以,没有固定的统一模式,生产制作的设备差异也很大,而常规熔融纺是不加溶剂的。但不论采取那种方式,最终都能达到所需的效果。因生产是连续化的,所以原料的配比不能有波动,要求始终均匀一致。虽然含固量的提高,是提高产量增加了操作难度,的重要手段之一,但拉伸比也随之提高,整体车速都要响应加快,毛丝的产生量相比明显增多,不易把握。但,若能将含固量的百分比控制在适当的浓度内,还是可以的,要根据自身情况,量力而行。提高计量泵的转速也是提高产量的有效手段之一。 螺杆挤压机对物料起着输送—搅拌—加热—加压等作用。首先,进双螺杆挤压机:入“螺杆”之前的浆料要脱泡,不能含有水汽,物料在输送过程中,要得到充分的混练搅拌。各区的加热温度,要结合螺杆上捏合块的位置加以设定,并且要保证一定的输送压力。螺杆捏合块的设定,理论性很强,不同的组合,对物料的搅拌,会有不同的效果。 它的作用主要是保温;控温;均匀的将物料分配到每一个纺丝组件。纺丝箱: :由计量泵将物料挤压变为丝条,就是通过喷丝板实现的,板的孔径大小及喷丝板刨面形状是它的重要技术参数,它对纤维的成型及拉伸性能的好坏,起着至关重要的作用。

超高分子量聚乙烯综述

超高分子量聚乙烯纤维性能及应用 摘要:超高分子量聚乙烯纤维有着高取向度,高结晶度,强力、模量高,抗冲击,耐腐蚀,耐光照,耐挠曲,耐磨损等优点。它的密度比水小,介电性能好。超高分子量聚乙烯纤维的缺点是使用温度不高,耐氧化性能差,抗蠕变性能差,表面加工困难。正是超高分子量聚乙烯纤维自身所具有的这些特点,它在抗冲击防护、低温、耐压、海洋工程、渔业等领域有着广泛地使用。 关键词:超高分子量聚乙烯纤维性能应用 The Properties and Applications of Ultra- high Molecular Weight Polyethylene Fibre Abstract:Ultra-high molecular weight polyethylene (UHMWPE) fibre was high orientation degree,crystallinity,tensile strength and modulus,impact resistance,good corrosion resistance,light aging resistance,resistance to flexure,and wear resistance advantages etc.It had the small density than water,and good dielectric properties.The defect of UHMWPE fiber were that the used temperature was not high,oxidation resistance performance was poor,creep resistance was poor,and surfacing processing was difficult . Just UHMWPE fiber itself with these characteristics,it was widely used in the impact resistance,low temperature,pressure resistance,ocean engineering,fishery,etc.Key words:ultra-high molecular weight polyethylene(UHMWPE) fibre;properties; applications 一超高分子量聚乙烯纤维的性能 超高分子量聚乙烯纤维是自上个世纪80年代发展起来的一种高性能纤维,工业化生产采用凝胶纺丝超倍拉伸技术,是凝胶纺丝技术中的代表产品。一问世便以出色的性能受到市场的关注。20多年的发展过程中,生产技术不断改进,性能、产量均有长足的进步。现如今,该种纤维世界范围内生产能力超过1万吨/年,商业级顶级产品的强度能达到40cN/dtex。 超高分子聚乙烯纤维具有高取向度,高结晶度,微纤沿拉伸方向排列规整度高,使用电子显微镜还能够观察到“串晶”结构。这些结构赋予其良好的机械性能:沿纤维轴向方向,纤维具有很高的耐拉伸性,比强度,比模量都较高;即使在很低的温度下,该纤维仍能够保持柔软,有研究表明,即使在-150℃的条件下,纤维也无脆化点[1]。该纤维的缺点也很明显,

超高分子量聚乙烯加工技术详解

超高分子量聚乙烯加工技术 超高分子量聚乙烯安阳超高工业技术有限责任公司 摘要:超高分子量聚乙烯英文简称UHMW-PE,它是一种来源丰富、价格适中、 性能优异的一类热塑性工程塑料,由于具有耐冲击性、耐腐蚀、耐磨损、自润滑性、无毒性及极优良的耐低温性等优点,被应用在许多领域。“性能卓越,加工困难”是UHMW-PE的一大特点,其原因就在于UHMW-PE的分子链极长,致使分子链互相缠结,很难呈规则排列,在引起聚集态变化的同时(如:结晶度偏低-65%~85%,密度偏低~m3),大分子链间的无规缠结又使UHMW-PE对热运动反应迟缓,当加热到熔点以上时,熔体呈现橡胶状高粘弹体状,熔体粘度高达,熔体流动速率几乎为零,造成UHMW-PE临界剪切速率很低,易产生熔体破裂等缺陷。因此,很难用常规的聚合物加工方法来成型UHMW-PE制品,在一段时间内限制了UHMW-PE的推广使用,故研究UHMW-PE的成型加工显得尤为重要。常用的成型方法有模压成型法(1965年前后)、挤出成型法(1970年前后)和注塑成型法(1975年前后)3种。本论文首先简要介绍一下UHMW-PE的性能及成型方法,然后分别对它的单螺杆挤出成型工艺和双螺杆挤出成型工艺做详细介绍。 关键词:性能;加工性能;成型方法;单螺杆挤出成型法;双螺杆挤出成型法1 UHMW-PE概述 UHMW-PE的发展简史 超高分子量聚乙烯通常是指相对分子质量在150万以上的线型聚乙烯,其英文全称为Ultra High Molecular Weight Polyethylene,简称UHMW-PE。UHMW-PE 在分子结构上与普通聚乙烯相同,其主链上的链节都是(-CH 2-CH 2 -),但普通聚乙 烯的分子量较低,约在5-30万之间,即使是高分子量高密度聚乙烯(HMWHPE),其重均分子量也仅为20-50万,而UHMW-PE的分子量高达巧于600万,德国甚至有分子量高达1000万以上的产品。 UHMW-PE是一种来源丰富、价格适中、性能优异的一类热塑性工程塑料,其耐冲击性、耐腐蚀、耐磨损、自润滑性、无毒性及极优良的耐低温性等优点,使该材料广泛应用于通用机械、化工机械、食品和造纸等领域,作为易磨损、易腐蚀、高冲击、低温及不能使用润滑油的各种零部件及料仓衬里、溜槽、滑道衬板、滑轨、油箱等。UHMW-PE材料的使用寿命不仅高于尼龙和聚四氛乙烯制品,且耐磨性远远超过不锈钢等金属制品。由于UHMW-PE具有优良的综合性能,在国外被称为“惊异的塑料”[1]。 UHMW-PE首先由西德Hoechest公司于1958年开发成功,其后美国Hercules 公司及日本三井油化相继较大规模地工业化生产,北京助剂二厂是国内UHMW-PE 的主要厂家。长期以来,UHMW-PE由于加工困难,致使UHMW-PE材料的推广应用受到一定限制。近年来由于加工技术的不断进步和发展,其应用领域也随之扩大。目前UHMW-PE制品的加工仍以压制烧结和柱塞法为主。七十年代中期以来,日本先后开发了单螺杆挤出和往复螺杆注射成型工艺,美国和西德也相继采用单螺杆挤出和注射成型法加工UHMW-PE制品。 UHMW-PE的合成方法

超高分子量聚乙烯市场分析报告

超高分子量聚乙烯(UHMWPE)市场分析报告 1 国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家树脂牌号(商标 Hostalen GUR Ticon(德国 UTEC)Polialden 巴Stamylan UHDS(荷兰 HI-ZEX MILLION三井化学公司(日本SUNFINE_U旭化成工业公司(日本)SHOREKSPA-5SSIH 昭和油化(日本)

Novatec 三菱工程塑料公司(日本)A-C1200-1232 Allied(美国) LS501 Usi(美国) Marlex 6002 5003 (美国)Phillips公司Ticona德国1.1 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。表2 Ticona公司主要产品牌号 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem 公司扩大位于巴西Bahia州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3 Braskem公司的主要产品牌号

相关文档
最新文档