离散数学习题集

离散数学习题集
离散数学习题集

离散数学课外习题集

编者:金鹏

时间:2008-5-6

目录:

第一章

一、选择题

1.由n个命题变元组成不等值的命题公式的个数为()

D.2n2

2.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我

有时间时”符号化为()

Q P Q D.Q P

3.下列各组公式中,哪组是互为对偶的()

,P , P ,(A*)* ,A

(其中P为单独的命题变元,A为含有联结词的命题变元)

4.设P:我们划船,Q:我们跑步。命题“我们不能即划船又跑步”

符号化为()

A. p Q

B. P Q

C. (P Q) Q

5.下面哪一个命题是命题“2是偶数或-3是负数”的否定()

A. 2是偶数或-3不是负数 C. 2是奇数或-3不是负数

C.2不是偶数且-3不是负数 D. 2是奇数且-3不是负数

6.设P:张三可以作这件事,Q:李四可以作这件事。命题“张三

或李四可以做这件事”符号化为()

Q Q Q D. (P Q)

7.下列语句中哪个是真命题()

A.我正在说谎。

B.严禁吸烟。

C.如果1+2=3,那么雪是黑的。

D.如果1+2=5,那么

雪是黑的。

8.下面哪个联结词运算不可交换()

A. B. C. D.

9.命题公式(P (P Q)) Q是()。

A.矛盾式

B.蕴含式

C.重言式

D.等值式

10.下面哪个命题公式是重言式()

A.(P Q)(Q P)

B.(P Q)P

C.(P Q)(P Q)

D.(P Q)

11.下列哪一组命题公式是等值的()

A. P Q,P Q (B A),A(A B)

(P Q),Q (P Q) D.A (A B),B

12.P Q的逆反式是()

P B. P Q C. Q P D.

Q P

13.P Q的逆反式是()

P B. P Q C. Q P

Q

14.下列命题联结词集合中,哪一个是最小联结词组()

A.{,}

B.{,,}

C.{}

D.{,}

15.下列联结词集合中,哪一个不是最小联结词组()

A.{,}

B.{,}

C.{,,}

D.{}

16.已知A是B的充分条件,B是C的必要条件,D是B的必要条

件,则A是D的()

A.充分条件

B.必要条件

C.充要条件、B、C

都不对

17.P Q的反换式是()

P B.P Q C.Q P Q 18.下面哪一个命题公式是重言式()

(Q R) B.(P R)(P Q)

C.(P Q) (Q R)

D.(P(Q R)) ((P Q)

(P R))

19.下列哪个命题公式不是重言式()

(P Q) B.(P Q)P

C.(P Q) (P Q)

D.(P Q)(P Q)

20.重言式的否定式是()

A.重言式

B.矛盾式

C.可满足式

D.蕴

含式

21. 下面哪一个命题是假命题()

A.如果2是偶数,那么一个公式的析取范式惟一

B.如果2是偶数,那么一个公式的析取范式不惟一

C.如果2是奇数,那么一个公式的析取范式惟一

D.如果2是奇数,那么一个公式的析取范式不惟一

22. 下面哪一组命题公式不是等值的()

A.(A B),A B

B.(A B),(A B)(A B)

(B C),A(B C) D. A(B C),(A B)C

23.命题公式P Q R的对偶式为()

(Q R) B. P (Q R)

C.P (Q R)

D.P (Q R)

24.命题公式P(Q R)是()

A.重言式

B.可满足式

C.矛盾式

D.

等值式

25.P Q()

A.P (P Q)

B.(P Q) (Q P)

C.(P Q)(Q P)

D.(P Q)(Q P)

26.命题公式(P Q)R的主析取范式中含极小项的个数为()

27.命题公式(P Q)R的主析取范式中含极大项的个数为()

28.命题公式(P Q)R的成真赋值为()

,001,110 ,011,101,110,111

C.全体赋值

D.无

29.如果A B成立,则以下各种蕴含关系哪一个成立()

A B.A

B C.B A D.A B

二、填空题

1.下列句子中,是命题的有

(1).我是教师。

(2).禁止吸烟!

(3).蚊子是鸟类动物。

(4).上课去!

(5).月亮比地球大。

2.设P:我生病,Q:我去学校

(1).命题“我虽然生病但我仍去学校”符号化为。

(2).命题“只有在生病的时候,我才不去学校”符号化

为。

(3).命题“如果我生病,那么我不去学校”符号化为。

3.设P:我有钱,Q:我去看电影。

(1).命题“如果我有钱,那么我就去看电影”符号化

为。

(2).命题“虽然我有钱,但我不去看电影”符号化为。

(3).命题“当且仅当我有钱时,我才去看电影”符号化

为。

4. 对于下列各式,是永真式的有。

(1).(P(P Q))Q

(2).P(P Q)

(3).Q(P Q)

(4).(P(P Q))Q

(5).(P Q) Q

5. (P(P Q)) R。

6. P(P Q) 。

7.对于下列各式

(1).(P Q)(P Q)可化简为。

(2).Q(P(P Q)) 可化简为。

(3).(P Q)(Q P)P可化简为。

8. 命题公式P(Q R)的成真赋值为,成假赋值为。

9. 若且则称X是公式A的子公式。

10.写出表中各列所定义的命题联结词。

P Q P ① Q P ② Q

1110

1001

0101

0001

11. 由n个命题变元可组成个不等值的命题公式。

12. 用两种形式写出P Q的对偶式①,②。

13. 两个重言式的析取是①,一个重言式与一个矛盾

式的析取是②。

14. A、B为两个命题公式,A B当且仅当①,A B 当且仅当②。

15. 设P、Q为两个命题公式,德●摩根律可表示为①,吸收率可表示为②。

16. 设命题公式A中仅含有联结词,,,若得到公式A*,则A*称为A的对偶式。

17. 公式(P Q) R的只含联结词,,的等值式为

①,它的对偶式为

②。

18. 命题公式A(P Q R)0,则其对偶式A*。

19. 在命题演算中,一个蕴含式与它的①式是等值的,它的②式与它的③是不等值的。

20. 公式P Q的反换式为①,逆反式为②。

21. 任意两个不同极小项的合取为①式,全体极小项的析取式必为

②。

22. 命题公式(P Q)的主析取范式为①,主合取范式的编码表示为

②。

23. 已知公式A(P,Q,R)的主合取范式为M0M3M5,它的主析取范式为(写成编码形式)。

24. 命题公式(P Q)的主析取范式为①,其编码表示为②,主合取范式的编码表示为③。

25. 对于前提:S Q,S R,R, P Q,其有效结论

为。

26. 对于前提:(P Q) R,R S, S,其有效结论为。

三、判断题

1.“王兰和王英是姐妹”是复合命题,因为该命题中出现了联结

词“和”。()

2.凡陈述句都是命题。()

3.语句3x+5y=0是一个命题。()

4.命题“两个角相等当且仅当它们是对顶角“的值为1。()

5.语句“x+y=4”是个命题。()

6.命题“十减四等于五”是一个原子命题。()

7.命题“如果1+2=3,那么雪是黑的”是真命题。()

8.(P(Q R))是一个命题演算的命题公式,其中P、Q、R是命

题变元。()

9.(P(Q R Q))是一个命题公式,其中P、Q、R是命题变元。

()

10.若A:张明和李红都是三好学生,则A:张明和李红都不是三

好学生。()

11.若A:张明和李红都是运动员,则A:张明和李红不都是运动

员。()

12.若P:每一个自然数都是偶数,则P:每一个自然数都不是偶

数。()

13.若P:每个自然数都是偶数,则P:每个自然数不都是偶数。

()

14.如果A B,则A C B C,A C B C。()

15.如果A C B C,则A B。()

16.联结词“”是可结合的。()

17.联结词“”是可结合的。()

18.联结词“”是可交换的。()

19.联结词“”是可交换的。()

20.联结词“”是满足交换律。()

21.“学习有如逆水行舟,不进则退”。设P:学习如逆水行舟,Q:

学习进步,R:学习退步。则命题符号化为P(Q R)。()22.P、Q、R定义同上,则“学习有如逆水行舟,不进则退”形式

化为:P (Q R)。()

23.设P、Q是两个命题,当且仅当P、Q的真值均为1时,P Q的

值为1。()

24.命题公式(P(P Q))Q是矛盾式。()

25.命题公式(P(P Q))Q是重言式。()

26.联结词与不是相互可分配的。()

27.在命题的演算中,每个最小联结词组至少有两个联结词。()

28.命题联结词集{,}是最小联结词集。()

29.命题联结词集{,,}是最小联结词集。()

30.命题联结词集{,}是最小联结词集。()

31.命题联结词集{}和{}是最小联结词集。()

32.A是命题公式,A与(A*)*互为对偶式。()

33.A是命题公式,A(A*)*。()

34.P是命题变元,P与P互为对偶式。()

35.任一命题公式的主析取范式和它的主合取范式互为对偶式。()

36.任一命题公式都可以表示成与其等值的若干极小项的析取式。

()

四、综合题

1.使用命题:

P:这个材料有趣。

Q:这些习题很难。

R:这门课程让人喜欢。

将下列句子用符号形式写出:

(1). 这个材料有趣,并且这些习题很难。

(2). 这个材料无趣,习题也不难,而且这门课程也不让人喜

欢。

(3). 如果这个材料无趣,习题也不难,那么这门课程就不会

让人喜欢。

(4). 这个材料有趣,意味着这些习题很难,并且反之亦然。

(5). 或者这个材料有趣,或者这些习题很难,并且两者恰具

其一。

2.用符号形式写出下列命题:

(1).假如上午不下雨,我去看电影,否则就在家里读书或者看

报;

(2).我今天进城,除非下雨;

(3).仅当你走,我将留下;

(4).一个数是素数当且仅当它只能被1和它自身整除。

3.判断下列语句是否为命题,若是命题请指出是简单命题还是复

合命题。

(1).是无理数。

(2).5能被2整除。

(3).现在开会吗

(4).x+5>0。

(5).这朵花真好看呀!

(6).2是素数当且仅当三角形有三条边。

(7).雪是黑色的当且仅当太阳从东方升起。

(8).2000年10月1日天气晴好。

(9).太阳系以外的星球上有生物。

(10).小李在宿舍。

(11).全体起立!

(12).4是2的倍数或是3的倍数。

(13).4是偶数且是奇数。

(14).李明与王华是同学。

(15).蓝色和黄色可以调配成绿色。

4.确定下列命题的真值:

(1).“如果太阳从西边出来,那么地球自转”;

(2).“如果太阳从东边出来,那么地球自转停止”;

(3).“如果8+9>30,那么三角形有三条边”;

(4).“如果疑问句是命题,那么地球将停止转动”。

5.判断下面语句是否是命题,若是,确定其真值:

(1).喜马拉雅山比华山高;

(2).如果时间静止不动,你就可以长生不老;

(3).如果时间流失不止,你就可以长生不老;

(4).伦敦是英国首都;

(5).这盆茉莉花好香阿!

6.给命题变元P、Q、R、S分别指派真值为1、1、0、0,求下列

命题公式的真值:

(1).((P Q)R)(((P Q)R)S)

(2).(P(Q(R P)))(Q S)

7.设A*、B*分别是命题公式A和B的对偶式,判断下列各式是否

成立,若不成立,请举例说明:

(1).A*A

(2).A B则A*B*

(3).A B则A*B*

(4).(A*)*A

8.命题联结词“”定义为P Q(P Q)

(1).构造P Q的真值表;

(2).证明、、可以用仅含联结词的等值公式表示。

9.化简下列命题公式:

(1).A(A(B B))

(2).(A B C)(A B C)

(4).((A B)(B A)C

10.如果有A C B C,是否一定有A B

11.如果有A C B C,是否一定有A B

12.如果A B是否有A B

13.用真值表判断下列各式是否为重言式:

(1).((P Q)(Q R))(P R)

(2).(P Q R)(P R Q)

14.设命题公式A的真值表如表所示,试求出A的主析取范式和主

合取范式(用编码表示和公式表示):

P Q A

111

101

010

001

15.用等值演算法证明P(P Q) Q是重言式。

16.证明下列命题的等值关系:

(2).(P Q A C)(A P Q C)(A(P Q))C

(3).P(Q P)Q(P R)

(4).(P Q)(P R)P(Q R)

(5).(P Q)(P Q)(P Q)

17.求证下面命题的蕴含关系:

(1).P Q P Q

(2).(P(Q R))(P Q)(P R)

18.求下面各式的主析取范式与主合取范式,并写出相应的为真赋

值。

(1).(P Q)(P Q)

(2).(R(Q P))(P Q R))

(3).((P Q)Q)((Q P)P)

(4).(P(Q R))(R(Q P))

(5).((P Q)(R P))((R Q)P

19.联结词f1,f2由表所示真值表定义,证明 { f1,f2}是最小联结

词组。

P Q f1P P f1Q

1101

1001

0110

0011

20. 设计一种简单的表决器,表决者每人座位旁边有一按钮,若同意则按下按钮,否则不按按钮,当表决结果超过半数时,会场电铃就会响,否则铃不响。试以表决人数为3人的情况设计表决器电路的逻辑关系。

21.证明{}时最小联结词组。

22.设计一加法器,实现两自然数相加的功能。

23.某勘探队有3名队员。有一天取得一块矿样,3人的判断如下:

甲说:这不是铁,也不是铜;

乙说:这不是铁,是锡;

丙说:这不是锡,时铁。

经实验室鉴定后发现,其中一人两个判断都正确,一个人判对一半,另一个全错了。根据以上情况判断矿样的种类。

24.观察下列推理过程,是否正确,结论是否有效,说明理由。

(1).①P Q R P

(2).②P R T①I

(3).③P P

(4).④R T②③I

所以P Q R,P R。

25.下列证明过程是否正确,若正确补足每一步推理依据,否则指

出错误。

(1).①D A

(2).②D

(3).③A

(4).④A(C B)

(5).⑤C B

(6).⑥C

(7).⑦B

(8).⑧D B

26.证明A(B C),B(C D)A(B D)。

27. 用CP规则证明P(Q R),Q(R S),P Q S。

28.用推理规则说明A B,(B C),A C是否能同时为真。

29.用推理规则说明(P Q)R,S U,R S,U W,

W P Q。

30.用推理规则证明下列推理的正确性:如果A努力工作,那么B

或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。

31.用等值演算法证明P(P Q)是矛盾式。

32.用CP规则证明A(B C),(E F)C,

B(A S)B E。

33.用反证法证明(A B)(C D),(B E)(D F),(E F),

A C A。

34.用反证法证明A B,(B C)C,(A D)D。第二章

一、选择题

1.谓词公式x(P(x)yR(y))Q(x)中量词x的作用域是()

A. x(P(x)yR(y)) (x)

C. (P(x)yR(y)) (x),Q(x)

2.谓词公式x(P(x)yR(y))Q(x)中变元x是()

A.自由变量

B.约束变量

C.既不是自由变量也不是约束变量

D.既是自由变量也是约束变量

3.若个体域为整体域,下列公式中哪个值为真()

A.x y(x+y=0)

B.y x(x+y=0)

C.x y(x+y=0)

D.x y(x+y=0)

4.设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式

x(P(x)Q(x))在下面哪个论域中是可满足的()

A.自然数集

B.整数集

C.实数集

D.以上均

不成立

5.设C(x):x是运动员,G(x):x是强壮的。命题“没有一个运

动员不是强壮的”可符号化为()

A.x(C(x)G(x))

B.x(C(x)G(x))

C.x(C(x)G(x))

D.x(C(x)G(x))

6.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”

符号化为()

A.x(A(x)B(x))

B.x(A(x)B(x))

C.x(A(x)B(x))

D.x(A(x)B(x))

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学试题与参考答案

《离散数学》试题及答案 一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式 2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。 (A). P Q →; (B).P Q ∧; (C).P Q ?→?; (D).P Q ?∨. 3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A 4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( ) (A) {<1,c >,<2,c >} (B) {,<2,c >} (C) {,} (D) {<1,c >,} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图; (C)欧拉图; (D) 平面图. 二、填空题:本大题共5小题,每小题4分,共20分。把答案填在对应题号后的横线上。 6. 设集合A ={,{a }},则A 的幂集P (A )= 7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1= 8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =???? ? ?????001001101,那么R 的关系图为

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式 x((A(x) B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死 7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2是偶数或-3是负数”的否定是( )。 答:2不是偶数且-3不是负数。 12、永真式的否定是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 答:(2) 13、公式(?P ∧Q)∨(?P ∧?Q)化简为( ),公式 Q →(P ∨(P ∧Q))可化简为( )。 答:?P ,Q →P

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

离散数学试卷及答案一

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学试卷二十三试题与答案

试卷二十三试题与答案 一、单项选择题:(每小题1分,本大题共10分) 1.命题公式)(P Q P ∨→是( )。 A 、 矛盾式; B 、可满足式; C 、重言式; D 、等价式。 2.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨?; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。 3.谓词公式)())()((x Q y yR x P x →?∨?中的 x 是( )。 A 、自由变元; B 、约束变元; C 、既是自由变元又是约束变元; D 、既不是自由变元又不是约束变元。 4.在0 Φ之间应填入( )符号。 A 、= ; B 、?; C 、∈; D 、?。 5.设< A , > 是偏序集,A B ?,下面结论正确的是( )。 A 、 B 的极大元B b ∈且唯一; B 、B 的极大元A b ∈且不唯一; C 、B 的上界B b ∈且不唯一; D 、B 的上确界A b ∈且唯一。 6.在自然数集N 上,下列( )运算是可结合的。 (对任意N b a ∈,) A 、b a b a -=*; B 、),max(b a b a =*; C 、b a b a 5+=*; D 、b a b a -=*。 7.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则的幺元为( )。 A 、a ; B 、b ; C 、1; D 、0。 8.给定下列序列,( )可以构成无向简单图的结点度数序列。 A 、(1,1,2,2,3); B 、(1,1,2,2,2); C 、(0,1,3,3,3); D 、(1,3,4,4,5)。 9.设G 是简单有向图,可达矩阵P(G)刻划下列 ( )关系。 A 、点与边; B 、边与点; C 、点与点; D 、边与边。 10.一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为( )。 A 、5; B 、7; C 、9; D 、8。

离散数学试卷

大学2013—2014学年度第二学期期末考试《离散数学》试卷 A 第一部分 选择题(共20 分) 一、单项选择题(本大题共10小题,每题只有一个正确答案,答对一题得2分共20分) 1、对任意集合A 、B 、和C ,下列论断中正确的是: 【 】 A. 若A ∈B ,B ?C ,则A ∈C B. 若A ∈B ,B ?C ,则A ?C C. 若A ?B ,B ∈C ,则A ∈C D. 若A ?B ,B ∈C ,则A ?C 2、设A={a,{a}},下列式子中正确的有: 【 】 A. {a}∈ρ(A) B. a ∈ρ(A) C. {a}?ρ(A) D. 以上都不是 3、P :我将去镇上。Q :我有时间。命题“我将去镇上,当且仅当我有时间”符号化为: 【 】A. P →Q B. Q →P C. P ?Q D. Q ∨?P 4、命题公式:(P ∧(P →Q ))→Q 是 【 】 A .矛盾式 B. 可满足式 C. 重言式 D. 不能确定 5、谓词公式)())()((x Q y yR x P x →?∨?中,量词x ?的辖域是: 【 】 A. ))()((y yR x P x ?∨? B. )(x P C. )(),(x Q x P D. )()(y yR x P ?∨ 6、在如下各图中,哪一个是欧拉图? 【 】 7、设|V|>1,G= < V , E >是强连通图,当且仅当: 【 】 A .G 中至少有一条通路 B .G 中至少有一条回路 C .G 中有通过每个结点至少一次的通路 D .G 中有通过每个结点至少一次的回路 8、设}}2,1{},1{,{Φ=S ,则 ρ(S) 有多少个元素? 【 】 A .3; B .6; C .7; D .8 ; 9、集合A={1,2,3,4,5,6,7,8,9,10}上的关系R={ | x + y = 10},则R 的性质为:【 】 A .自反的; B .对称的; C .传递的、对称的; D .反自反的、传递的 10、集合A 上的等价关系R ,其等价类集合{[ a]R | a ∈ A}称为: 【 】 A .A 与R 的并集,记作A ∪R B .A 与R 的交集,记作A ∩R C .A 与R 的商集,记作A /R D .A 与R 的差集,记作A - R 二、填空题(本大题共10小题,每题2分,共20分)

离散数学试题及解答

精品文档 离散数学 10.设仃限集丸 B. |A|■申 p|p |p(AxB)| = 带伞”可符号化为( ) (C ) P A Q (D ) P A Q 2 ?下列命题公式为永真蕴含式的是( ) (A ) C H( P A Q ) ( B ) P -( P A Q ) (C ) (P A Q — P ( D (P V Q)— Q 3、 命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死 的”的否定是( )。 (A) 所有人都不是大学生,有些人不会死 (B) 所有人不都是大学生,所有人都不会死 (C) 存在一些人不是大学生,有些人不会死 (D) 所有人都不是大学生,所有人都不会死 4、 永真式的否定是()。 (A )永真式 (B )永假式 (C )可满足式 (D )以上均有可能 5、以下选项中正确的是()。 (A ) 0= ? (B ) 0 ? (C 0€ ? (D ) 0?? 6、以下哪个不是集合A 上的等价关系的性质?( ) (A )自反性 (B )有限性 (C )对称性 (D ) 传递性 7、集合 A={1,2,…;10}上的关系 R={|x+y=10,x,y € A},贝U R 的性质为 ()。 (A )自反的 (B )对称的 (C )传递的,对称的 (D )传递的 8?设 D=为有向图,V={a, b, c, d, e, f}, E={, , , , } 是()。 选择题(2*10) 1 ?■令P :今天下雨 了, Q:我没带伞,则命题“虽然今天下雨了,但是我没 2A m*n (A) P - Q (B ) P V Q

上海大学-离散数学2-图部分试题

离散数学图论部分综合练习 一、单项选择题 1.设无向图G 的邻接矩阵为 ??????? ? ??? ?? ???010 1010010000 011100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . ο ο ο ο ο c a b e d ο f 图一 图二

A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图三 7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ). 图四 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 应该填写:D 8.设完全图K n 有n个结点(n≥2),m条边,当()时,K n 中存在欧拉 回路. A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ). A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 10.无向图G存在欧拉通路,当且仅当( ). A.G中所有结点的度数全为偶数 B.G中至多有两个奇数度结点 C.G连通且所有结点的度数全为偶数 D.G连通且至多有两个奇数度结点 11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树. A.1 m n-+B.m n-C.1 m n++D.1 n m -+ 12.无向简单图G是棵树,当且仅当( ). A.G连通且边数比结点数少1 B.G连通且结点数比边数少1

离散数学试卷及答案(17)

一、判断正误20% (每小题2分) 1、设A.B. C是任意三个集合。 (1)若A∈B且B?C,则A?C。() (2)若A?B且B∈C,则A?C。() (3)若A?B且B∈C,则A?C。() (4)A) ( ) ( ) (C A B A C B ⊕ = ⊕。() (5)(A–B)?C=(A?C)-(B?C)。() 2、可能有某种关系,既不是自反的,也不是反自反的。() 3、若两图结点数相同,边数相等,度数相同的结点数目相等,则两图是同构的。() 4、一个图是平面图,当且仅当它包含与K 3, 3 或K 5 在2度结点内同构的子图。() 5、代数系统中一个元素的左逆元并一定等于该元素的右逆元。() 6、群是每个元素都有逆元的半群。() 二、8% 将谓词公式)) , ( ) ( ) ( ) (( )) , ( ) ( )( (z y Q z y P y y x Q x P x? ∧ ? → → ?化为前束析取范式与前束合取范式。 三、8% 设集合A={a,b,c,d}上的关系R={,,,}写出它的关系矩阵和关系图,并用矩阵运算方法求出R的传递闭包。 四、9% 1、画一个有一条欧拉回路和一条汉密尔顿回路的图。 2、画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。 3、画一个有一条欧拉回路,但有一条汉密尔顿回路的图。

五、10% 证明:若图G是不连通的,则G的补图G 是连通的。 六、10% 证明:循环群的任何子群必定也是循环群。 七、12% 用CP规则证明: 1.F A F E D D C B A →?→∨∧→∨,。 2.?∨??∨?(()()())()()((x P x x Q x P x )()x Q x 。 八、10% 用推理规则证明下式: 前提: ))()()(()),()()(())()()(((y W y M y y W y M y x S x F x ?∧?→?→∧? 结论:?→?)()((x F x S ))(x 九、13% 若集合X={(1,2),(3,4),(5,6),……} }|,,,{12212211y x y x y x y x R +=+>><><<= 1、证明R 是X 上的等价关系。 2、求出X 关于R 的商集。 一、 填空 20%(每小题2分)

《离散数学》(上)试卷(A卷)及参考答案

安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、单项选择题(每小题2分,共20分) 1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( D ) A.Q P ?→?; B. P Q ?→?; C.Q P ?∧; D. Q P ?∧?。 2.下列命题是重言式的是( C ) A.)()(P Q Q P →∧→; B. )()(Q P P Q P ???∧; C. )(Q P Q P →→∧; D. Q P R Q P ∧?∧?∨→))((。 3. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x<><>,下列结论不正确的是 ( ) A 、1 ({3}){}f c -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。 6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( B ) A.自反性和对称性; B.反自反性和对称性; C.反自反性和传递性; D.反对称性和传递性。 7. 设R 为非空集合A 上的关系R 的逆关系,则下列结论不成立的是( D ) A.若R 为偏序,则R 为偏序; B.若R 为拟序,则R 为拟序; C.若R 为线序,则R 为线序; D.若R 为良序,则R 为良序。 8. 设1π和2π是非空集合A 的划分,则下列结论正确的是( B ) A. 1π细分21ππ?; B. 1π细分21ππ+; C. 非空集合A 的划分12ππ 细分1π; D. 1π细分非空集合A 的划分12ππ 。

离散数学全部试卷

离散数学试题与答案试卷一 一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+ x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 8.图的补图为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ?; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A B C

?;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。 A.{4,3}Φ 3、设A={1,2,3},则A上的二元关系有()个。 A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() Rο是自反的; A.若R,S 是自反的,则S Rο是反自反的; B.若R,S 是反自反的,则S Rο是对称的; C.若R,S 是对称的,则S Rο是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s t s p A R= ∧ =则P(A)/ R=() < > ∈ s (| || |} {t ) , ( | , A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是() 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4 度结点。 A.1;B.2;C.3;D.4 。

最新离散数学试卷及答案 (1)

离散数学试题(A卷答案) 一、证明题(10分) 1) (P∧Q∧A→C)∧(A→P∨Q∨C)? (A∧(P?Q))→C。 证明: (P∧Q∧A→C)∧(A→P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?((?P∨?Q∨?A)∧(?A∨P∨Q))∨C ??((P∧Q∧A)∨(A∧?P∧?Q))∨C ??( A∧((P∧Q)∨(?P∧?Q)))∨C ??( A∧(P?Q))∨C

?(A∧(P?Q))→C 2) ?(P↑Q)??P↓?Q。 证明:?(P↑Q)??(?(P∧Q))??(?P∨?Q))??P↓?Q。 二、分别用真值表法和公式法求(P→(Q∨R))∧(?P∨(Q?R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 证明: 公式法:因为(P→(Q∨R))∧(?P∨(Q?R)) ?(?P∨Q∨R)∧(?P∨(Q∧R)∨(?Q∧?R)) ?(?P∨Q∨R)∧(((?P∨Q)∧(?P∨R))∨(?Q∧?R))

?(?P∨Q∨R)∧(?P∨Q∨?Q)∧(?P∨Q∨?R)∧(?P∨R∨?Q)∧(?P∨R∨?R) ?(?P∨Q∨R)∧(?P∨Q∨?R)∧(?P∨?Q∨R) ? M∧5M∧6M 4 ? m∨1m∨2m∨3m∨7m 所以,公式(P→(Q∨R))∧(?P∨(Q?R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 真值表法:

式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 三、推理证明题(10分) 1)?P∨Q,?Q∨R,R→S P→S。 证明:(1)P附加前提

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

相关文档
最新文档