基于FPGA的六自由度智能移动机器人设计解析

基于FPGA的六自由度智能移动机器人设计解析
基于FPGA的六自由度智能移动机器人设计解析

基于FPGA的六自由度智能移动机器人设

摘要:智能移动机器人是指无需人工干预,可以自主完成行驶任务的车辆。路径规划是移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内,按照一定的评价标准,寻找一条从起始状态到达目标状态的无碰路径。遗传算法就是对自然界中生物的遗传特性进行模拟而得出的一种模拟进化算法,它是继模糊方法、神经网络、蚁群之后新加入路径规划研究领域的一种算法。提出了一种基于遗传算法解决移动机器人路径规划问题的方法。通过本文的研究及实验结果证明,将遗传算法应用于移动机器人的路径规划问题研究,能够探索与改进一种新的路径优化方法。

关键词:移动机器人;路径规划;遗传算法

Abstract:Intelligent mobile robot can complete the task independently without human intervention. Path planning is an important part of the mobile robot. Its task is to follow a certain evaluation criteria and find a route to goal state from the initial state without collision path in environments with obstacles. Genetic algorithm is a simulation of the genetic characteristics of the biological nature of the simulation and the results of evolutionary algorithms which is a path planning algorithm following the fuzzy methods, neural networks ant colony algorithm. This paper proposes a method to solve the problem of mobile robot path planning based on genetic algorithms. The research and experimental results show that the genetic algorithm can be applied to the mobile robot path planning, which improves a new path optimization methods.

Key words: Mobile robot; Path planning; Genetic algorithm

1、智能移动机器人

1.1智能移动机器人概述

机器人的应用越来越广泛 ,几乎渗透到所有领域。智能移动机器人[1][2]是机器人学中的一个重要分支。早在 60年代 ,就已经开始了关于智能移动机器人的研究。关于智能移动机器人的研究涉及许多方面 ,智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。对智能移动机器人的研究 ,提出了许多新的或挑战性的理论与工程技术课题 ,引起越来越多的专家学者和工程技术人员的兴趣 ,更由于它在军事侦察、扫雷排险、防核化污染等危险与恶劣环境以及民用中的物料搬运上具有广阔的应用前景 ,使得对它的研究在世界各国受到普遍关注。

自1961年美国Unimation公司研制出世界上第一台往复式工业机器人以来,机器人的发展经历了三个阶段:第一代示教/再现(Teaching/Playback)机器人,第二代传感控制(Sensorycontrolled)机器人,第三代智能(Inteligent)机器人。机器人以其具有灵活性、提高生产率、改进产品质量、改善劳动条件等优点而得到广泛应用。但是,目前绝大多数机器人的灵活性,只是就其能够"反复编程"而言,工作环境相对来说是固定的,所以一般人们称之为操作手(Manipulator)。正如人类活动范围和探索的空间是人类进步的标志一样,机器人的智能同样体现在运动空间的大小上。为了获得更大的独立性,人们也对机器人的灵活性及智能提出更高的要求,要求机器人能够在一定范围内安全运动,完成特定的任务,增强机器人对环境的适应能力。因此,近年来,智能移动机器人特别是自主式智能移动机器人成为机器人研究领域的中心之一。

1.2智能移动机器人的研究现状

1.体系结构自主式智能移动机器人的复杂性以及当前计算技术的局限性等决定了体系结构是影响机器人性能的主要因素。自主式智能移动机器人的智能体现为具有感知(Sensing)、决策(Decision-making)和行为(Acting)等基本功能。根据实现这些基本功能的过程的不同,常见的体系结构有三类:分层递阶结构、行为系统和黑板系统。

2.信息感知信息感知来源于传感器。对传感器来说,最主要的两个品质是可靠性和带宽(实时性)。目前自主式智能移动机器人普遍使用的传感器有:声纳、红外、激光扫描、摄像机和陀螺等。每种传感器各有利弊,于是人们自然想到了"取长补短",也即多传感器集成和融合,其优点在于提供了信息冗余、互补和适时

(Timeliness),从而提高了信息的可靠性。

3.智能移动机器人控制

(1)建模根据所受约束的不同,可以将控制系统分为完整(Holonomic)系统和非完整(Nonholonomic)系统。约束条件能够以位形变量显式代数方程描述的系统,即为完整系统;约速条件为不完全可积的微分方程则为非完整系统。智能移动机器人是典型的非完整系统。目前,智能移动机器人普遍使用的运动学模型为基于机器人几何中心或轮轴线中心的时间微分方程,该模型物理意义明确。为避免繁琐的时间微分,E.T.Baumgartner选择了独立变量,建立独立于时间变量的运动学模型,并由此实现了对速度的独立调节。最近,链式(Chained form)方程和幂式(Power form)方程用于描述一类非完整系统。该模型虽然描述的是非线性系统,但具有良好的线性结构,基于此可开环类解耦控制、闭环反馈稳定控制,特别适用于带有拖车的智能移动机器人。

(2)定位(Localization) 定位是智能移动机器人控制中的关键问题,其准确性和精度直接影响规划的实现,从而影响整个系统的性能。定位有静态定位和动态定位之分。静态定位每次将传感器得到的环境信息和环境的先验模型相匹配来定位,计算量大,很难满足实时性要求。为了克服以上缺点,人们采用动态定位,即将外部传感器获得的信息与推算航行法的信息进行融合,以获取高精度定位。融合方法多用Kalman滤波进行最小方差估计和基于模糊逻辑进行模糊推理。

(3)控制及其稳定性智能移动机器人的控制困难在于机器人平面运动具有三个自由度,即平面位置和方位,而控制只有二个自由度,即两个驱动轮的速度或机器人的平移速度和转动速度。Samson指出,智能移动机器人开环可控。但不存在光滑的时不变稳定状态反馈。由于开环控制容易受不确定因素的影响,为了获得较强的鲁棒性和对规划出的路径具有良好的跟踪性能,反馈控制方案才是研究者所寻求的。由于智能移动机器人不存在光滑的时不变稳定状态反馈控制,所以一般采用不连续控制或分段光滑控制实现稳定反馈,控制目的是减少运动自由度或增加控制自由度。各种反馈控制方案虽然解决了作为系统工作必要条件的稳定性问题,但系统要获取良好的性能,还取决于控制律中参数的确定,而所有控制律的参数均很难确定。利用神经网络的学习和容错能力对智能移动机器人控制和基于规则的模糊控制,避免了控制参数的确定,并增强了系统对参数扰动的鲁棒性。

4.路径规划自主式智能移动机器人

它能够按照预先给定的任务指令,根据已知的地图信息作出全局的路径规划,并在行进过程中不断感知周围的局部环境信息,自主地作出各种决策,引导自身安全行驶,并执行要求的动作和操作。由此可以看出,全局路径规划和局部避障是智能移动机器人自主性的核心体现。路径规划为在给定起始点和目标点之间寻求

满足一定条件的无碰撞路径。路径规划根据规划时所利用的信息不同可分为基于模型(Model-based)的规划和基于情形(Case-based)的规划。前者根据已知的环境模型或感知的地图知识作出规划,是目前普遍使用的规划方法;而后者则根据已有的规划知识利用匹配法解决新的规划问题。基于情形的规划适用于较为复杂但相对固定的环境,因为,情形的增加对存储容量提出了更高的要求,并且匹配时计算量大,需要不断地更新情形库,使系统复杂化。基于模型的规划从规划所利用地图知识范围的角度又有全局规划和局部规划之分。全局规划需要完整的环境模型,而局部规划只需要机器人周围的局部信息,主要完成避障任务。基于模型的规划方法主要有物理模拟、拓扑、统计决策、启发式、模糊和神经网络以及遗传算法等。上述的规划方法大多认为机器人具有完备的环境知识,并且假设能对机器人进行精确控制,但实际上这些条件是不能够满足的,因此有必要在规划中考虑不确定因素的影响。Miura对定位误差、控制误差和传感器误差建立分布,运用统计决策理论规划。SUF通过规划路径减小环境、传感器对定位的影响。

2、机械手的发展现状与趋势

机器手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机器。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机器手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机器手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机器手。

1962年美国机械制造公司也实验成功一种叫Vewrsatran机器手。该机器手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机器手出现在六十年代初,但都是国外工业机器手发展的基础。1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机器手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机器手,主要用于起重运输、焊接和设备的上下料等作业。日本是工业机器手发展最快、应用最多的国家。自1969年从美国引进两种机器手后大力从事机器手的研究。

目前,随着单片机等控制器的发展,工业机器手在自动控制和定位精度上有了很大提高。机器手是近几十年发展起来的一种高科技自动化的生产设备。机器手是机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器的优点。尤其体现了人的智能和适应性。机器手作

业的准确性和各种环境中完成作业的能力,在全国经济各领域有着广阔的发展前景,随着工业自动化的发展,出现了数控加工中心,它在减轻工人的劳动强度的同时,大大提高了劳动生产率,但是数控加工中心加工中常见的上下料工序,通常乃采用人工操作或传统继电器控制的半自动化装置。前者费时费工,效力低;后者因设计复杂,需要较多继电器,接线复杂。容易车体震动干扰,而存在可靠性差,故障多,维修困难等问题。可编程控制器单片机控制的上下料机器手控制系统动作简便,线路设计合理,具有较强的抗干扰能力。保证了系统运行的可靠性,降低了维修率。提高了工作效率。机器手技术涉及到力学,单片机,自动控制技术,传感器技术计算机技术等科学领域,是一门跨学科综合技术。机器手是一种能自动化定位控制并可重新编程序以变动的多功能机器,他又多个自由度,可用来搬运物体以完成在各个不同环境中工作。在工资水平较低的中国,分拣行业尽管仍属于劳动密集型,机器手的使用已经越来越普及,那些电子和汽车业的奥美跨国公司很早就在它们设在中国的工厂中引进了自动化生产。但现在的变化时那些分布在工业密集的华南,华东沿海地区也开始对机器手表现出越来越浓厚的兴趣,因为他们要面对工人流失率高,以及交带来的挑战。随我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸,转向,输送或分拣流程越来越节约劳动力,可见机器手的大力发展有着很重要的意义。

3、系统结构图

3.1控制系统

基于上述分析,本课题的六自由度工业机器人采用基于DSP和FPGA的架构模式。DSP是一种独特的可编程处理器、,可是实时、快速地实现各种复杂的数自信号处理。除了具备通用微处理器的高速运算和控制功能外,针对高速数据传输、密集数据运算、实时数据处理等需求,在处理器结构、指记系统的指令流程等都有专门的设计,为六自由度工业机器人复杂的运动控制算法捉供了可行的硬件保障。本课题所使用的DSP芯片是IT公司的TMS320F2812芯片,这款芯片一直是运动控制的首选芯片,既具备数字信号处理器强大的数据处理能力,又像单片机一样带有丰富的外设资源和扩展接口,其外部扩展接口XINTF可以与FPGA很好地是实现并行通信。

图1 运动控制器硬件总体框架

3.2感知系统

机器人感知系统从逻辑上来看,可以分为物理层、应用服务层、应用开发层以及应用层这四个层次,其结构如图2.1所示。物理层也叫做传感器层,负责原始信号的采集,获取物理世界的信息:应用服务层把采集到的信息进行局部功能的封装,成为具有特定服务功能的模块,为更高层的开发提供服务:应用开发层借助第三方开发工具、算法等对下层的功能模块进一步集成;应用层面向最终的用户,针对具体应用定制自己的系统。仿照人体神经系统的结构,仿生的机器人感知系统(如图24)也采用类似的分层网络组织结构,最上层是人直接操纵的决荒层.完成类似人体大脑的决策功能;中间层负责底层节点信息收集融合与集成、上层决策信息执行与下传、节点附近信息收集以及本层节点信息向上层节点的高速实时传输,类似脊柱、器官与传导神经系统的功能,中间层节点根据需要可以是只有单一智能的模块,也可以是功能强大的模块;底层节点相当于周围神经系统,直接与物理世界接触,采用嵌入式处理器架构实现对现场模拟信号的采集,类似人体体表皮肤以及其他感觉器官的功能.作为机器人的感官部分。中间层节点之间与底层节点之间是树型合作,同层次节点之间水平型合作。

统一的传感器数据描述屏蔽了最底层传感器的信息,为传感器的即插即用提供了基础:另外统一的用户接口给用户带来了极大的方便,促进新产品及时上市。这两个规范为机器人感知系统层次间的合作提供了便利。该模型形成了一个优秀的软、硬件整合的设计模型。

图2 机器人感知系统的框架结构

图3 机器人感知系统模型

相关主题
相关文档
最新文档