用单片机控制直流电机毕业设计

用单片机控制直流电机毕业设计
用单片机控制直流电机毕业设计

贵州师范大学职业技术院

毕业设计

题目

班级 13级电气班

姓名方远

指导教师周仕友陈智

用单片机控制直流电机

摘要

本设计以AT89C51单片机为核心,以4*4矩阵键盘做为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。

一、设计方案比较与分析:

1、电机调速控制模块:

方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。

方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:采用由达林顿管组成的H型PWM电路。用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。

兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。

2、PWM调速工作方式:

方案一:双极性工作制。双极性工作制是在一个脉冲周期内,单片机两控制口各输出一个控制信号,两信号高低电平相反,两信号的高电平时差决定电动机的转向和转速。

方案二:单极性工作制。单极性工作制是单片机控制口一端置低电平,另一端输出PWM信号,两口的输出切换和对PWM的占空比调节决定电动机的转向和转速。

由于单极性工作制电压波开中的交流成分比双极性工作制的小,其电流的最大波动也比双极性工作制的小,所以我们采用了单极性工作制。

3、PWM调脉宽方式:

调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在采用单片机产生PWM脉冲的软件实现上比较方便。

4、PWM软件实现方式:

方案一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。但是基于不占用定时器资源,且对于直流电

机,采用软件延时所产生的定时误差在允许范围,故采用方案二。

二、 系统分析与设计:

总体设计方案的硬件部分

详细框图如图一所示。 键盘向单片机输入相应控制指令,由单片机通过P2.0与P2.1其中一口输出与转速相应

的PWM 脉冲,另一口输出低电

平,经过信号放大、光耦传递,驱动H 型桥式电动机控制电路,实现电动机转向与转速的控制。电动机的运转状态通过LED 显示出来。电动机所处速度级以速度档级数显示。正转时数字向右移动,反转时数字向左移动。移动速度分7档,快慢与电动机所处速度级快慢一一对应。每次电动机启动后开始计时,停止时LED 显示出本次运转所用时间,时间精确到0.1s 。

1、系统的硬件电路设计与分析

电动机PWM 驱动模块的电路设计与实现具体电路见下图二。本电路采用的是基于PWM 原理的H 型桥式驱动电路。

图二

PWM 电路由四个大功率晶体管组成H 型桥式电路构成,四部分晶体管以对角组合分为两组:根据两个输入端的高低电平决定晶体管的导通和截止。4个二极管在电路中起防止晶体管产生反向电压的保护作用。4个电感在电路中是起防止电动机两端的电流和晶体管上的电流过大的保护作用。

在实验中的控制系统电压统一为5v 电源,因此若达林顿管基极由控制系统直接控制,则控制电压最高为5V ,再加上三极管本身压降,加到电动机两端的电压就只有4V 左右,严重减弱了电动机的驱动力。基于上述考虑,我们运用了4N25光耦集成块,将控制部分与电动机的驱动部分隔离开来。输入端各通过一个三极管增大光耦的驱动电流;电动机驱动部分通过外接12V 电源驱动。这样不仅增加了各系统模块之间的隔离度,也使驱动电流得到了大大的增强。

在电动机驱动信号方面,我们采用了占空比可调的周期矩形信号控制。脉冲频率对电动机转速有影响,脉冲频率高连续性好,但带带负载能力差脉冲频率低则反之。经实验发现,脉冲频率在40Hz 以上,电动机转动平稳,但加负载后,速度下降明显,低速时甚至会停转;脉冲频率在10Hz 以下,电动机转动有明显跳动现象。实验证明,脉冲频率在15Hz-30Hz 时效果最佳。而具体采用的频率可根据个别电动机性能在此范围内调节。通过N1输入信号,N2输入低电平与N1输入低电平,N2输入信号分别实现电动机的正转与反转功能。通过对信号占空比的调整来对车速进行调节。速度分7档控制,从高电平(第6档)到低电平(第0档)中间占空比以20%逐极递减。速度微调方面,可以通过对占空比以1%的跨度逐增或逐减分别实现对速度的逐加或逐减。

2、系统的软件设计

本系统编程部分工作采用KELI-C51语言完成,采用模块化的设计方法,与各子程序做为实现各部分功能和过程的入口,完成键盘输入、按键识别和功能、PWM 脉宽控制和LED 显示等部分的设计。

系统主函数流程如图三:

①PWM脉宽控制:本设计中采用软件延时方式对脉冲宽度进行控制,延时程

序函数如下:

void delay(unsigned char dlylevel){

int i=50*dlylevel;

while(--i);}

此函数为带参数DLYLEVEL,约产生DLYLEVEL*400us的延时,因此一个脉冲

周期可以由高电平持续时间系数hlt和低电平持续时间系数llt组成,本设计中

采用的脉冲频率为25Hz,可得hlt+llt=100,占空比为hlt/(hlt+llt),因此要

实现定频调宽的调速方式,只需通过程序改变全局变量hlt,llt的值,该子程

序流程图如图四。

②键盘中断处理子程序:采用中断方

响应该中断处理程序,完成延时去抖动、

键码识别、按键功能执行。

调速档、持续加/减速:调速档通过

(0-6)共七档固定占空比,即相应档位相

应改变hlt,llt的值,以实现调速档位的

实现。而要实现按住加/减速键不放时恒加

或恒减速直到放开停止,就需在判断是否

松开该按键时,每进行一次增加/减少1%

占空比(即hlt++/--;llt--/++),其程序

流程图如图五。

③显示子程序:利用数组方式定义显示缓存区,缓存区有8位,分别存放各

个LED管要显示的值。显示子程序为一带参子程序,参数为显示缓存的数组名,

通过for(i=0;i<8;i++)方式对每位加上位选码,送到P0口并进行一两毫秒延时。

该显示子程序只对各个LED管分别点亮一次,因此在运行过程中,每秒执行

的次数不应低于每秒24次。

④定时中断处理程序:采用定时方式1,因为单片机使用12M晶振,可产生

最高约为65.5ms的延时。对定时器置初值3CB0H可定时50ms,即系统时钟精度

可达0.05s。当50ms定时时间到,定时器溢出则响应该定时中断处理程序,完

成对定时器的再次赋值,并对全局变量time加1,这样,通过变量time可计算

出系统的运行时间。

对于一个数的显示,先应转成BCD码,即取出每一个位,分别送入显示缓存

区,对于转BCD的算法,应对一个数循环除10取模,直至为0,程序如下:

do{dispbuff[bcd_p]=bechange%10; //dispbuff为显示缓冲区数组

bcd_p++;}while(bechange/=10) //disp_p为数组指针

软件设计中的特点:

1、对于电机的启停,在PWM控制上使用渐变的脉宽调整,即开启后由停止匀

加速到默认速度,停止则由于当前速度逐渐降至零。这样有利于保护电机,如电机运用于小车上,在启动上采用此方式也可加大启动速度,防止打滑。

2、对于运行时间的计算、显示。配合传感器技术可用于计算距离,速度等重

要的运行数据。

3、键盘处理上采用中断方式,不必使程序对键盘反复扫描,提高了程序的效

率。

三、测试结果与分析:

结束语

本设计在硬件上采用了基于PWM技术的H型桥式驱动电路,解决了电机马驱动的效率问题,在软件上也采用较为合理的系统结构及算法,提高了单片机的使用效率,且具有一定的防飞能力。但该设计也有不足之处,主要是在关于速度的反馈上,无法提供较为直观的速度表示方式,因此,有必要引入传感器技术对速度进行反馈,以rpm或rps表达当前的转速进行显示。

pic单片机控制直流电机

实用标准文案 目录 1 总体设计框 架 (3) 2 硬件电路设 计 (4) 2.1 芯片介 绍 (4) 2.2 驱动电 路 (9) 2.3 按键控制电 路 (10) 3 程序编写 ................................................. 10 3.1 工作原 理 (10) 21程序书写过程 3.2 ...................................................... 参考资 料 (16) 精彩文档. 实用标准文案 直流电机驱动 Abstract 摘要:本文主要内容是利用PIC18F452单片机来控制直流电机,通过L293NE来驱动电机,通过按键来使其正转,反转。Keywords 关键词:直流电机,PWM,L293NE 精彩文档. 实用标准文案

总体设计框架1硬件电路利用驱动芯片L293D来驱动直流电机,按键则是单独引出。如图1所示。软件则是C语言编程。 PI驱C直动1流8电电F路机452 图1硬件设计框精彩文档. 实用标准文案 2硬件电路设计 2.1 芯片介绍 首先,总体说明硬件电路设计,如图2 原理图,图3 PCB图以及图4板子的图所示。三个输入信号,如图分别为RD4,RD5,RD6连上光耦的2脚,然后通过光耦的4脚引入L293D的使能引脚(12EN)以及输入引脚(1A,2A),然后L293D的输出引脚(1Y,2Y)通过H-桥型控制电路与直流电机连接。 图2 直流电机控制部分原理图 精彩文档. 实用标准文案 PCB图图3直流电机控制部分 成品板图4 其中红线圈表示直流电机控制部分。下面详细介绍各个芯片。PIC18F452

毕业设计基于单片机的直流电机调速系统设计

河南科技大学 2009 届本科毕业论文 论文题目:基于单片机的直流电机调速系统设计 学生姓名: 所在院系:信息工程学院 所学专业:计算机科学与技术 导师姓名: 完成时间:2009-05-22

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D 转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。 关键词:PWM信号,测速发电机,PI运算 1

The Design of Direct Current Motor speed Regulation System Based On SCM Chenli School of Information and Engineering Abstract This article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation o f D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it. Key words:PWM signal,tachogenerator,PI calculation 2

基于单片机的直流电机控制器的设计

目录 摘要............................................................................................................................................................... I I ABSTRACT ................................................................................................................................................. III 1系统论述 (5) 1.1设计思路 (5) 1.2基本原理 (5) 1.3总体设计框图 (5) 2直流电机单元电路设计与分析 (6) 2.1直流电机驱动模块 (6) 2.2直流电机的中断键盘控制模块 (11) 2.31602LCD液晶显示模块 (13) 3直流电机PWM控制系统的实现 (15) 3.1总电路图 (15) 3.2总电路功能介绍 (16) 3.3直流电机控制程序 (16) 4系统仿真 (23) 5结束语 (26) 参考文献资料 (27)

摘要 本文是对直流电机PWM调速器设计的研究,主要实现对电机的控制。本课程设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。并实现电路的仿真。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示和测量;由命令输入模块、光电隔离模块及H型驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,不断给光电隔离电路发送PWM 波形,H型驱动电路完成电机正反转控制.在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。 关键词:AT89C51单片机;PWM调速;正反转控制;仿真。

无刷直流电动机毕业设计绪论

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

基于单片机对直流电机的控制

基于单片机对直流电机的控制 第十五组 姓名:吴代露20131325010 张鹏飞20131325012 金静丽20131325014 周敏20131325015 胡会华20131325017 顾蓉20131325018 专业:2013级信息工程(系统工程方向) 指导老师:周旺平 2014.12.22

基于单片机对直流电机的控制 内容摘要 电动机作为最主要的动力源,在生产和生活中占有重要地位。电动机的调速控制过去多用模拟法,随着计算机的产生和发展以及新型电力电子功率器件的不断涌现,电动机的控制也发生了深刻的变化。 关键字:电动机飞思卡尔 PWM控制 一、引言 (一)直流电机的定义 直流电机(direct current machine):是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 (二)直流电机的基本结构 由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 (三)直流电机工作原理

直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 (四)直流电机的分类 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。(1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机:又可分为永磁直流电动机和电磁直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等;铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域;铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,直流串励电

51单片机PWM控制直流电机正反转

//程序说明:使用内部时//PWM0=P3^7PWM1=P3^5 PWM2=P2^0 PWM3=P2^4 #include #define uchar unsigned char #define uint unsigned int sbit PWM0=P3^7; sbit PWM1=P3^5; sbit PWM2=P1^2; sbit PWM3=P1^3; uint i,j; void PWM_init() { CMOD=0x00;//PCA计数脉冲选择内部时钟fosc/12(0x02:fosc/2) CL=0x00;//PCA赋初值 CH=0x00; CR=1; //开始计数 } void zheng(uchar ZKB) { CCAP0L=255*(40-ZKB)/100;//占空比设置 CCAP0H=255*(40-ZKB)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM0=0x42;// 8位PWM模式 CCAP1L=255*(40-0)/100;//占空比设置 CCAP1H=255*(40-0)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM1=0x42;// 8位PWM模式 CR=1; //开始计数 } void fan(uchar ZKB) { CCAP0L=255*(40-0)/100;//占空比设置 CCAP0H=255*(40-0)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM0=0x42;// 8位PWM模式 CCAP1L=255*(40-ZKB)/100;//占空比设置 CCAP1H=255*(40-ZKB)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM1=0x42;// 8位PWM模式 CR=1; //开始计数 } void Delay(uint t) //延时函数

直流电动机无级调速毕业设计

毕业设计(论文)任务书 设计(论文)题目:直流电动机无级调速 1.设计(论文)的主要任务及目标 (1) 本次的设计任务就是直流电动机无级调速的设计,使其能更好的为我们的生产和生活服务。 (2) 本次的设计目的就是要求设计要使得电动机转速可以由零平滑调至额定转速,能实现高速起动,具有较高的调速精度。 2.设计(论文)的基本要求和内容 (1) 直流电动机的基本知识 (2) 直流电动机的运行原理 (3) 主电路以及控制电路的设计 3.主要参考文献 [1] 张家生.电机原理与拖动基础.北京邮电学院出版社,2006年 [2] 唐介.电机与拖动. 北京:高等教育出版社,2003年 [3] 陈世元.电机学.中国电力出版社,2004年 [4] 徐邦荃.直流调速系统与交流调速系统.华中科技大学出版社,2008年 [5] 赵影.电机与电力拖动. 北京:国防工业出版社,2006年 4.进度安排 设计(论文)各阶段名称起止日期 1 论文初稿2012年12月27日 2 第一次修改2012年12月30日 3 第二次修改2013年01月08日 4 第三次修改2013年02月17日 5 论文终稿2013年03月16日 I

直流电动机无极调速 摘要 本设计主要是运用调速系统对直流电动机进行调速,使其实现无级的效果。此调速系统由主电路和控制电路两部分组成:主电路是采用晶闸管可控整流装置进行调速;控制电路是采用双闭环速度电流调节方法进行反馈。系统采用调压调速的调速方法可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,只要输出的电压是连续可调的,即可实现电动机的无级调速。双闭环速度电流调节这种方法虽然初次头次成本相对而言较高,但它保证了系统的性能,保证了对生产工艺要求的满足,它既兼顾了启动时的电流的动态过程,又保证稳态后速度的稳定性,在起动过程的主要阶段,只有电流负反馈,没有转速负反馈。达到稳态后,只要转速负反馈,不让电流负反馈发挥主要作用很好地满足了生产需要。 关键词:无级调速;双闭环;晶闸管 II

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

电动车无刷直流电机 毕业设计论文

毕业设计(论文) 题目:无刷电机驱动的电动自行车 的控制系统设计 专业:数控技术 班级: 学号: 姓名: 指导老师:

摘要 近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。于是发展绿色交通工具已经成为一个重要的课题。考虑到我国的国情,发展电动自行车具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。设计出了电路原理图、印制板电路图和电路板实物的3维效果图。 关键词:无刷直流电机MC33033 原理图印制板电路图

Abstract In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings. Keywords:brushless DC motor MC33033 Schematic PCB circuit

基于单片机的直流电机

摘要 本课程主要是设计一个基于单片机的直流电机 PWM 控制系统。PWM 控制提高了调速范围,提高了调速精度,改善了快速性能、功率和功率因数。系统在设计中被控对象采用 5V 的直流电机,以 MCS-51 单片机为控制核心,采用 LCD12864 液晶作为显示元件,进行软硬件的设计。硬件电路由protel 设计制作,主要设计了液晶显示电路、键盘控制电路、复位电路、测速电路和驱动电路。软件设计在 Keil 开发平台用 C 语言编写,程序采用模块化设计方案,包括液初始化程序、晶显示程序、键盘控制程序。 本系统 PWM 控制直流电机采用调压调速的方法,整体设计包括软件和硬件两个部分。通过利用单片机产生 PWM 控制信号控制直流电机,详细介绍脉宽调制 ( PWM) 控制原理,直流电机的工作原理和数学模型以及用 H型桥电路基本原理设计的驱动电路。通过硬件电路的模拟情况,说明系统运行正常,各个功能模块实现是可行的,控制精度比较高,能够满足系统的基本要求。 关键词:单片机;PWM;直流电机;L298N;LCD12864;

目录 一、设计任务 (1) 二、设计方案 (1) 三、系统硬件设计 (3) 1、 STC52最小系统 (3) 2、电机模块 (8) 3、 L298N模块 (9) 4、测速模块 (11) 5、测压模块 (12) 6、液晶模块 (13) 7、按键模块 (15) 8、灯光信号模块 (16) 四、系统软件设计 (17) 1、软件流程图 (17) 2、 PWM程序设计 (18) 3、测压程序设计 (18) 4、测速程序设计 (19) 5、液晶驱动程序设计 (20) 6、菜单程序设计 (21) 7、按键程序设计 (23) 8、电机反电动势系数计算程序 (24) 9、电机力矩系数计算程序 (25) 10、逼近算法控制程序 (25) 11、比例控制程序 (25) 12、 PID控制程序 (26) 五、直流调速系统动态数学模型的建立 (28) 六、调速数据 (32) 1、比例调速数据 (32) 2、 PID调速数据 (33) 3、逼近算法调速数据 (34) 4、反电动势系数和电机力矩系数数据 (34) 七、心得体会 (34) 参考文献 (36) 附录一硬件原理图 (37) 附录二硬件PCB图 (38) 附录三程序清单 (39)

无刷直流电机控制系统仿真-毕业设计

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

一个基于51单片机控制直流电机的设计

今天做的一个基于51单片机控制直流电机的设计 2010-09-12 18:47 可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM 信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main() {

基于单片机STC89C52的直流电机PWM调速控制系统

第一章:前言 Pwm 电机调速原理对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端EN1 和EN2 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。此电路中用微处理机来实现脉宽调制,通常的方法有两种:(1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。 (2)硬件实验自动产生PWM 信号,不占用CPU 处理的时间。这就要用到STC89C52的在PWM模式下的计数器1,具体内容可参考 相关书籍。 51 单片机PWM 程序 产生两个PWM,要求两个PWM 波形占空都为80/256,两个波形之间要错开,不能同时为高电平!高电平之间相差48/256, PWM 这个功能在PIC 单片机上就有,但是如果你就要用51 单片机的

话,也是可以的,但是比较的麻烦.可以用定时器T0来控制频率,定时器T1 来控制占空比:大致的的编程思路是这样的:T0 定时器中断是让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1 是让IO 口输出低电平,这样改变定时器T0 的初值就可以改变频率,改变定时器T1 的初值就可以改变占空比。 前言: 直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。 近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过 PWM 方式控制直流电机调速的方法就应运而生。 采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。而用PWM 技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。并且 PWM 调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机 PWM 调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 本设计任务: 任务: 单片机为控制核心的直流电机PWM 调速控制系统 设计的主要内容以及技术参数: 功能主要包括: 1) 直流电机的正转; 2) 直流电机的反转; 3) 直流电机的加速; 4) 直流电机的减速; 5) 直流电机的转速在数码管上显示; 6) 直流电机的启动; 7) 直流电机的停止; 第二章:总体设计方案

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

相关文档
最新文档