流体流变特性概述

流体流变特性概述
流体流变特性概述

流体流变特性概述

流体在受到外部剪切力作用时发生变形(流动).接内部相应要产生对变形的抵抗,并以内摩擦的形式表现出来。所有流体在有相对运动时都要产生内摩擦力,这是流体的一种固有物理属性,称为流体的粘滞性或粘性。牛顿内摩擦定律或牛顿剪切定律对流体的粘性作了理论描述,即流体层之间单位面积的内摩擦力或剪切应力与速度梯度或剪切速率成正比。用公式表示如下:

τ=μ(dvx/dy)= μγ

上式又称为牛顿剪切应力公式,式中的比例系数μ就是代表流体粘滞性的物理量,反映了流体内摩擦力的大小,称为流体的动力粘性系数或粘度。流体的粘度与温度有密切的关系。液体的粘度随着温度升高而下降,而气体的粘度则随着温度的升高而升高。在物理意义上,牛顿剪切应力公式表明有一大类流体,它们的剪切应力与速度梯度呈线性关系。这类流体被称为牛顿流体。另一方面,如果上式的函数关系是非线性的,所描述的流体就被称为非牛顿流体。.

为了方便描述非牛顿型流体,人们提出了广义的牛顿剪切应力公式:τ=η(dvx/dy)= ηγ

系数η同样反映流体的内摩擦特性,常常称为广义的牛顿粘度。对牛顿型流体,η当然就是粘度,属于流体的特性参数。对非牛顿型流体,问题就变得复杂起来,η不再是常数,它不仅与流体的物理性质有关,而且还与受到的剪切应力和剪切速率有关,即流体的流动情况要改变其内摩擦特性。人们提出了几个描述非牛顿型流体内摩擦特性的流变方程模型。如Ostwald—dewaele的幂律模型,Ellis模型,Carreau模型,Bingham模型等。其中幂律模型最为常用。幂律模型认为,非牛顿型流体的粘度函数是速度梯度或剪切速率绝对值的一个指数函数,其表达式为:

1. τ=K(dvx/dy)n= Kγn

或者

2. η=K(dvx/dy)n= Kγn-1

式中,K为稠度系数,N?S”/m ;为流体特性指数,无因次,表示与牛顿流体偏离的程度。

由2式可见:

① 当n=1时,η=K,即K 具有粘度的因次.此时流体为牛顿流体,可用以检查所得结果正

确与否;

② 当η<1时,为假塑性或剪切变稀流体;

③ 当η>l时,为膨胀塑性或剪切增稠流体;

④ 1式从使用观点看,仅有两参数,因此被广泛应用,工业上80%以上的非牛顿流体均可用此模型计算。

在一定的温度下,流体在外力的作用下呈层流时,流速不同的层间产生内摩擦力,将阻碍液层的相对运动,层流间剪切应力(τ)与流速梯度(dv /dy)之间呈一复杂的关系,并随着时间、温度、流体性质和流速不同而产生很大的差别。反映这一关系的基本数学公式就是牛顿流动定律:τ=η(dvx/dy)

其中,τ——剪切应力(平行流动方向的单位面积上的内摩擦力)

dv/dy——剪切速率(垂直流动方向的流速梯度)

η——粘度(动力粘滞系数)

流体的剪切应力与剪切速率之间的变异关系用图形表示则称为流变曲线。

塑性流体是非牛顿流体中的一种,其特点是剪切应力小于某一数值τ。时,就不能流动,大于τ。后才开始流动;假塑性流体也是非牛顿流体一种,其流动特点是一旦施加外力就能流动,其粘度随着剪切速率的增加而减小,流动曲线为通过坐标原点凸向剪切应力轴的曲线;牛顿流体在流变曲线上,剪切应力与剪切速率间关系为一通过原点的直线关系;膨胀性流体也是非牛顿流体中的另一种类型,其特点是一加外力就能流动,粘度随着剪切速率增加而增大,流动曲线为通过坐标原点凹向剪切应力轴的曲线。

1.屈服——假塑性分析

屈服——假塑性是指流体在较小外力作用下,不发生流动,只产生有限的弹性变形,只有当外力大于某值时,流体才发生流动,使流体发生流动时对应的剪切应力称之为屈服应力。

2.触变性分析

触变性表述这样的现象:物体经长时间高剪切从高粘凝胶态变为粘度低得多的溶胶。触变性的一个重要标志是物体保持静止后有重新稠化的可逆过程。这类流体的粘度不仅随剪切速率变化,而且在恒定的剪切速率下,它的粘度也随着时间的推移而下降,并达到一个常数值。当剪切作用停止后,粘度又随时间的推移而增高,大多数触变性流体,经过几小时或更长的时间,可以恢复到初始的粘度值。它的曲线形态表现为,在流动曲线图中“上行曲线”不再与“下行曲线”重叠,而是两条曲线之间形成了一个封闭的“梭型”触变环。这个“梭型”触变环的面积大小决定着触变特性的量度,它表示破坏触变结构所需要的能量。

震凝型流体

流体可分为牛顿流体和非牛顿流体。其中非牛顿流体还可分为时间独立性流体(a.假塑体,b.膨胀体,C.塑性假塑体,d.塑性膨胀体)、时间相关性流体(触变物质和振凝性流体)以及粘弹性流体(线性粘弹体和非

线性粘弹体)

非牛顿流体包括剪切变稠型(胀流型)、剪切变稀型、假塑型、塑性型、触变型以及震凝型流体等。剪切变稠型:粘度随流速梯度增大而增大,这是因为当颗粒浓度很高并接近最紧密排列时,两层间的相对运动将使颗粒偏离最紧密排列,体积有所增加,需消耗额外能量。或者因为当流速增加而使颗粒动能增高时,可能越过能垒Eb 到达第一极小 Em1 而发生絮凝,使粘度增大。

剪切变稀型:粘度随流速梯度增大而减小。这是因为在h 较大时,位能曲线上有一个第二极小 Em2,它将导致颗粒间形成较弱的絮凝,而流速增大时将破坏这种絮凝使粘度减小。也可能因为颗粒为棒状或片状,静止时颗粒运动受阻,当受到剪切时,颗粒因形成队列而粘度

减小。

假塑型

:粘度随流速梯度增大而减小,它的剪切变稀的性质更为突出。

塑性型

:该类流体由于絮凝很强而形成网络结构,其特点是存在屈服应力

τ B ,τ <τ B 时流体仅发生弹性形变。当τ >τ B 时,网络破坏并开始流动,剪切应力随流速梯度而变化。

触变型

:在剪切作用下可由粘稠状态变为流动性较大的状态,而剪切作用取消后,要滞后一段时间才恢复到原来状态。这是由于絮凝网络经剪切破坏后,重新形成网络需要一定时间。

震凝型

:该流体能在剪切作用下变稠。剪切取消后,也要滞后一段时间才恢

复变稀。

流变学特性分析

储藏年限0 1 2 3 4 5 6 7 8 13 弹性弱较好较好较好好最好最好较好较好较好 延伸性22 12 12.5 11.5 13.5 15 14 11.5 12.5 8 抗延比值(厘米/分) 0.51 0.41 0.26 0.67 0.083 0.29 0.091 0.32 0.23 0.052 面包流散性(高/直径)0.33 0.35 0.55 0.47 0.45 0.40 0.55 0.52 0.55 0.49 面包体积(ml) 132 146 176.8 142.3 158 147.5 193 157 165 140 从面团特性来看,新收获的小麦面团弹性较差,延伸性大,抗延比值较高,这是由于新收获小麦含有较高的低分子量的醇溶蛋白,-S-S-/-SH的值较低。随着储藏时间的延长,面团弹性增强,储藏5-6年的小麦,面团弹性达到最好,这是由于储藏期间小麦麦谷蛋白肽链间的二硫键和分子内的二硫键相互结合, 使面团弹性增加。储藏时间过长,弹性反而下降。小麦储藏的前三年,延伸性随着储藏时间的延长而逐渐下降,储藏4-5年的小麦延伸性有增加的趋势,而后逐渐下降。在储藏过程中,小麦抗延比值整体呈下降的趋势。一般认为小麦在储藏过程中面团流变学特性变化的原因是蛋白质分子中的巯基被氧化成了二硫键,使高分子质量的麦谷蛋白聚合物体积增大,低分子质量的麦谷蛋白聚合物体积减小,形成的面团线性结构导致面团特性发生变化。 从小麦的烘焙品质来看,新收获的小麦制作的面包流散性较差,面包体积较小。随着储藏时间的延长,由于后熟作用,面包流散性增加,体积增大,储藏6年的小麦制作的面包体积达到最大,为193ml,烘焙品质达到最佳。但储藏时间过长,超过后熟期,面包流散性降低,面包体积减小,烘焙品质下降。

浓缩果汁流变特性的研究进展

研 究 生 课 程 论 文 (2013年第一学期) 浓缩果汁流变特性的研究进展 研究生:罗伟 浓缩果汁流变特性的研究进展

罗伟 摘要:浓缩果汁流变特性的研究能够为果汁产品的生产加工工艺设计以及在生产过程中的质量控制提供理论依据。本文对目前浓缩果汁流变特性的研究状况进行了综述,并对今后的研究方向进行了展望。 关键词:浓缩果汁流变特性粘度 Abstract:.. Key words:concentrated fruit juice;rheological property;viscosity 前言 随着社会的进步和发展,人们越来越重视生活质量和身体健康,果汁产品因富含维C和膳食纤维,具有助消化、排毒养颜等功效而深受人们的欢迎。果汁产品在工业化的生产过程中,为了便于运输与贮藏,通常将果汁浓缩成高浓度果汁,浓缩果汁在果汁品种中占有重要的地位。果汁产品在生产过程中的很多环节都要求掌握果汁的流变特性,例如在果汁的浓缩过程中必须准确掌握温度、浓度等因素对流变特性的影响。对浓缩果汁流变特性的研究能够为浓缩果汁产品的加工工艺设计提供理论基础,对浓缩果汁产品在加工过程的质量控制有重要的指导意义。 近年来,国内外相继报道了浓缩苹果汁[1]、浓缩梨汁[2]、浓缩葡萄汁[3]、浓缩蓝莓汁[4]、浓缩柑橘汁[5]、浓缩石榴汁[6]、芒果汁[7]、樱桃汁[8]等果汁的流变特性的研究,本文综述了浓缩苹果汁、浓缩葡萄汁、浓缩蓝莓汁、浓缩柑橘汁、浓缩石榴汁等果汁流变特性的研究状况,并对浓缩果汁的制备、果汁的流型及其流变特性、影响因素进行了概述,为今后浓缩果汁的研究和开发提供一定的参考。 1 浓缩果汁制备方法和流程概述 浓缩果汁的制备方法通常是先将新鲜水果榨成原汁,然后再采用低温真空浓缩的方法蒸发掉一部分水分,制成高浓度的果汁。在还原原汁时须在浓缩果汁中加入原来失去

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

面团流变学特性的研究及应用资料

面团流变学特性的研究及应用 摘要:面团是多种食品的加工原料,其流变学特性对食品的加工制作有极大的影响,甚至起决定性作用,不同的食品对面团的流变学特性有不同的要求,本文研究了面团的流变学特性,列举了研究方法、仪器以及指标,介绍了面团流变学的研究意义,并对馒头、面条、饺子、饼干以及面包五种食品对面团的流变学特性进行了介绍描述。 关键词:面团;流变学特性;应用

1.食品流变学概述 流变学是研究物质形态和流动的学科。食品流变学主要研究作用于物体上的应力和由此产生的应变规律,是力、变形和时间的函数,主要研究的是食品受外力和形变作用的结构。通过对食品流变特性的研究,可以了解食品的组成、内部结构和分子形态等,能为产品配方、加工工艺、设备选型及质量检测等提供方便和依据。近年来由于食品的深加工性、工艺及设备设计的依据性等的需要,食品流变学的研究变得愈来愈广泛【1】。 食品流变特性在生活中随处可见,如打蛋和搅蛋过程中蛋液的流动特性、和面时面团的弹性和变形、花生酱的涂抹等【2】。通过对食品的流变性的研究,可将食品分为固体类食品、牛顿流体类食品、非牛顿流体类食品、粘弹性体类食品以及塑性液体类食品五大类。其中粘弹性体类食品是一类介于固态食品与液态食品之间的具有弹性特性又有粘性特性的粘弹性体。属于这一类食品的有米面粉团、淀粉团、冻凝胶等【3】。本文主要研究面团的流变性以及不同产品对面团流变特性的要求。 2.面团流变学的研究 2.1面团 小麦粉是各种各样面制品的基础原料,与水混合后,由于面筋的形成从而形成了具有黏弹性且具有一定流动性的面团,面团的这种黏弹性和流动性称为面团的流变学特性【4】。水在面团的黏弹性中有重要作用,若要形成很好的面团加水量一定要适中,过多或不足均无法形成良好的面团,面团质量的好坏直接影响产品的质量。当加适当水混匀时,蛋白质结合在一起形成连续的黏弹性面筋网状结构,此时淀粉与水合面筋的大分子网络形成连续的颗粒网状结构,这两个独立的网络和他们的相互作用形成了面团的流变学特性,在揉和过程中,脂类和其它成分均被揉和到面筋蛋白网络中。因此,面筋蛋白的含量和质量是影响面团及面制品品质的重要因素【5】。面筋蛋白根据是否溶于乙醇,可分为两类:麦谷蛋白和麦醇溶蛋白。麦谷蛋白决定小麦粉面团的弹性,而麦醇溶蛋白则影响面团延伸性【6】。 2.2面团流变特性研究的意义 在面食类食品加工中,面团的品质其决定性作用,面团流变学特性是小麦品质的指标之一,受面粉蛋白质含量、面筋含量等组成成分的影响, 它决定着小麦和其烘焙、蒸煮食品等最终产品的加工品质, 可以给小麦粉的分类和用途提供一个实际的、科学的依据。研究面团的流变学特性有着重要的意义:(1)面团的结构和性质直接由其品种的品质状况决定, 蛋白质含量和质量、淀粉的种类和组合、脂肪的结构和组成以及矿物质、维生素的多少都直接影响到面团的粉质、拉伸、揉混等特性;(2)面团的性质又直接影响到面包等制成品的

涂料的流变特性及原理

涂料的流变特性 流变性是涂料的一个重要的指标,它反映的是涂料储存稳定性和施工性能,在涂料的涂装过程中一定经过流体这个阶段,因此对于涂料流变特性的理解具有重要的意义,流变特性是一个复杂的剪切力和粘度的关系,粘度是体现涂料流动特性的一个很重要的参数,通过测量涂料不同剪切力下的粘度变化,可以分析涂料的流变特性,进而指导涂料配方的改进。 涂料的流变特性就涉及到流变学,首先了解牛顿流体和非牛顿流体 牛顿流体:剪切应力和剪切速率的比值为一常数,即为牛顿流体,粘度不随剪切速率的变化而变化。 非牛顿性流体:粘度会随着剪切速率的变化发生改变,包括宾汉流体、膨胀性流体、假塑性流体和触变性流体。 假塑性流体随着剪切力的增大粘度变小,膨胀性流体随着剪切力的增大粘度变大,当假塑性流体行为与历史时间有关系的时候,也就是对时间有一定依赖性的时候,就称之为触变性流体。 了解流体的类型,就能很好理解涂料的流变特性 涂料体系流变特性的几个决定因素 1、主体树脂(基料)化学结构式和分子量 2、溶剂的适用类型,对于树脂的溶解性 3、颜填料的含量 涂料体系流变特性的两个现象: 1、沉降 2、流挂,这两个现象也是反应涂料施工性能和储存稳定性的两个重要的体现。涂料体系改善涂料流变性能助剂的原理:市面上流变助剂的机理基本相同,都是在液相中形

成三维网状结构,比较典型的就是通过氢键的形式联结,这些三维网状结构在一定的剪切力作用下发生破坏,当撤去剪切力的情况下,逐渐恢复三维网状结构,表现出一定的触变流动特性。 另一种助剂的作用原理,通过助剂基团与主题树脂基团之间的缔合作用形成一定三维网状结构,一般使用在低剪切力的体系中,水性体系中可以高低剪切助剂配合使用。 在涂料使用的过程当中,根据涂料的性能要求,选择不同的剪切力,对应所使用的粘度要求,来使用不同类型的流体。比如下表所示 涂料性能要求剪切力的情况粘度情况 填料沉降慢低高 不易溅落低高 流平性能好低低 防流挂低高 易涂刷高低因此涂料的流变特性是反应涂料施工性能的重要指标。

不同品种大米淀粉的流变学特性研究

2006年8月 第21卷第4期 中国粮油学报 Journal o f the Ch i n ese C erea ls and O ils A ssoc i a ti o n Vo.l21,N o.4 Aug.2006不同品种大米淀粉的流变学特性研究 许永亮 程 科 邱承光 赵思明 (华中农业大学食品科技学院,武汉 430070) 摘 要 以不同品种大米淀粉为材料,研究淀粉糊的流变学特性,温度、淀粉糊浓度对黏度系数、流变指数的影响,为淀粉质食品的原料选择和加工提供参数。结果表明,大米淀粉糊呈假塑性流体的特性。不同品种大米淀粉湖的流变特性有较大差异,金优和放心米的热稳定性较差,大米淀粉糊的黏度系数为0.1~11。黏度系数和流变指数对温度和浓度对有较大的依赖性。大米淀粉的流动能约为1.66 106J/m ol~20.53 106J/ m o l。 关键词 大米 淀粉 流变学 大米淀粉广泛应用于食品加工,流变特性是淀粉的重要物化特性之一,黏度系数、流变指数和流动能是流变特性的重要参数[1]。 淀粉质流体食品的流变特性影响到食品的品质,如硬度、黏稠度和咀嚼度等,加工过程中原料的输送、搅拌、混合、能量的损耗等与物料的流变特性密切相关。国内外对影响大米淀粉糊流变特性的因素[2]、稻米淀粉糊老化过程的流变特性[3]、稻米支链淀粉的流变特性[1,4]、贮藏过程中大米淀粉的流变特性[5]、改性大米淀粉的流变特性[6]、食品添加剂对大米淀粉流变特性的影响[7]等已有较多研究。认为大米淀粉由长链的直链淀粉(Am)和支链淀粉(Ap)组成。大米淀粉糊为假塑性流体,温度和浓度等对流变特性具有影响。稻米淀粉糊的流变学与稻米流质食品的品质和稳定性密切相关。然而不同品种大米由于直链淀粉、支链淀粉的含量不一样,淀粉分子特性和分子构象等的差异,其流变特性也不一样。我国对不同品种大米淀粉糊的流变特性的研究仍较少,从而难以对大米淀粉的流变特性作全面的评价和比较。 本文通过对不同品种大米淀粉糊黏度系数、流变指数、流动能以及大米品种、温度、浓度对淀粉糊 基金项目:湖北省自然科学基金大米淀粉特性与米制品品质的相关性研究(99J091) 收稿日期:2005-07-12 作者简介:许永亮,男,1982年出生,硕士研究生,食品科学 通讯作者:赵思明,女,1963年出生,教授,博士后,食品大分子功能及特性研究黏度系数、流变指数、流动能的影响进行研究,了解不同品种大米淀粉糊黏度、流动能的变化规律,确定大米淀粉糊的流变类型和影响大米淀粉糊流变特性的因素,为大米食品加工的原料选择、大米淀粉深加工和开辟新用途提供依据。 1 材料与方法 1.1 实验材料 12种大米(2003年产),其品种类型及生产厂家,见表1。 1.2 大米淀粉和淀粉糊的制备 1.2.1 大米淀粉的制备 称取适量的大米,用0.4%(w/w)的Na OH溶液于室温下浸泡24小时后,用胶体磨粉碎,用0.4% (w/w)Na OH的碱液反复浸泡7~8次后,水洗5次,用盐酸将浆液的pH调到6.5~7.0,再水洗两次,将水洗后的淀粉浆液于4000r/m i n的转速下离心10m in(TDL-5-A型低速离心机上海安亭科学仪器厂),取下层沉淀物,自然干燥即得大米淀粉,粉碎过80目筛备用。 1.2.2 大米淀粉糊的制备 称取适量的淀粉,加入一定量的水,沸水浴20~ 30m in,制成4%(w/w)和6%(w/w)的淀粉糊。 1.3 流变学特性 用流变仪(HAAK型旋转流变仪,HAAKE B UC HLER Instrum ents,Inc.,USA,转子型号:MVST),在转速n为1r/m in、2r/m in、4r/m i n、8r/m i n、16r/m i n、32r/m in、64r/m in和128r/m i n时,采用4%和6%(w/

食品流变学特性的研究进展

食品流变学特性的研究进展 作者: 摘要:本文综述了测试食品流变性能的传统改进方法,介绍了近年来国内外食品流变性能测试方法的研究情况。 关键词:食品;流变性;测试 Progress of Food rheological properties research A uthor Abstract: This article summarizes the improved measure of food material rheological behavior testing and introduces the newest measure and instrument about food material rheological behavior testing. Key words: food material; rheological behavior; testing measure 前言 在食品的生产过程中,经常要遇到有关食品物质的流动,变形等问题;这此问题不仅反映了食品物质的特性,同时也直接影响到食品的质量,产品加工及设备设计。例如,在炼乳生产中,表现粘度的控制是生产过程至关重要的环节。同样,人造黄油的扩展度,糖果的硬度,肉的韧度等也都是产品质量的重要指标之一,因此,为了进一步提高产品质量,必须深入地了解和掌握食品物质的流动和变形特性,研究在各种条件下这些特性变化的规律及对产品质量和加工过程的影响。正是在这个基础之上,食品流变学得以兴起和不断地发展[1]。它是食品工业向高质量、大型化、自动化发展的必然结果,引起了越来越多的食品工程技术人员的重视。研究不断深入,应用日趋广泛。 食品物质种类繁多,多数物质由于组成的特殊性,一般都具有极其复杂的流变特性,从物理特性来看,几乎包括一r所有不同流变特性的物质。因此,在研究这些食品物质的流变特性时,仅仅依靠流变学的一般理论是远远不够的,必须从食品特性入手,研究其流变特性,建立起一套适合食品物质流变特性分析、研究的理论和方法[2]。 流变学即Rheology最初由美国化学家宾汉(E.C.Bingham)倡导,它本是力学的一个分支,即研究物质在力作用下变形或流动的科学。除了力的作用外,离得

流体流变特性概述

流体流变特性概述 流体在受到外部剪切力作用时发生变形(流动).接内部相应要产生对变形的抵抗,并以内摩擦的形式表现出来。所有流体在有相对运动时都要产生内摩擦力,这是流体的一种固有物理属性,称为流体的粘滞性或粘性。牛顿内摩擦定律或牛顿剪切定律对流体的粘性作了理论描述,即流体层之间单位面积的内摩擦力或剪切应力与速度梯度或剪切速率成正比。用公式表示如下: τ=μ(dvx/dy)= μγ 上式又称为牛顿剪切应力公式,式中的比例系数μ就是代表流体粘滞性的物理量,反映了流体内摩擦力的大小,称为流体的动力粘性系数或粘度。流体的粘度与温度有密切的关系。液体的粘度随着温度升高而下降,而气体的粘度则随着温度的升高而升高。在物理意义上,牛顿剪切应力公式表明有一大类流体,它们的剪切应力与速度梯度呈线性关系。这类流体被称为牛顿流体。另一方面,如果上式的函数关系是非线性的,所描述的流体就被称为非牛顿流体。. 为了方便描述非牛顿型流体,人们提出了广义的牛顿剪切应力公式:τ=η(dvx/dy)= ηγ 系数η同样反映流体的内摩擦特性,常常称为广义的牛顿粘度。对牛顿型流体,η当然就是粘度,属于流体的特性参数。对非牛顿型流体,问题就变得复杂起来,η不再是常数,它不仅与流体的物理性质有关,而且还与受到的剪切应力和剪切速率有关,即流体的流动情况要改变其内摩擦特性。人们提出了几个描述非牛顿型流体内摩擦特性的流变方程模型。如Ostwald—dewaele的幂律模型,Ellis模型,Carreau模型,Bingham模型等。其中幂律模型最为常用。幂律模型认为,非牛顿型流体的粘度函数是速度梯度或剪切速率绝对值的一个指数函数,其表达式为: 1. τ=K(dvx/dy)n= Kγn 或者 2. η=K(dvx/dy)n= Kγn-1 式中,K为稠度系数,N?S”/m ;为流体特性指数,无因次,表示与牛顿流体偏离的程度。 由2式可见: ① 当n=1时,η=K,即K 具有粘度的因次.此时流体为牛顿流体,可用以检查所得结果正 确与否; ② 当η<1时,为假塑性或剪切变稀流体; ③ 当η>l时,为膨胀塑性或剪切增稠流体; ④ 1式从使用观点看,仅有两参数,因此被广泛应用,工业上80%以上的非牛顿流体均可用此模型计算。

流体流变

粘性是表现流体流动性质的指标,从微观上讲,粘性是流体受力作用,其质点间作相对运动时产生阻力的性质。这种阻力来自内部分子运动和分子引力。一种物质粘性的大小通常用粘度来表示。粘度有剪切粘度、延伸粘度和体积粘度三种,但通常我们所说的是剪切粘度。流体在力的作用下,会发生粘性流动,其流动过程中的粘度与作用力之间的关系表现出多种情况。分为牛顿液体类物质、非牛顿液体类物质。 1)牛顿液体类物质 液体属于一种流体,描述流体的一个重要参数就是粘度。粘度剪切粘度、延伸粘度和体积粘度等几种不同的方式,通常我们所说的粘度就是剪切粘度,即用普通粘度计测定的液体粘度。如果一种液体的粘度与剪切速率无关,则我们称这种液体为顿液体。 η=σ/ε 从这个式中可以看出,牛顿液体的剪切应力与剪切速率的关系曲线是一条直线,这种液体没有弹性,且不可收缩。 值得注意:真正的牛顿液体是没有的,但在实际情况中,当在剪切力很宽的作用范围条件下,其粘度不变的液体通常近视将其看成为牛顿液体。例如糖水溶液、低浓度的牛乳、油、酒、水及其透明稀质液体均可归于牛顿液体。 当采用小于某一个值的剪切力作用于食品液体时,其并不表现出流动,具有类似于弹性体的性质,当施予的剪切力超过此值时,其表现出流动,流动特性符合牛顿液体特征的称为宾汉液体。

在液态食品体系中,属于宾汉液体的事例很多,如浓缩的肉汁就是一种典型的宾汉液体。 2)非牛顿类液体物质 凡是不符合牛顿流体定律的液体统称为非牛顿类液体物质,非牛顿类液体物质的流动方程可用下式表示。 σ= κ×εn(n为不等于1的任何正数) 在上式中,当n=1时,它就是牛顿液体公式,这时κ=η。κ就成了粘度。假如设ηa= κ×εn-1,则非牛顿液体类物质的流动状态方程可写为与牛顿液体类物质流动方程相似的形式: σ= η a×ε 由上式可以看出,ηa与η有同样的量纲,表示同样的物理特性,所以称ηa为表观粘度(apparent viscosity)。值得注意的是η是一个常数,而ηa则是一个变数,它与粘度系数κ和流态指数n有关,是剪切速率ε的函数。非牛顿类物质的剪切力与剪切速率不是一条直线。 在实际过程中,非牛顿类液体物质只有当施加的剪切力σ大于某

第1章流体力学的基本概念

第1章流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 1.1 连续介质与流体物理量 1.1.1 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022个水分子,相邻分子间距离约为3×10-8厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计

平均特性,且具有确定性。 1.1.2 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2) 由于特征体积' V ?很小,按式(1-1)定义的流体质点密度,可以视为流体质点质心(几何点)的流体密度,这样就应予式(1-2)定义的空间点的流体密度相一致。为把物理概念与数学概念统一起来,方便利用有关连续函数的数学工具,今后均采用如式(1-2)所表达的流体物理量定义。所谓某一瞬时空间任意一点的物理量,是指该瞬时位于该空间点的流体质点的物理量。在任一时刻,空间任一点的流体质点的物理量都有确定的值,它们是坐标点 ),,(z y x 和时间t 的函数。例如,某一瞬时空间任意一点的密度是坐标点),,(z y x 和时间 t 的函数,即 ),,,(t z y x ρρ= (1-3) 1.2 描述流体运动的两种方法 描述流体运动的方法有拉格朗日(Lagrange )法和欧拉(Euler )法。

第一章流体力学基础知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ = V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ = V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

流体力学 基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。 **非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。(5) 在边界层内,黏性力与惯性力同一数量级。(6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

流体的主要力学性质

一、 班名: 二、 授课内容:引言 三、 时间:60分钟 四、 重点 流体的密度与重度、流体的压缩性与膨胀性、流体的粘滞性。 五、 难点 流体的粘滞性及牛顿内摩擦定律。 六、 课程性质:综合课 七、 教学目的 通过讲解流体的主要物理性质,使学院对流体有更为具体和量化的认识,也为后续学习的展开奠定基础。 八、 教学目标 理解流体密度、压缩性和膨胀性、粘滞性;应用粘滞性来分析实际问题。 九、 所需教具 黑板、粉笔、板擦、计算机和投影仪。 十、 教学过程 首先组织教学,把学员的精神都集中到课堂上来。 (一)回顾上一讲内容(启发式教学,用时5分钟) 1、什么是流体? 流体是易于流动的物质;它包括气体、液体及分散状的固体微粒的集合体。如我们日常生活中的水、空气、燃气等都是流体。 2、什么是流体力学? 流体力学研究流体平衡和运动规律以及流体与固体壁面间作用力的一门科学。 3、流体力学的任务 (1)流体力学主要研究大量流体分子的宏观运动特性。 (2)流体力学学科的分类 流体力学根据研究的重点与方法不同分为:理论流体力学和工程流体力学; 流体力学根据流体性质不同分为:水力学、空气动力学以及两相流体力学。

(3)本课程的主要研究内容和对象 本课程主要以流体在容器和管道内的特性为研究内容。 (二)本节内容 首先向大家说明一个基本问题。流体不同于固体的基本特征是流体的流动性。 一般而言,流体的流动性与其分子间距d 成正比。 1、密度、比容及重度(直观式教学,用时10分钟) (1)密度 密度是一般物质的基本属性,对于均匀流体而言,单位体积的质量称为密度。 /m V ρ= ρ——流体的密度,kg/m 3; m ——流体的质量,kg ; V ——该质量流体的体积,m 3。 (2)比容 也叫做比体积;表示单位质量的流体所占的体积;简单来说就是密度的倒数。 在燃气行业中,比容是应用较多的定义之一。因为燃气在输送过程中其体积和密度是随着压力级制的不同而发生变化的,但其总质量是不会改变的,因为质量是守恒的。 (3)重度 流体和固体一样也受到地球的引力而产生重力。对于均匀质流体,作用于单位体积流体上的重力称为重度。 需要向大家强调一点:流体的密度与重度是随着外界压力与温度的变化而变化的。但有时由于温度和压力变化所引起的流体密度变化不大时,可以认为流体的密度和重度是恒定的。例如,在平时的生活中,我们一般都认为水的密度为1000kg/m 3。但是实际上水的密度是随着温度升高而降低的。不知各位有没有观察过用“热得快”在暖瓶中烧水。即使你在灌水时灌得不满,在加热过程中也会

钻井液流变性概述

钻井液流变性概述 摘要: 钻井液在石油钻井中起着十分重要的作用,深入研究钻井液的性能,对油气井钻井液流变参数的优化设计和有效调控是钻井液工艺技术有十分重要的指导意义。根据API 推荐的钻井液性能测试标准,钻井液的常规性能包括:密度、漏斗粘度、塑性粘度、动切力、静切力、API 滤失量、HTHP 滤失量、PH 值、碱度、含砂量、固相含量、膨润土含量和滤液中的各种离子的质量浓度等。本文主要对钻井液的流变性进行综述,包括钻井液的流型及流变参数、钻井液流变性与携岩原理及井壁稳定性的关系。 关键词:钻井液 流变性 流型 携岩原理 一.钻井液在石油钻井中的作用 (1)从井底清除岩屑(2)冷却和润滑钻头及钻柱(3)造壁功能(4)控制地层压力(5)循环停止时悬浮岩屑和加重材料,防止下沉(6)从所钻地层获得资料(7)传递水力功率 二.钻井液的类型 分散钻井液 钙处理钻井液 盐水钻井液 饱和盐水钻井液 聚合物钻井液 甲基聚合物钻井液 合成基钻井液 气体型钻井液 保护油气层的钻井液 三.钻井液的流变性 钻井液的流变性是指在外力作用下,钻井液发生流动和变形的特性。 流体分为牛顿型流体和非牛顿型流体,非牛顿型流体又分为塑性流体、假塑性流体、膨胀性流体。现场使用钻井液多为塑性、假塑性流体。 1.牛顿流体 通常将剪切应力与剪切速率的关系遵守牛顿内摩擦定律的流体,称为牛顿流体。 流变方程: dv dx τμ =

其流动特点:加很小的剪切力就能流动,而且流速梯度与切应力成正比。在层流区域内,粘度不随切力流速梯度变化,为常量。 2.非牛顿流体 (1)塑性流体 0PV dv dx ττμ-= 剪切力τ≠0,而是s τ,即施加的切应力必须超过某一特定值才能开始流动。切应力继续增大,并超过s τ时,塑性流体不能均匀剪切,粘度随切应力的增加而增加,即图中曲线段;继续增加切应力,粘度不随切应力的增加而增加,图中直线段; 1)s τ,静切力,是钻井液静止时单位面积上形成的连续空间网架结构强度的量度。 2)0τ,动切力,反映钻井液处于层流状态时钻井液中网状结构强度的量度。 3)0 pv dv dx ττμ-= ,塑性粘度,即塑性流体流变曲线段斜率的倒数,不虽剪切力而变化。 4)00 PV AV PV PV dv dx dv dx dv dx dv dx τμττ μμμμ+= = = +=+结构,表观粘度,又称有效粘 度,是在某一流速梯度下剪切应力与相应流速梯度的比值。 5)0PV τμ,动塑比,反映钻井液中结构强度和塑性粘度的比例关系。一般要求在0.34—0.48的范围内。 两种粘度对钻井液工艺具有很重要的意义: 1、了解两种粘度所占的比例组成,有助于认识钻井液的实质和问题所在,有助于判断环空流态和钻井液稀释特性。

工程流体力学-流体物理特性

工程流体力学机械工程学院 主讲:杨阳(博士、副教授) 2013年03月

本课程的性质和任务 《工程流体力学》是机械设计制造及自动化、车辆工程、材 料成形与控制工程等专业一门主要技术基础课程。它的主要任料成形与控制工程等专业门它的主要任 务是通过各教学环节,运用各种教学手段和方法,使学生掌握 流体运动的基本概念、基本原理、基本计算方法;培养学生分流体运动的基本概念基本原基本计算方法培养学生分析、解决问题的能力和实验技能,为学习后继课程、从事工程技术工作和科学研究以及开拓新技术领域打下坚实的基础。 总学时:32 总学时 教学方法: 课堂讲授与实验教学相结合,采用多媒体演示完成。 考试方式闭卷 考试方式:闭卷

第一章绪论 ?有关流体运动与流体力学的三个问题; ?流体力学的发展概况; ?流体力学的概念; ?流体力学的概述与应用; ?流体力学课程的性质、目的、基本要求; 流体力学课程的性质目的基本要求; ?流体力学的研究方法; ?流体的连续介质模型; ?流体的主要物理性质——惯性、粘性、压缩性; ?理想流体与实际流体、可压缩流体与不可压缩流体、牛顿流体与非牛顿流体概念 顿流体与非牛顿流体概念。

第一节流体力学及其发展概况 有关流体运动与流体力学的问题 人类虽然长期生活在空气和水环境中,对一些流体运动现象却缺乏认识,现举三例。 A.高尔夫球:表面光滑还是粗糙? B.汽车阻力:来自前部还是后部? C.机翼升力:来自下部还是上部?

A.高尔夫球:表面光滑还是粗糙? 高尔夫球运动起源于15世纪的苏格兰,当时人们认为表面光滑的球飞行阻力小,因此用皮革制球。 表面光滑的球飞行阻力小因此用皮革制球 后来发现表面有很多划痕的旧球反而飞得更远,这个谜直到20世纪建立流体力学边界层理论后才解开。

流体力学归纳总结

流体力学 一、流体的主要物性与流体静力学 1、静止状态下的流体不能承受剪应力,不能抵抗剪切变形。 2、粘性:内摩擦力的特性就是粘性,也是运动流体抵抗剪切变形的能力,是运动流体产生机械能损失的根源;主要与流体的种类和温度有关,温度上升粘性减小,与压强没关系。 3、牛顿内摩擦定律: du F A dy μ= F d u A d y τμ== 相关因素:粘性系数、面积、速度、距离;与接触面的压力没有关系。 例1:如图6-1所示,平板与固体壁面间间距为1mm,流体的动力黏滞系数为0.1Pa.S, 以50N 的力拖动,速度为1m/s,平板的面积是( )m 2。 解:F F A du dy δ μνμ= ==0.5 例2:如图6-2所示,已知活塞直径d=100mm,长l=100mm 气缸直径D=100.4mm,其间充满黏滞系数为0.1Pa·s 的油,活塞以2m/s 的速度运动时,需要的拉力F 为( )N 。 解:332 0.1[(10010)0.1]31.40.210 du F A N dy μπ--==?????=? 4、记忆个参数,常温下空气的密度3 1.205/m kg ρ=。 5、表面力作用在流体隔离体表面上,起大小和作用面积成正比,如正压力、剪切力;质量 力作用在流体隔离体内每个流体微团上,其大小与流体质量成正比,如重力、惯性力,单位质量力的单位与加速度相同,是2 /m s 。 6、流体静压强的特征: A 、垂直指向作用面,即静压强的方向与作用面的内法线方向相同; B 、任一点的静压强与作用面的方位无关,与该点为位置、流体的种类、当地重力加速度等因素有关。 7、流体静力学基本方程 0p p gh ρ=+ 2198/98at kN m kPa ==

流体力学 第一章 流体及其主要物理性质

第一章流体及其主要物理性质主要内容: ?预备知识:单位制及其换算关系 ?流体的概念 ?流体的主要物理性质 ?作用在流体上的力 预备知识 1、单位制 CGS=Centimeter-Gram-Second(units) 厘米-克-秒(单位制) MKFS=Meter-Kilogram-Force-Second(units) 米-千克力-秒(单位制) MKS =Meter-Kilogram-Second(units) 米-千克-秒(单位制) 2、换算关系 力:1公斤力=9.8牛顿=9.8×105达因 1克力=980达因 1公斤力=1000克力 质量:1公斤力·秒2/米=9.8×103克 1千克=0.102公斤力·秒2/米

第一节流体的概念 一、流体的概念 自然界的物质有三态:固体、液体、气体 从外观上看,液体和气体很不相同,但是从某些性能方面来看,却很相似。流体与固体相比,分子排列松散,分子引力较小,运动较强烈,无一定形状,易流动,只能抗压,不能抗拉和切。 流体:是一种受任何微小剪切力都能连续变形的物质。它是气体和液体的通称。 二、流体的特点 温度对粘性的影响:产生粘性的主要因素不同 (1)气体:T升高,μ变大分子间动量交换为主 (2)液体:T升高,μ变小内聚力为主 三、连续介质假设——连续性说明(稠密性假设) 1、假设的内容:1753年欧拉(数学家) 从微观上讲,流体由分子组成,分子间有间隙,是不连续的,但流体力学是研究流体的宏观机械运动,通常不考虑流体分子的存在,而是把真实流体看成由无数连续分布的流体微团(或流体质点)所组成的连续介质,流体质点紧密接触,彼此间无任何间隙。这就是连续介质假设。 流体微团(或流体质点):基本单位 宏观上足够小(无穷小),以致于可以将其看成一个几何上没有维度的点;

相关文档
最新文档