定积分与微积分基本定理

定积分与微积分基本定理
定积分与微积分基本定理

教学过程一、课堂导入

问题:什么是定积分?定积分与微积分基本定理是什么?

二、复习预习

1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.

3.定积分式子中隐含的条件是积分上限大于积分下限.

4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.

5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷.

三、知识讲解

考点1 定积分的概念

设函数y =f (x )定义在区间[a ,b ]上用分点a =x 0

近于0,在每个小区间任取一点ξi ,作和式I n =∑n -1

i =0

f (ξi )Δx i .当λ→0时,如果和式的极限存在,把和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作?b a f (x )d x ,即?b a f (x )d x =lim λ→0∑n -1

i =0f (ξi )Δx i ,其中f (x )叫做被积函数,f (x )d x 叫做被积式,a 为积分下限,b 为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数).

(2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x.

(3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

如果F′(x)=f(x),且f(x)在[a,b]上可积,则?b a f(x)d x=F(b)-F(a).其中F(x)叫做f(x)的一个原函数.

四、例题精析

考点一定积分的计算

例1 若定积分?m

-2-x2-2x d x=

π

4

,则m等于 ( )

A.-1 B.0 C.1 D.2

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微积分基本定理(17)

1.6 微积分基本定理( 2) 一、【教学目标】 重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难点:利用微积分基本定理求积分;找到被积函数的原函数. 能力点:正确运用基本定理计算简单的定积分. 教育点:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩 证唯物主义观点,提高理性思维能力. 自主探究点:通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义. 易错点:准确找到被积函数的原函数,积分上限与下限代人求差注意步骤,以免符号出错. 考试点:高考多以填空题出现,以考查定积分的求法和面积的计算为主. 二、【知识梳理】 1. 定积分定义:如果函数() f x在区间[,] a b上连续,用分点 0121- =<<<<<<<= i i n a x x x x x x b,将区间[,] a b等分成n个小区间,在每一个小区间 1 [,] i i x x - 上任取一点(1,2,,) ξ= i i n,作和 1 ()() ξξ = - ?=∑n i i i i b a f x f n ,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数() f x在区间[,] a b上的定积分,记作() b a f x dx ?,即 1 ()lim() n b a i n i b a f x dx f n ξ →∞ = - =∑ ?,这里a、b分别叫做积分的下限与上限,区间[,] a b叫做积分区间,函数() f x叫做被积函数,x叫做积分变量,() f x dx叫做被积式. 2.定积分的几何意义 如果在区间[,] a b上函数连续且恒有()0 f x≥,那么定积分() b a f x dx ?表示由直线, x a x b ==(a b ≠),0 y=和曲线() y f x =所围成的曲边梯形的面积.

微积分基本定理

微积分基本定理 一、教材分析 1、教材的地位及作用 微积分基本定理是普通高中课程标准实验教科书(人教版)高二年级数学(选修2-2)第一章第六节内容,本节内容共设计两个课时,这是第一课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了导数和定积分这两个概念后的学习,它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 2、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过实例,直观了解微积分基本定理的含义,会求简单的定积分。 (2)过程与方法目标:通过实例体会用微积分基本定理求定积分的方法。 (3)情感、态度与价值观目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 3、教学重点、难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。(根据教材内容特点及教学目标的要求) 难点:了解微积分基本定理的含义。(根据学生的年龄结构特征和心理认知特点) ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位。 二、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学选修2-2公开课教案16微积分基本定理

1.6 微积分基本定理 一、教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ?=3101|3x =33111033?-?=13 例2.计算下列定积分:

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

定积分与微积分基本定理

教学过程

一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么? 二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 三、知识讲解 考点1 定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

在每个小区间内任取一点ξi,作和式I n=∑n-1 i=0 f(ξi)Δx i.当λ→0时,如果和式的极限存在,把和式I n的极限叫做函数f(x) 在区间[a,b]上的定积分,记作?b a f(x)d x,即?b a f(x)d x=lim λ→0∑n-1 i=0 f(ξi)Δx i,其中f(x)叫做被积函数,f(x)d x叫做被积式,a 为积分下限,b为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 ● 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) ● 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间 [a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0 ()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

微积分基本定理的应用

1.6.2微积分基本定理的应用 主编:徐其海 审核:张安永 一.学习目标 1.能理解导数于定积分的内在联系,掌握微积分基本定理,根据定积分的值解释其几何意义. 2. 会利用牛顿-莱布尼兹公式和求导公式求最基本初等函数的定积分. 3. 会利用牛顿-莱布尼兹公式和求导公式和定积分的性质求一些简单初等函数的定积分 二.重难点 1重点:对于牛顿-莱布尼兹公式的应用和理解. 2难点:对于牛顿-莱布尼兹公式的应用和理解. 三.知识链接. 1. 牛顿-莱布尼兹公式的理解. 一般的,如果f(x)是区间[]b a ,上的连续函数,并且),()(|x f x F =那么)()()(a F b F x f a b -=?.这个结论叫微积分基本定理,又叫做牛顿-莱布尼兹公式 (1) 计算定积分dx x f a b )(?的关键是找到满足函数)()(|x f x F =的函数)(x F . (2) 通常利用基本初等函数的求导公式和定积分的性质求出)(x F . 如cdx m n bxdx m n dx ax m n dx c bx ax m n ????++=++22)(, 分成各个简单的函数进行积分较简单,求导运算和求)(x F 的运算是互逆的运算. (3) ,|)(F )()(b a x a F b F 记成-即)()(|)()(a F b F x F dx x f a b b a -==? (4) 只有f(x)在区间[]b a ,上连续,定积分dx x f a b )(?才存在 (5) 实际上F(x)+c(c 为常数)的导数和F(x)的导数相同,故 dx x f a b )(?可以写成[][]c a F c b F +-+)()(,但结果与)()(a F b F -相同,故省略了c 2. 复合函数的定积分 求复合函数的定积分主要依据定积分的性质 (1) 有限个函数代数和的积分,等于各个函数积分的代数和.即

定积分与微积分基本定理

定积分与微积分基本定理 [考纲传真] 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 【知识通关】 1.定积分的有关概念与几何意义 (1)定积分的定义 如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在 每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1 b -a n f (ξi ),当n →∞ 时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定 积分,记作??a b f (x )d x ,即??a b f (x )d x =lim n →∞∑n i =1 b -a n f (ξi ). 在??a b f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义 图形 阴影部分面积 S =??a b f (x )d x S =-??a b f (x )d x S =??a c f (x )d x -??c b f (x )d x S =??a b f (x )d x -??a b g(x )d x =??a b [f (x )-g(x )]d x 2.(1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数);

(2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x ; (3)??a b f (x )d x =??a c f (x ) d x +??c b f (x )d x (其中a

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

高中数学16微积分基本定理教案

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

知识讲解_微积分基本定理

微积分基本定理 编稿:赵雷 审稿:李霞 【学习目标】1.理解微积分基本定理的含义。 2.能够利用微积分基本定理求解定积分相关问题。 【要点梳理】 要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 (1)导数和定积分的直观关系: 如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗? 一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。 另一方面,这段路程还可以通过速度函数v (t )表示为 ()d b a v t t ? , 即 s = ()d b a v t t ? 。 所以有: ()d b a v t t =? s (b )-s (a ) (2)导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下: 如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间: [t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为

1i i b a t t t n --?=-= 。 当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移 111()'()'()i i i i i b a s h v t t s t t s t n ----?≈=?=?= 。 ② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是 1tan '()i i i s h DPC t s t t -?≈=∠??=??。 结合图,可得物体总位移 111 1 1 1 ()'()n n n n i i i i i i i i s s h v t t s t t --=====?≈=?=?∑∑∑∑。 显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1 11 1 ()'()n n i i i i v t t s t t --==?=?∑∑与s 的近似程度就越好。由定积分的定义有 11lim ()n i n i b a s v t n -→∞=-=∑11 lim '()n i n i b a s t n -→∞=-=∑()d '()d b b a a v t t s t t ==??。 结合①有 ()d '()d ()()b b a a s v t t s t t s b s a ===-??。 上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在 区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。 一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么 ()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理。 要点二、微积分基本定理的概念 微积分基本定理: 一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。 其中,()F x 叫做()f x 的一个原函数。为了方便,我们常把()()F b F a -记作()b a F x ,即 ()d ()()()b b a a f x x F x F b F a ==-? 。

相关文档
最新文档