模态分析及其应用

模态分析及其应用
模态分析及其应用

一、模态测试概述

结构在动力载荷作用下,总要产生一定的振动响应。而结构的振动,常常是结构损坏、环境恶化,设备的精度或可靠性降低等工程事故的主要原因。因此,研究结构的动力特性和动力强度,已日益成为结构设计的重要课题。

结构的动力特性主要取决于它的各阶固有频率、主振型和阻尼比等。这些参数也就是所谓的模态参数。如果已经有了结构的实物图或设计图纸,并掌握所有材料的力学性能数据,那么原则上可以用有限元分析等数值计算方法求出结构的模态参数。然而,由于诸方面的原因,例如:非线性因素,材料的不均匀性,阻尼机理的复杂性,在加上构件与构件、整机与基础的连接刚度难以确定等,使有限元计算的准确性(甚至于可能性)受到限制。

在本世纪六、七十年代发展起来的现代模态试验分析技术弥补了有限元分析技术的某些不足。模态试验分析与有限元分析的相互结合及相互补充,在结构优化设计和设备诊断等许多方面,都取得良好的成效。它们已经在航天、航空、车辆、船舶、机床、建筑机械、电器设备等工业部门得到极为广泛的应用。

若干年来,众多学者提出的各种模态参数识别方法,大体上可分为时域法和频域法两类。时域法是一种从时域响应数据中直接识别模态参数的方法,频域法则是在测量频响函数基础上,利用最小二乘估计萃取模态参数的方法,也有人称之为机械导纳法或传递函数法。本节将着重讨论频域法,它是目前公认的比较成熟和有效的方法。

二、传递函数和频响函数

1.传递函数和频响函数

在电路或控制系统理论中,将输出量的拉普拉斯变换与输入量的拉普拉斯变换之比定义为传递函数。如果把机械系统的激振力看作输入量,把振动的位移响应看作输出量,则机械系统的传递函数定义为

(4-54)

其中,为复变量,称为复频率,其实部和虚部常用符号和表示,即。拉

普拉斯变换的定义为

(4-55)

拉普拉斯变换的主要性质有

(4-56)

根据以上性质,对单自由度振动系统的运动微分方程进行拉普拉斯变换,可得

(4-57)

设初始位移和初始速度均为零,则有

(4-58)

由此可以得出单自由度系统的传递函数为

(4-59)

令方程(4-58)的特征多项式等于零,即

(4-60)

在小阻尼情况下,由式(4-60)求得的一对共轭复根为

(4-61)

和称为该系统的复频率,其实部既是系统的衰减指数,虚部

为系统的阻尼固有频率。

传递函数式(4-59)可表示为

(4-62)

式中

(4-63)

称为留数。由式(4-62)可知,当或时,趋于无限大,故也称复频率和为极点。

前面已指出,线性系统的输出与输入的傅立叶变换之比,就是系统的频响函数,

(4-64)

在一定前提条件下,也可以从信号的拉普拉斯变换式中,以置换而求得它的傅立叶变换,因而有

(4-65)

例如,对单自由度振动系统,将其传递函数式(4-55)的变量用置换,得到它的频响函数为

(4-66)

这与前面简谐激励导出的位移导纳完全相同。由于频响函数和传递函数不仅适用于简谐激励,而且适用于任意激励,可将其理解为广义上的机械导纳。

2.传递函数矩阵和频响函数矩阵

多自由度系统在任意激励下的运动方程为

(4-67)

对方程作拉普拉斯变换,并设所有坐标的初始位移和初始速度均为零,则有

(4-68)

其中,和分别为和的拉普拉斯变换。令

(4-69)

(4-70)

则方程(4-68)可缩减为

(4-71)

(4-72)

称为系统的阻抗矩阵或特征矩阵,称为系统的传递函数矩阵,对于个自由度系统,均为方阵。的第行第列元素等于系统在坐标的响应函数

与坐标激励函数拉普拉斯变换之比,即

(4-73)

如取,则拉普拉斯变换转化为傅立叶变换,传递函数矩阵转化为频响函数矩阵

,这时可得到下列定义式及关系式:

(4-74)

(4-75)

(4-76)

(4-77)

如前所述,由傅立叶变换给出的频响函数与根据简谐激励得到的导纳函数是完全一致的。因此,频响函数矩阵也称为导纳函数矩阵。频响函数矩阵中对角线元素、、为原点导纳或驱动点导纳;的非对角线元素,为跨点导纳或传递导纳。

本节讨论的模态试验分析,就是建立在一组频响函数测量基础上的模态参数识别技术。关于传递函数矩阵和频响函数矩阵的性质,下文还要进一步讨论。

三、实模态的频响函数和模态参数

1.实模态的模态参数

由前节分析,一个自由度的线性系统,有个无阻尼固有频率和相应的个模态振型。个模态振型可综合为一个模

态振型矩阵

模态振型对质量矩阵和刚度矩阵满足下面形式的加权正交关系:

(4-78)

(4-79)

并且有

(4-80)

和分别称为模态质量和模态刚度。

在比例粘性阻尼情况下,阻尼矩阵为常数),有下面的正交关系:

(4-81)

称为模态阻力系数。

有时用模态衰减系数或模态阻尼比表征系统的阻尼特性,有

(4-82)

(4-83)

系统第阶阻尼固有频率与无阻尼固有频率的关系为

(4-84)

通常称为系统的模态频率。

、、、、(或、)统称为系统的模态参数。我们说,一个自由度的机械系统,有个模态,就是指它有组模态参数。下标,表示模态的阶次。上述分析中,这些模态参数全都是实数,故称为实模态。

2.实模态情况下的频响函数

自由度系统的频响函数可由其运动方程

按简谐激励或任意激励的傅立叶变换式导出,现取前者,即取

代入式(4-67),可得

(4-85)

通过模态分析方法,即引进一模态坐标向量

(4-86)

显然有

(4-87)

将式(4-87)代入式(4-85),并左乘,根据正交关系式(4-78)、(4-79)、(4-81),可得到个解耦的方程

(4-88)

其中

(4-89)

这里,为模态坐标,为响应的复数振幅,为对应第阶模态的激振力分量的复数力幅。

与的比值,称为系统的第阶模态导纳,或第阶模态频响函数,用表示,即

(4-90)

以模态导纳为对角线元素的对角矩阵称为模态导纳矩阵,即

(4-91)

由式(4-88)可知,

(4-92)

前节给出

(4-93)

可见,导纳函数矩阵,即频响函数矩阵,与模态导纳矩阵之间满足下面关系:(4-94)

也即

(4-96)

(4-97)

可见,系统的任一频响函数均可表示为其各阶模态导纳的线性和。

四、复模态的传递函数和模态参数

上一节讨论的实模态,适用于无阻尼系统或比例粘性阻尼系统。对于更一般的非比例粘性阻尼系统,宜采用下面的复模态理论进行研究。

1.复频率、复振型

上节曾给出自由度系统运动方程的拉普拉斯变换式

对自由振动情况,有

(4-98)

其特征方程式的展开式是复变量的次多项式。令,可求得方程(4 -87)的个特征根。在小阻尼情况下,它们是对共轭复根,即

(4-99)

将、代入方程(4-97),可求得相应的个特征向量、,它们满足方程

(4-100)

与的对应元素均为共轭复数。

和称为系统的复频率。实际上它包含了有关阻尼的参数(第阶模态衰减指数)和有关频率的参数(第阶模态频率)。

、称为系统的复振型向量或复模态向量。实振型与复振型的差别在于:前者意味着系统的所有质点在振动过程中保持同相或反向;后者表明各质点在振动过程中形成复杂相位关系。

2.复模态情况下的模态质量、模态刚度和模态阻力系数

在复模态情况下,不可以简单的套用实模态关系式(4-78)、(4-79)和(4-81)求得系统的模态质量、模态刚度和模态阻力系数。实际上,复振型之间的正交关系与实振型之间的正交关系并不相同,先推证如下:

(4-101)

(4-102)

式(4-101)左乘,注意到、、为对称矩阵可得

(4-103)

(4-104)

两式相减,得

(4-105)

当时,式(4-105)成立必有

(4-106)

式(4-103)乘以,式(4-104)乘以后,两式再相减,当时,约去公因子,可得

(4-107)

式(4-106)和(4-107)即是复振型的两个正交关系式。

如果让两个正交关系式中,等于,则有,

,由此可得

(4-108)

(4-109)

因此,在复模态情况下我们可以按下面的关系定义模态质量、模态刚度和模态阻力系数:

(4-110)

(4-111)

(4-112)

这样得到的、、都是实数,并且符合下面关系:

(4-113)

(4-114)

五、模态分析在工程中的应用

作为振动工程理论的一个重要分支,模态分析或实验模态分析为各种产品的结构设计和性能评估提供了一个强有力的工具,其可靠的实验结果往往作为产品性能评估的有效标准,而围绕其结果开展的各种动态设计方法更使模态分析成为结构设计的重要基础。特别是计算机技术和各种计算方法(如FEM)的发展,为模态分析的应用创造了更加广阔的环境。

模态分析的应用可分为以下四类。

1.模态分析在结构性能评价中的直接应用

根据模态分析的结果,即模态频率、模态振型、模态阻尼等模态参数,对被测结构进行直接的动态性能评估。对一般结构,要求各阶模态原理工作频率,或工作频率不落在某阶模态的半功率带宽内;对结构振动贡献较大的振型,应使其不影响结构正常工作。这是模态分析的直接应用,已成为工程界的基本方法。

2.模态分析在结构动态设计中的应用

以模态分析为基础的结构动态设计,是近年来振动工程界开展的最广泛的研究领域之一。

有限元法(FEM)和试验模态分析(EMA)为结构动态设计提供了两条最主要的途径。在围绕着两种基本方法所展开的结构动态设计研究工作中,人们提出了很多的方法。这些方法可归为以下六类:1)载荷识别;2)灵敏度分析;3)物理参数修改;4)物理参数识别;5)再分析;6)结构优化设计。他们分别从不同方面解决了结构动态设计中的部分问题,某几种方法的组合可做到结构的优化设计。围绕这两种基本方法所展开的研究工作内容十分丰富。应用这些成果,大大提高了产品设计性能,缩短了设计周期。

3.模态分析在故障诊断和状态监测中的应用

利用模态分析得到的模态参数等结果进行故障判别日益成为一种有效而实用的故障诊断和安全检测方法。如根据模态频率的变化判断裂纹的出现,根据振型的分析判别裂纹的位置,根据转子支承系统阻尼的改变判断和预测转子的失稳,土木工程中依据模态频率的变化判断水泥柱中是否有裂纹和空隙等。

4.模态分析在声控中的应用

声音控制包括振动的利用及对噪声的控制两个方面。在振动利用方面,模态分析在音箱设计、大钟设计等实例中均收到良好效果。在噪声控制方面,模态分析应用的例子也很多,包括对噪声源的寻找和确定产生噪声的模态及由此提出降噪措施。

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

模态分析软件操作

模态分析软件操作说 明及实例 东方振动和噪声技术研究所 1999.3.16 目录 一模态分析的步骤 (2) 1.确定分析的方法 (2) 2.测点的选取、传感器的布置 (2) 3.仪器连接 (3) 4.示波 (3) 5.输入标定值 (3) 6.采样 (4) 7.传递函数分析 (4) 8.进行模态分析 (4) 二模态分析实例 (5)

例一自由梁的模态分析实例 (5) 例二楼房的模态分析实例 (15) 模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。 模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。 东方所研制的模态分析系统,自推出以来参与了许多重大的科研项目如大型航空航天设备(长征火箭、通信卫星、大型雷达、火箭发射平台等)、大桥(火箭激振钱塘江大桥、锤击法激振乌海黄河铁路大桥属国内首次)、大楼、大坝、、机车(汽车)车辆和大型港口机械等,分析精度高、操作简便,尤其是变时基模态分析及高速模态三视图动画技术更是在国内外处于领先地步。 一、模态分析的步骤 1. 确定分析的方法 DASP中提供的模态分析方法有多输入单输出法、单输入多输出法和多输入多输出方法。一般采用较多的是多输入单输出或单输入多输出方法,在这两种方法中选取时,视哪一种方法简便而定,如激励装置大、不好移动但传感器移动方便就选取单输入多输出方法(即单点激励、多点移步拾振);如传感器移动不方便但激励装置小、容易移动就选取多输入单输出方法(即单点拾振、多点移步激励)。 有时结构因为过于巨大和笨重,以至于采用单点激振时不能提供足够的能量,将我们所感兴趣的模态都激励出来;其次,结构在同一频率时可能有多个模态,这样单点激振就不能把它们分离出来,这时就要采取两个甚至多个激励来激发结构的振动,即采取多输入多输出方法。 在DASP中进行模态分析时,由于采用了高弹性聚能力锤和先进的变时基传递函数分析技术,对于象大型铁路桥、火箭发射平台这样的大型结构用力锤敲击就能分析出结构的模态;对于大型的混凝土结构(如大楼)可以以天然脉动作为激励信号进行模态分析。所以在大多数情况下,采取单输入多输出或多输入单输出方法就可完全满足工程需要。 2. 测点的选取、传感器的布置 选择好分析方法后,就要根据结构的特点和试验目的确定测点的数目和布置,以及传感器的安装方法等。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

运用hypermesh进行模态分析

1 引言 系统的模态参数(模态频率、模态阻尼、振型)对系统的动态分析和优化设计具有实用价值。通常由试验模态分析和计算模态分析两种方法。但由于受实验条件和时间的限制,组织实施往往比较困难,而且在测量次数,测量数据的处理准确性方面也难以得到充分的保证,在设计阶段难以实现。基于虚拟样机技术的虚拟实验方法在履带车辆箱体类零部件模态参数测量方面在设计阶段就能为方案优化提供指导,缩短产品开发周期,节省费用。因此,开展在虚拟环境下测试箱体类零部件的模态参数研究与探讨并扩展其应用具有重要意义。本文以某型履带车辆传动箱设计为例,应用HyperMesh为前处理软件,对其进行了有限元网格的划分,进而对箱体的模态进行了分析。 2 箱体有限元模型的建立及模态分析 首先依据传动箱体的尺寸,建立箱体的三维实体模型。利用HyperMesh对传动箱体的实体模型进行有限元网格划分,箱体的材料为铝合金,其密度为 2.66e33kg/m3,泊松系数为0.31,杨氏模量为7.7e72N/m2,强度极限为176.4MPa。整个箱体共划分76151个4面体单元,22262个节点。在此过程中,还必须考虑到箱体有限元模型建立后与各传动轴之间的连接,即柔性体与刚体间的连接。传动箱各轴都是通过轴承与箱体连接的,笔者在有限元模型中应用多点约束(MPC,Multi-point Constraint)来模拟轴承的作用。所谓多点约束是将某节点的依赖自由度定义为其他若干节点独立自由度的函数。多点约束可以用于不相容单元间的载荷传递,表征一些特定的物理现象,比如刚性连接、铰接、滑动等。笔者在箱体有限元模型中各轴孔的中心点处建立一个虚拟杆单元,如图1所示。轴孔内表面各节点的自由度则依赖于对应的虚拟杆单元。各传动轴与箱体间的约束也是在对应的虚拟单元处建立,各传动轴上的作用力则通过相应的虚拟杆单元和多点约束作用于箱体之上。文中建立的包括轴承模型的传动箱箱体有限元模型如图2所示。

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

模态分析理论应用实际的讨论

模态分析理论应用实际的讨论 模态分析在结构设计中的应用认识小结 在结构设计中,我们通常要运用模态分析的方法来辅助设计,提高结构设计的合理性和科学性。模态参数获取有两种方法: 一种是有限元法,一般的FEA软件都可以计算,WB当然也没有问题拉; 一种是测试的方法,比如用LMS https://www.360docs.net/doc/8b8263075.html,b来测试。 这两种方法对于测试简单的结构是没有问题的,分析结果和试验结果很吻合。但是对于复杂的装配体结构,FEA软件就显得无能为力了,因为装配体有令人讨厌的结合面,对于结合面的分析,据我所知目前还没有比较好的办法(就算是最高的CAE高手恐怕也算不准)。所以复杂装配体的模态一般用测试的方法解决。当然CAE工程师可以用实验数据得到的结合面刚度阻尼值来修正自己的有限元模型。 一般模态分析的结果中,最受关注的是固有频率值及其振型。固有频率主要用以对照结构外的激振频率,看是否出现共振,共振出现的后果很严重,它会使设备的加工精度降低很多,另外固有频率值是衡量结构动静刚度的标杆,如果我想提高结构的动静刚度,不断改变自己设计的结构一般就能实现,当然设计水平也很重要;而通过观察振型我可以判断这个振型是否影响我设备的加工精度,如果影响的话,我会考虑将改变这个振型的频率,避免实际生产中出现加工精度降低的情况。模态分析在CAE中应该很简单,算出固有频率和振型也很轻松。但是如何在设计中运用好这个工具其实有很多学问。对于振型而言,可能不同的领域关注的焦点可能会不一样。以机床为例,如果计算机床的床身模态振型,可能振型有弯曲,扭转等众多振型,如果存在机床进刀、加工方向的振型,那么有可能这些振型会影响机床的加工精度。那么在设计阶段就必须对结构进行调整,比如修改结构内部的肋板分布,提高影响加工精度振型的固有频率,减少发生共振进而影响机床加工精度的可能性。我的看法是,振型模态分析要和结构强度刚度分析结合在一起,强度分析结果的高应力区如果和某一阶模态振型位移较大区域重合,就可认为结构是偏危险的,这些高应力区域有可能就是疲劳裂纹的萌生位置,而实际中的连续结构体振型应该是无穷多的,经典理论认为实际工程中能够对结构安全产生影响的往往只是低阶的频率振型,所以只要结构避开低阶共振区就能安全运行,然而随着结构形式运行条件等因素的不断变化,现代机械的振动形式也越来越复杂,除了静态强度刚度,动态强度刚度也越来越重要,在水中的湿模态分析,目前似乎还没有完美简洁的解决办法,计算分析所采用的模型和计算条件与实际运行中结构之间的差异会直接影响计算结果的精度,所以如何减小这个差异,或者说如何使分析过程更加接近实际是一直以来我们的目标。 模态分析中经常遇到的问题就是当分析对象为装配体的时候。装配体模态计算的正确性绝不仅仅在熟悉产品这么简单,尤其是类似于螺栓结合面、导轨结合面的地方,关于结合面的研究老早就到了一个瓶颈了,由于结合部特性参数的影响因素众多,如结合面材料、加工方法和表面质量,结合面介质及其性质,结合面几何形状及法面压力大小等,特别是在结合部作用机理尚未被真正揭示之前,要在理论上精确获得结合部的特性参数及其分析计算表达式非常困难,故用有限元法识别精度还有待验证。 结合部动力学参数识别问题的确是个技术性难题。目前解决好这一问题的手段是:测试+仿真,建立混合模型。另外对于产品的认知度问题是个值得讨论的问题,比如加强劲板形状的设计就是个问题。你是否已经能够罗列出各种简单振动模式下最好的结构形式?首先列一张表,然后你会心里有数些。但产品并非那么简单,所以需要设计复杂结构。那么,仅仅凭借模态测试是不够的,需要做结构形式的优化,那我们现有的优化技术中,拓扑优化是解决这一问题的好帮手。 曾经拿一家公司的产品,测试和计算发现他们的产品第一阶模态就到了300Hz以上,而同形式的产品,国内仅能到70几Hz.这个差距是何等的大?想办法把我们的产品也做到这样,那你就牛了。 这里谈到结构优化,我就插一句,ANSYS Workbench在分析或者说验证方面很不错,但是要涉及到拓扑优化和形貌优化则比较差,几乎不能应用到实际工程中,最多使用的尺寸优化。如果大家要做结构优化的话,建议使用一下HyperWorks/Optistruct,这个在结构优化上可以说是绝对领先的。. 还有就是共振的实际分析

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

模态测试与分析报告基本概念

模态测试与分析基本概念 1.模态假设:线性假设、时不变假设、互易性假设、可观测性假设 线性假设:结构的动态特性是线性的,就是说任何输入组合引起的输出等于各自输出的组合,其动力学特性可以用一组线性二阶微分方程来描述。 时不变性假设:结构的动态特性不随时间变化,因而微分方程的系数是与时间无关的常数。 可观测性假设:这意味着用以确定我们所关心的系统动态特性所需要的全部数据都是可以测量的。 互易性假设:结构应该遵从Maxwell互易性原理,即在q点输入所引起的p点响应,等于在p点的相同输入所引起的q点响应。 2.EMA、OMA、ODS 试验模态分析(Experimental Modal Analysis, EMA) 力锤激励EMA技术 激振器激励EMA技术 工作模态分析(Operational Modal Analysis, OMA) 工作变形模态(Operational Deflection Shape, ODS) 3.SISO、SIMO、MIMO SISO:设置1个响应测点,力锤激励遍历所有测点,也称为SRIT SIMO:设置若干响应测点,力锤激励遍历所有测点,也称为MRIT;用一个激振器固定在某测点处激励结构,测量所有测量自由度的响应,经FFT快速测量计算FRF MIMO:用多个激振器激励结构,测量所有测量自由度的响应,经FFT快速测量计算MIMO-FRFs,输入能量均匀,数据一致性好,能分离密集和重根模态,在大型复杂或轴对称结构模态试验尤为重要 4.模态分析基本步骤 建立模型:确定测量自由度、生成几何、确定各类参数:BW,参考点、触发等 测量:FRF,(时域数据可选) 参数估计:曲线拟合、参数提取 验证:MAC、MOV、MP等

有关模态分析的理解

模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程: (1)动态数据的采集及频响函数或脉冲响应函数分析 1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。

相关文档
最新文档