基于内模原理的涡轴发动机状态反馈控制方法

基于内模原理的涡轴发动机状态反馈控制方法
基于内模原理的涡轴发动机状态反馈控制方法

第22卷第5期2007年5月

航空动力学报

Journal of Aerospace Pow er

Vol.22No.5May.2007

文章编号:100028055(2007)0520829204

基于内模原理的涡轴发动机状态反馈控制方法

李胜泉1,2,杨征山2,孙健国1

(11南京航空航天大学能源与动力学院,南京210016;21中国航空动力控制系统研究所,无锡214063)

摘 要:某型涡轴发动机全权限数控系统采用了状态反馈控制方式.根据内模原理,引入伺服补偿器,使设计的控制系统不仅具有较强的鲁棒性,而且在用于指令跟踪时能消除稳态误差;根据性能指标要求设计了状态反馈控制器,从而提高控制系统的品质.与目前的PID 控制方式相比较,半物理模拟试验结果表明该控制方式有显著的性能改进.

关 键 词:航空、航天推进系统;涡轴发动机;数控系统;内模原理;状态反馈中图分类号:V23317 文献标识码:A

收稿日期:2006204205;修订日期:2007203209

作者简介:李胜泉(19672),山东莱州人,中国航空动力控制系统研究所研究员,南京航空航天大学博士生,主要研究方向为航空宇

航推进理论与工程.

Investigation of state feedback control based on internal

model principle for an turbo 2shaft E ngine

L I Sheng 2quan 1,2,YAN G Zheng 2shan 2,SUN Jian 2guo 1

(11College of Energy and Power Engineering ,Nanjing U niversity of Aeronautics

and Ast ronautics ,Nanjing 210016,China ;

21Aviation Motor Control System Instit ute ,Wuxi 214063,China )

Abstract :A t urbo 2shaft engine FADEC system is subjected to t he state feedback cont rol mode.Based on t he internal principle ,a servo 2compensator was int roduced such t hat t he con 2t rol system could p resent st rong robust ness ,and also eliminate steady state errors when t racking wit h commands.According to performance index ,a states feedback controller was also designed to imp rove t he performance of t he cont rol system.As compared wit h PID con 2t rol met hod ,t he test result s show an out standing performance of t he cont rol system.

K ey w ords :aerospace p rop ulsion system ;t urbo 2shaft engine ;FADEC ;internal model

principle ;state feedback

涡轴发动机控制系统功能是保持直升机旋翼转速恒定,而旋翼是一个大惯性负载.在旋翼总距进行剧烈变化时,常规PID 控制方法很难保证直升机要求的动态性能.

航空发动机数控系统的发展为各种先进控制方法的应用奠定了基础.国内外有许多专家尝试用现代控制方法设计航空发动机控制系统.涡扇发动机的现代多变量控制方法已引起广泛的注

意,但涡轴发动机应用现代控制方法的研究文献不多.文献[1]研究了针对T700涡轴发动机采用L Q G/L TR 方法设计SISO (单输入单输出)系统和M IMO (多输入多输出)系统的可行性.本文采用状态反馈方法,应用内模原理,引入伺服补偿器;根据系统动态性能要求合理配置闭环极点,使设计出来的控制系统不仅具有较强的鲁棒性,而且用于控制非线性发动机模型时能消

航 空 动 力 学 报第22卷

除稳态误差.半物理试验结果表明这种方法可以

获得比常规PID 控制更好的控制品质.

1 涡轴发动机常规PID 控制方法

涡轴发动机的控制规律就是保持直升机旋翼转速和给定一致,发动机的工作状态根据旋翼的负载变化而改变.目前涡轴发动机控制系统普遍采用的控制方案如图1所示[2]

.

图1 常规PID 控制框图

Fig.1 Block diagram of the control system

designed by PID

图中N p 0为自由涡轮转速给定,N p 为自由涡

轮转速反馈,V w f 为燃油计量活门位置给定,W f 为进入发动机的燃油流量,N g 为燃起发生器转速,LDL 为总距信号;其中各传递函数模型为自由涡轮:G p (S )=K p (T p S +1)

燃气发生器:G g (S )=

K g e

-τs

T g S +1

执行机构:G d (S )=

K d

T d S +1

PI 控制器:G c (S )=K np (1+

1

T i S )

LDL 反应旋翼负载变化,直接影响N p 转速.

控制器检测到N p 变化后调节燃油流量,燃油燃烧改变发动机状态即N g 变化,从而保持N p 和给定一致.直升机旋翼是一个大惯性环节,同时发动机燃烧有延迟时间,当负载变化后,控制器感受N p 的变化并调节发动机到一个新的状态时,需要一个时间比较长的过程,因此很难满足动态性能要求.

目前常用的方法是采取前馈环节,如图1中的G l (S ).前馈补偿环节理论上可以抑制所有可以测量的扰动[3],在实际应用中发现,对于确定的负载模型,采用前馈环节后确实可以做到负载变化完全补偿.但由涡轴发动机/旋翼系统组成的直升机动力装置在整个飞行包线内表现出严重的非线性和时变性,很难找到一组适合所有负载特性的前馈控制参数.图2和图3是同一组控制参数分别在发动机地面台架和直升机联合试验台上的试验曲线

.

图2 地面台架上的负载扰动

Fig.2 Test result on the engine test 2

bed

图3 联合试验台上的负载扰动

Fig.3 Test result on the helicopter test 2bed

地面台架采用水力测功器模拟旋翼负载,联合试验台采用真实的旋翼负载.在1s 内施加相同的负载指令时,由于两种负载特性不一致,导致控制系统表现出两种不同的动态性能.由此可以看出目前单纯依靠前馈控制的方法不能满足所有的负载特性,因此寻找一种鲁棒性更好的控制方法非常有必要.

2 涡轴发动机状态模型的建立

以某型涡轴发动机为控制对象,设计过程中应用的名义对象是基于非线性模型的小偏差线性化模型.如果把LDL 信号引起的负载变化看成一种负载干扰信号l ,则包含执行机构的设计对象模型状态空间表达式如下:

x ?

=Ax +B u +B l l

y =Cx

(1)

其中,状态变量为

x =[N g ,N p ,M kp ]

T

N g :燃气发生器转速(r/min )N p :自由涡轮转速(r/min )M kp :动力输出轴扭矩(N ?m )

038

 第5期李胜泉等:基于内模原理的涡轴发动机状态反馈控制输入为燃油流量控制信号:u =V w f

输出为自由涡轮转速:y =N p 干扰信号为总距杆角度:l =αl dl

式(1)中x ,u ,y ,l 均应理解为涡轴发动机各变量在平衡位置的偏差量,为简化起见,本文中省略了符号Δ.

采用最小二乘拟合建模方法[4],选择高度为0km 、马赫数为0,取发动机平衡工作点为N g =90%,可以得到系统矩阵如下:

A =

-0.81930

2.1775

-0.2695

-30.

9612-0.9486

0.3389

-3.1160

B =[2.5000 1.4410 0.8797]T

B l =[0 1 0]T

C =[0 1 0]

3 基于内模原理的状态反馈控制

方案设计

针对对象模型(1),假设输出y 需要跟踪的参考信号y 0=N p 0,跟踪误差信号

e =N p 0-N p

则扰动信号αl dl 和参考信号N p 0是未知幅值的阶跃信号,其不稳定信号模型为[5]

x ?

c =A c x c +B c e y c =x c

(2)

式中 A c =[0]

,B c =[1].

由对象模型(1)和信号模型

(2)串联组成的增

广系统的状态方程可表示为

x

?

x ?

c

=

A 0

-B c C

A c

x x

c

+

B -B c D

u +

B l

l +0y 0

(3)

根据线性系统理论,容易证明式(3)所示系统完全可控[6].

将u 取为状态反馈控制律

u =[-K K c ]

x x c

=-Kx +K c x c

假设控制对象模型(1)的所有状态x =[N g ,N p ,

M kp ]T

都可以获得;同时由信号模型(2)可得x c =∫

e d t.选择控制方案框图如图4所示.

状态反馈控制器由伺服补偿器和镇定补偿器

两部分组成.伺服补偿器:u 1=K c ?e

S

的基本功能

图4 状态反馈控制框图

Fig.4 Block diagram of the control system

designed by states feedback

是实现指令跟踪,消除系统稳态误差;镇定补偿

器:u 2=Kx 的主要功能是使整个反馈系统实现镇定.

伺服补偿器中包含了参考信号和扰动信号的不稳定模型,即控制系统引入的内模.利用内模原理实现无静差跟踪控制具有一个重要优点:对除了内模以外的受控系统和补偿器的参数变动不敏感[5],即具有较好的鲁棒性.同时在镇定补偿器中引入了状态反馈,利用了比常规PID 控制方法更多有关系统的状态信息,因此可以预测它将具有更优良的控制品质.

增广系统(3)的闭环矩阵为

A =

A -

B K B K c -B c C

A c

其中 K =[k 1 k 2 k 3],K c =[k c ].因为系统可控,故可任意配置极点.将系统动态性能要求转化为一组期望的闭环极点,利用极点配置问题的综合方法不难得到状态反馈矩阵K 和伺服补偿器矩阵K c .

4 半物理模拟试验结果

将基于内模原理的状态反馈控制方法用于某型涡轴发动机全权限数控系统,在半物理模拟试验台上进行了试验验证.

图5显示了状态反馈控制方法无静差跟踪指令的能力.直升机从地面慢车状态向空中慢车状态转换的过程,N p 给定指令从75%增加到100%,试验结果表明控制器具有良好的指令跟踪性能,并且能够消除稳态误差.

为了验证系统性能的改进,对系统施加一个负载扰动,分别在1s 内施加30%负载指令,图6和图7分别是常规PID 控制方法和状态反馈控制方法的试验结果(两种方法都没有采取扰动信号的前馈补偿).

比较图6和图7中所示自由涡轮转速N p 的扰动,可以看出状态反馈控制方法比常规PID 控

1

38

航 空 动 力 学 报第22卷

制方法具有更好的抑制负载扰动的能力

.

图5 状态反馈控制方法指令跟踪曲线

Fig.5 Test result of command tracking

by states

feedback

图6 常规PID 控制抑制负载扰动曲线

Fig.6 Test result with the load changing by

PID

图7 状态反馈控制抑制负载扰动曲线

Fig.7 Test result with the load changing

by state feedback

状态反馈控制器的设计是建立在N g =90%

平衡点的小偏差线性模型基础上的,半物理模拟试验中控制非线性模型时,在宽广的范围内,系统仍然是稳定的,可见基于内模理论的控制方法具有较好的鲁棒性.

5 结 论

本文分析了目前涡轴发动机采用的常规PID 控制方法,并基于内模原理,提出了一种状态反馈控制方法.通过半物理模拟试验,可以得出如下结论:

(1)采用前馈补偿的常规PID 控制方法在涡轴发动机负载特性发生变化时,其动态性能不能满足要求;

(2)本文提出的基于内模原理的状态反馈控制方法,结构简单,易于实现.比常规PID 控制方法具有更强的鲁棒性和更好的性能,而且可以消除稳态误差,适合在涡轴发动机控制系统中应用.

参考文献:

[1] 章霖官译自NASA 2CR 2177080.采用L Q G/L TR 设计方法

的GET700发动机多变量控制[R ].航空动力装置数字控制技术译文(第一集),无锡:航空工业总公司第六一四所,

1995.

[2] 杨征山,李胜泉,章霖官.涡轴发动机涡轮转速控制回路方

案研究[J ].航空发动机,2005,31(2):46250.

YAN G Zhengshan ,L I Shengquan ,ZHAN G Linguan.Re 2search on t he power turbine speed control loop of turboshaft engine[J ].Aeroengine ,2005,31(2):46250.

[3] 胡寿松.自动控制原理[M ].北京:国防工业出版社,1984.[4] 冯正平,孙建国.航空发动机小偏差状态变量模型的建立方

法[J ].推进技术,2001,22(1):54257.

FEN G Zhengping ,SUN Jianguo.Modeling of small pertur 2bation state variable model for aeroengines [J ].Journal of Propulsion Technology ,2001,22(1):54257.

[5] 郑大钟.线性系统理论[M ].北京:清华大学出版社,1990.[6] 杨刚,孙建国,李秋红.航空发动机控制系统中的增广LQR

方法[J ].航空动力学报,2004,19(1):1532158.

YAN G Gang ,SUN Jianguo ,L I Qiuhong.Augmented LQR met hod for aeroengine control systems[J ].Journal of Aero 2space Power ,2004,19(1):1532158.

238

普惠PT6涡桨、涡轴发动机结构及参数

PT6系列发动机是加拿大普惠公司的产品,包括涡桨和涡轴变种,是当前使用最为广泛的输出轴功率的航空发动机之一。在美国军用编号中,PT6的相应型号分别被命名为T74和T101。 与首台在1963年面世的450SHP轴马力的PT6A发动机相比,如今PT6发动机系列的功率增加了四倍,功重比提高了40%,燃油消耗率降低了20%。 据了解,PT6发动机已生产了52000多台,并被应用在130个不同领域,PT6发动机所在机队的飞行时间已累计多达3.9亿小时。在全球航空领域普遍进行的重要任务中都能找到PT6发动机,从救援工作到预定的客运服务,从货运服务到要客接送,从农业应用到军事飞行培训、从消防救火到搜救任务。PT6A发动机高可靠性也加速了20世纪80到90年代的单发涡桨飞机的发展。

PT6A 是涡桨发动机,PT6B 和PT6C 是涡轴发动机。PT6发动机的各变种及参数如下: PT6A http://www.pwc.ca/en/engines/pt6a PT6A 家族包括了一系列自由涡轮涡桨发动机,输出功率500-1940shp (433-1447 kW ) Thermodynamic Power Class* (ESHP***) Mechanical Power Class* (SHP) Propeller Speed (Max. RPM) Height** (Inches) Width** (Inches) Length** (Inches) PT6A 'Small' (A-11 to A-140) 600 to 1075 500 to 900 1,900 to 2,200 21 to 25 21.5 61.5 to 64 PT6A 'Medium' (A-41 to A-62) 1,000 to 1,400 850 to 1,050 1,700 to 2,000 22 19.5 66 to 72 PT6A 'Large' (A-64 to A-68) 1,400 to 1,900 700 to 1,700 1,700 to 2,000 22 19.5 69 to 75.5 The PT6A family is a series of free turbine turboprop engine providing 500 to 1,940shp (433 to 1,447 kW) Small

自动控制原理第一章习题解答

自编自控教材习题解答 第一章 1-2 图1-17 是液位自动控制系统原理示意图。图中SM为执行电动机。试分析系统的工作原理,指出该系统参考输入、干扰量、被控对象、被控量、控制器,并画出系统的方框图。 图1-17 习题1-2 液位自动控制系统 【解】 系统参考输入:预期液位;被控对象:水箱;被控量:水箱液位;控制器:电动机减速器和控制阀门;干扰量:用水流量Q2。系统的方块图如下 注意:控制系统的工作过程是在原物理系统中提炼出的控制流程,与原系统的物理组成不是完全对应的。有部分同学认为控制阀门是被控对象,只有阀门开度变化才有液位的变化。实际上它应该是执行机构,操纵它来改变被控对象的被控制量。 1-3在过去,控制系统常常以人作为闭环控制系统的一部分,图1-18是人在回路中的水位控制示意图,试画出该控制系统的方框图。 图1-18 习题1-3 阀门控制系统 【解】 略

1-4图1-19是仓库大门自动控制系统原理图。试说明系统自动控制大门开闭的工作原理,并画出系统的方块图。 图1-19 习题1-4 仓库大门自动系统 【解】 系统参考输入:给定门状态;被控对象:门;被控量: 门位置;控制器:放大器、伺服点击绞盘;系统的方块图如下 1-5 图1-20为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?指出该系统的参考输入、干扰量、被控对象和控制装置各是什么? 图1-20 习题1-5 水温控制系统示意图 【解】 该系统的参考输入:给定温度;干扰量:冷水流量的变化;被控对象:热交换器;被控量:交换器的水温;控制装置:温度控制器,此时控制器的输出不仅与实际水温有关而且和冷水的流量有关,所以该系统不仅是反馈控制而是反馈+前馈的复合控制方式。它 的主要目的是一旦冷水流量增大或减少时,及时调整蒸汽流量,不用等到水温降低或升高 实际 给定

TAC5-4-1重构状态反馈控制系统

在第四章中了解到一个完全能控的系统可以用状态反馈控制规律将闭环极点配置在期望的任何位置上。如果反馈时得不到全部状态,第五章中指出可用观测器对它进行估计并将观测到的估计值用到控制规律中去。这就是所谓重构状态反馈控制系统。本节将讨论带有重构状态的反馈控制系统的设计问题以及它的一些特征。图1表示这种重构状态反馈控制系统。 图1x ?y x w +u )?(??x C y M u B x A x ??+= C K - u B x A x +=

设能控又能观的系统为: ?xx =AAxx +BBBB yy =CCxx (11)当状态不能直接测量时,可以用状态观测器将状态xx 观测出来,即: ?xx =AA +MMCC ?xx +BBBB ?MMCCxx (22) 为便于分析,将对象(11)式和观测器(22)式看成是一个2222维的合成系统:?xx ?xx =AA 00?MMCC AA +MMCC xx ?xx +BB BB BB yy =CC 00xx ?xx (3) 此时,反馈控制律为:BB =ww ?KK ?xx (44)

将(44)式代入(33)式,得:?xx ?xx =AA ?BBKK ?MMCC AA +MMCC ?BBKK xx ?xx +BB BB ww yy =CC 00xx ?xx (55)用误差?xx =xx ??xx 来表示这个系统的状态更为方便, 通过变换容易做到这一点。令xx ?xx =II 220022II 22?II 22xx ?xx ,又II 00II ?II ?11=II 00II ?II 它可以将(55)式变成?xx ?xx =AA ?BBKK BBKK 00AA +MMCC xx ?xx +BB 00ww yy =CC 00xx ?xx (66)

反馈控制

反馈控制 摘要:反馈控制是控制论中的灵魂,在我们的现实生活中,反馈控制的应用也是无处不在的。小到日常生活用品,大到人的思想、行为、我们赖以生存的环境都处在反馈控制体系中。关键词:反馈控制日常生活物极必反、盛极必衰自身与反馈 一、基本概念 反馈泛指发出的事物返回发出的起始点并产生影响,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。 任何控制系统都是由施控和受控两个子系统所构成。由于干扰信息的作用,受控系统的输出状态往往会偏离目标,由此形成的偏差信息恰是反馈控制的依据。反馈控制原理描述为:施控系统把依据偏差信息调整后的输入信息转换为控制信息,控制信息作用于受控系统后产生的结果通过反馈通道被返送到原输入端,并对信息的再输入产生影响,从而减少或消除系统偏差,使受控系统的运行状态维持在一个给定(或容许)的偏差范围内,以此提高受控系统运行过程中的稳定性,实现受控系统的行为、活动、功能和结果的理想化。其中,施控系统施加控制作用,接收反馈信息;而受控系统接受控制作用,提供反馈信息。从施控系统到受控系统是传递信息的正向通道,反过来为反向通道,它们一起构成了闭环反馈控制系统。 在控制系统中我们的首要任务是保证系统的稳定性,这恰恰是反馈系统在起作用;在现实生活中,我们更是要求我们的社会能达到一种稳定和谐的局面,因此,“反馈”在我们的生活中起到的作用是我们不能忽视的。 二、反馈在日常生活中的应用 冰箱是现在家家户户都能使用到的电器之一,而我们所学到的反馈原理在这普通的生活用品中就能体现出来。我们使用冰箱制冷,由于外界温度较高,冰箱向外界释放热量,冰箱内温度会朝着我们制定的度数降低,而外壳温度会越来越高,一段时间后,当冰箱内的温 度达到所设置的度数后,冰箱会进行自动调节,让温度不再进一步地降低。这便是反馈调节。还有洗衣机,这也是我们现代人不可或缺的生活用品,我们在家里使用洗衣机时会设置一个注水量,启动机器后,水开始注入机桶,在未达到注水量前,机器会产生动力驱动水位上升,然而水位上升至设置量后,反馈调节便开始了,洗衣机停止注水工作。只要用一双发现在眼睛去看生活,我们所学习到的书本知识在现实生活中的应用无处不在。 三、自身与反馈 在反馈控制中,我们遇到的调节活动输出的反馈信息与原输入信息的关系常常分为两种:一种是反馈信息与原输出信息相同,另一种则是在二者之间存在一种相反的作用,而后者实际上是一种负反馈现象。在我们的生活中,常常会出现一些实际结果与我们预期的结果大相径庭的事,比如我们现在找工作。有的同学很优秀,成绩很好,还是学生干部,在学校的时候年年都能评优秀,在找工作的时候这些学生理所当然的很占优势,可是有的时候结果

涡轴发动机概况

涡轮轴发动机概况 只想纯蠢的宅 【摘要】涡轮轴发动机作为有人及无人直升机的主要动力装置,在各类发动机中具有不可替代的地位。本文结合国外涡轴发动机的技术发展历程以及军用涡轴发动机的发展历程,介绍了几种典型军用涡轴发动机的性能特点及各国现役军用涡轴发动机的装备情况;分析并总结了涡轴发动机的工作原理技术特点,预测了涡轴发动机的有关技术趋势。 【关键词】涡轴发动机工作原理特点应用发展 1 引言 作为驱动直升机旋翼而产生升力和推进力的动力装置,可分为活塞式发动机和涡轮轴发动机。相对于活塞发动机来说,涡轴发动机功重比大、振动小、便于维修,且最大截面较小,可以大大提高直升机气动力性能。因此,从20世纪50年代开始,涡轴发动机逐步取代活塞发动机,成为直升机的主要动力装置。随着科技的发展和直升机动力的需求,涡轴发动机的研究与发展愈显重要。 2 涡轮轴发动机工作原理 涡轮轴发动机是航空燃气涡轮发动机中的一种。在核心机或燃气发生器后,加装一套涡轮,燃气在这后一涡轮(动力涡轮或低压涡轮)中膨胀,驱动它高速旋转并发出一定功率,动力轴穿过核心机转子,通过压气机前的减速器减速后由输出轴输出功率,就组成了涡轴发动机。以此涡轮轴发动机按有无自由涡轮(动力涡轮与核心机机械连接为一体)分为自由涡轮式和定轴式。但大体上涡轮轴发动机由进气装置、压气机、燃烧室、燃气发生器涡轮、动力涡轮(自由涡轮)、排气装置及体内减速器(因为其涡轮轴转速极高,需要设减速器来水平输出功率。)、附件传动装置等部件构成。 图1 涡轮轴发动机基本结构示意图 2.1 涡轮轴发动机特点 (1)定轴式涡轮轴发动 机(图2)具有功率传送方 便,结够简单等优点。但其 自身的起动性,加速性以及

中国涡轴系列涡轴 8

中国涡轴系列涡轴 8 资料来源:西北工业大学 涡轴 8 : 用途军用 / 民用涡轴发动机 类型涡轮轴发动机 国家中国 厂商南方航空动力机械公司 生产现状批生产 装机对象 wz8 直 9 双发直升机 wz8a 直 9a 双发直升机 wz8d 直 11 军、民两用单发直升机 wz8e 直 9c 舰载反潜双发直升机 概述: 涡轴 8 是我国 2 ~ 4t 级直升机的动力装置, 1981 年中国航空技术进出口公司与法国透博梅卡公司 (tm) 签订了阿赫耶系列发动机生产专利转让合同,由南方航空动力机械公司按阿赫耶系列发动机全套设计、工艺、冶金和检测资料生产 wz8 系列涡轴发动机。 阿赫耶涡轴发动机系 70 年代研制的产品,它采用了许多新设计、新材料和新工艺。为了逐步掌握这

些新技术,南方航空动力机械公司对 wz8 系列发动机的研制分为两个阶段:第一阶段采用法国材料生产。先将 tm 公司生产的各单元体、排气段、连接件和法国产附件装配成整机,在经过法方检验合格的试车台上试车后交付出厂。然后,南方航空动力机械公司用法国材料生产 m01( 附件传动单元体 ) 、 m04( 自由涡轮单元体 ) 和 m05( 减速器单元体 )3 个单元体以及排气段、连接件和部分附件,与 tm 公司生产的 m02( 轴流压气机单元体 ) 和 m03( 燃气发生器单元体 ) 以及法国产附件组装成整机,经试车后交付。最后,用法国材料生产所有 5 个单元体、排气段、连接件和部分附件,与法国产其余附件组装成整机,并经 150h 持久试车后交付。第二阶段为国产化阶段。除了极少数零件之外,所有原材料、毛坯和成、附件均立足于国内来生产。在国产化过程中,新研制的 24 种金属材料、 64 种非金属材料及 60 种锻、铸毛坯均通过了国家级或其他级别的评审鉴定,绝大多数国产化成、附件已通过鉴定或设计定型,整机国产化率目前已达 91 %。 国产化 wz8a 发动机按法方提出的考核大纲进行了 2000 个典型飞行循环的试车 (1000h) 及 7000 次低周疲劳试车;两台国产化发动机首飞 100h 后于 1992 年 11 月通过了由总参陆航局和航空航天工业部主持的鉴定,投入小批量生产。 在国产化 wz8a 发动机研制成功的基础上,南方航空动力机械公司根据 tm 公司提供的全套资料,按国产化的原则又研制了 wz8e 及 wz8d 两种型别的涡轴发动机,分别于 1994 年 7 月及 9 月通过了法方规定的 150h 持久试车考核,同时又在试验器上进行了有关的鉴定试验。 1994 年 9 月,该两型发动机通过了由中国航空工业总公司主持、分别有海军及总参陆航局参加的阶段性鉴定,预定于 1994 年年底装机首飞。 .

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

状态反馈控制.

本科毕业论文(设计)题目状态反馈控制 学院计算机与信息科学学院专业自动化(控制方向)年级2009级 学号222009321042049 姓名王昌洪 指导老师何强 成绩

2013 年4 月18 日 状态反馈控制 王昌洪 西南大学计算机与信息科学学院,重庆400715 摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在 现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。 关键词:状态反馈;极点配置;Matlab仿真;时域指标 State Feedback Control Wang changhong Southwest university school of computer and information science, chongqing, 400715 Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design. Key words:State feedback;Pole assignment;Matlab simulation;Time domain index

状态反馈控制的特性及发展

状态反馈控制的主要特性及发展 摘要: 控制理论是关于控制系统建模、分析、综合设计的一般理论,是一门技术科学。控制理论的产生及发展与控制技术的发展密切相关,是人类在认识世界和改造世界的过程中逐步形成的,并随着社会的发展和科学的进步而不断发展,状态反馈控制是现代控制理论中一个十分重要的部分,其在实际工程领域中占有举足轻重的地位。 本论文分为三个部分,第一部分主要是介绍了现代控制理论的发展与组成要素以及特点,第二部分介绍了状态反馈控制的主要特性,如:可控性、可观性等。第三部分主要是介绍了状态反馈控制的发展历程,随着科学技术的发展,状态反馈控制理论将在人们认识事物运动的客观规律和改造世界中将得到进一步的发展和完善。 1.前言 1.1现代控制理论概述 对系统或对象施加作用或限制,使其达到或保持某种规定或要求的运动状态。施加作用或限制的本质就是对系统的调节,其依据是给定任务目标和系统变化。因此,控制就是为了实现任务目标给系统或对象的调节作用。这种调节作用是由系统或对象自身完成时,就是自动控制。控制的基本要素如下: (1)控制对象或系统。要了解对象的性质,需建立或辨识系统模型 (2)控制方法。确定适当的调节作用 (3)反馈。检验和协调控制作用 按照控制系统分析设计方法和要求的不同,控制理论存在经典控制理论和现代控制理论之分。一般来说,1960年代以前形成的控制理论属于经典控制理论,其后形成的是现代控制理论。现代控制理论主要包括线性系统理论、系统辨识与建模、最优滤波理论、最优控制、自适应控制五个分支。其中,线性系统理论主要包括系统的状态空间描述、能控性、能观测性和稳定性分析,状态反馈、状态观测器及补偿理论和设计方法等内容。线性系统理论是现代控制理论中理论最完善、技术上较成熟、应用也最广泛的部分,是现代控制理论的基础。 从20世纪50年代末开始,随着科学技术的发展和生产实际的进一步需要,出现了多输入/多输出控制系统、非线性控制系统和时变控制系统的分析与设计问题。与此同时,近代数学的形成和数字计算机的出现为现代控制理论的建立和发展准备了两个重要的条件。近代

涡轮轴发动机的诞生

涡轮轴发动机的诞生 涡轮轴发动机首次正式试飞 是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。 在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特 -1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。 涡轮轴发动机的原理 涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。 涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。 涡轮轴发动机剖视示意图

45 某型涡轴发动机起动超温研究-秦银雷(4)

第二十八届(2012)全国直升机年会论文 某型涡轴发动机起动超温研究 秦银雷1 齐永2香承虎3 (1.陆军航空兵学院直升机机械工程系,北京,101123;2.陆军航空兵学院直升机机械工程系学员6队,北京,101123;3.武警新疆总队直升机大队机务中队,乌鲁木齐,830017) 摘要:涡轴发动机的起动性能直接影响着直升机的飞行安全。在发动机地面试车或空中起动时,时常出 现T4超温现象,轻则中止起动,重则损坏装备或导致飞行事故。本文针对某型涡轴发动机起动过程的超 温现象,分析了几种可能导致起动超温的原因,并提出了针对起动超温的维护及排故建议。 关键词:涡轴发动机;起动性能;超温 1 引言 涡轴发动机的起动性能直接影响着发动机的总体性能和直升机的飞行安全。发动机起动过程要求,在不喘振和不超温的前提下,在尽可能短的时间内安全可靠地起动[1]。然而在直升机地面试车或空中起动时,时常出现燃气涡轮后T4温度超温现象,轻则被迫中止起动,重则造成涡轮叶片烧坏,严重损坏装备或导致飞行事故。本文针对某型涡轴发动机起动过程的超温现象,分析了几种可能导致起动超温的原因,并提出了针对起动超温的维护及排除建议。 2 起动超温分析 发动机起动超温的主要原因就是起动过程中燃烧室供油量过大或者供油压力过大,造成燃烧室内燃气温度迅速上升,超过限制值。高温高压燃气在经过燃气涡轮时,对燃气涡轮叶轮做功,燃气一部分动能和焓转换成燃气涡轮的机械功。但由于燃气温度过高,燃气焓虽然降低,仍然具有很高的温度,造成T4超过限制值[2]。 2.1 超转放油活门故障 2.1.1 组成及工作状态 超转放油活门组件主要由电磁活门、增压活门和40%活门组成,如图1所示。其主要功用有:发动机正常工作时,超转放油活门向甩油盘供给一定的高压燃油;在停车过程中,当发动机转速(Ng)小于40%以后,排出甩油盘及喷油路系统内的余油;当自由涡轮超转时,迅速切断供油路,使发动机停车。 图1 超转放油活门

自动控制原理答案——第一章

第1章 习 题 1-1 日常生活中存在许多控制系统,其中洗衣机的控制是属于开环控制还是闭环控制?卫生间抽水马桶水箱蓄水量的控制是开环控制还是闭环控制? 解:洗衣机的洗衣过程属于开环控制,抽水马桶的蓄水控制属于闭环控制。 1-2 用方块图表示驾驶员沿给定路线行驶时观察道路正确驾驶的反馈过程。 解:驾驶过程方块图如图 所示。 图 驾驶过程方块图 1-3自动热水器系统的工作原理如图T1.1所示。水箱中的水位有冷水入口调节阀保证,温度由加热器维持。试分析水位和温度控制系统的工作原理,并以热水出口流量的变化为扰动,画出温度控制系统的原理方块图。 图T1.1 习题1-3图 解:水位控制:输入量为预定的希望水位,设为H r, 被控量为水箱实际水位,设为H。当H=H r时,浮子保持一定位置,冷水调节阀保持一定开度,进水量=出水量,水位保持在希望水位上。当出水量增加时,实际水位下降,浮子下沉,冷水入口调节阀开大,进水量增加,水位上升直到H=H r。同理,当出水量减少时,实际水位上升,浮子上升,冷水入口调节阀关小,进水量减少,水位下降直到H=H r。 温度控制:在热水电加热器系统中,输入量为预定的希望温度(给定值),设为T r,被控量(输出量)为水箱实际水温,设为,控制对象为水箱。扰动信号主要是由于放出热水并注入冷水而产生的降温作用。当T=T r时,温控开关断开,电加热器不工作,此时水箱中水温保持在希望水温上。当使用热水时,由于扰动作用使实际水温下降,测温元件感受T

(完整版)自动控制原理课后习题及答案

第一章 绪论 1-1 试比较开环控制系统和闭环控制系统的优缺点. 解答:1开环系统 (1) 优点:结构简单,成本低,工作稳定。用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。 (2) 缺点:不能自动调节被控量的偏差。因此系统元器件参数变化,外来未知扰动存在时,控制精度差。 2 闭环系统 ⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量 偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。它是一种按偏差调节的控制系统。在实际中应用广泛。 ⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。 1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说 明之。 解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。 闭环控制系统常采用负反馈。由1-1中的描述的闭环系统的优点所证明。例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。 1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非 线性,定常,时变)? (1)22 ()()() 234()56()d y t dy t du t y t u t dt dt dt ++=+ (2)()2()y t u t =+ (3)()()2()4()dy t du t t y t u t dt dt +=+ (4)() 2()()sin dy t y t u t t dt ω+= (5)22 ()() ()2()3()d y t dy t y t y t u t dt dt ++= (6)2() ()2() dy t y t u t dt +=

活塞,涡轴和涡轮螺桨发动机的区别

活塞式发动机 活塞发动机很简单,原理就跟你汽车的发动机一样,空气和燃料在汽缸中燃烧、爆炸,燃气驱动活塞,活塞驱动曲轴,这样化学能就变成机械能了。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 由于汽缸在燃气排出后气压低过大气压,那么新鲜的空气会因为气压差而自然进入汽缸之中,这是自然吸气的活塞发动机。当然啦,还有机械增压或者废气涡轮增压的活塞发动机。 活塞发动机结构图 活塞发动机安排方式 (一)活塞式发动机的主要组成 主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。 气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 (二)活塞式发动机的工作原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个工作循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀冲程和排气冲程。

自动控制原理复习资料(相当全)

总复习 第一章的概念 1、典型的反馈控制系统基本组成框图: 2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。 3、基本要求的提法:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。 第二章要求: 1、掌握运用拉氏变换解微分方程的方法; 2、牢固掌握传递函数的概念、定义和性质; 3、明确传递函数与微分方程之间的关系; 4、能熟练地进行结构图等效变换; 5、明确结构图与信号流图之间的关系; 6、熟练运用梅逊公式求系统的传递函数; 例1 某一个控制系统动态结构图如下,试分别求系统的传递函数: )()(,)()(1211s R s C s R s C ,) () (,)()(2122S R S C s R s C 。 串连补偿元件 放大元件执行元件被控对象 反馈补偿元件 测量元件 输出量 主反馈 局部反馈 输入量- -

4 32132112 43211111)() (,1)()()(G G G G G G G s R s C G G G G s G s R s C --= -= 例2 某一个控制系统动态结构图如下,试分别求系统的传递函数: ) () (,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。 例3: 1()i t 2()i t 1() u t () c t () r t 1 R 2 R 1 C 2 C + _ + _ + _Ka 11C s 21C s 21 R 1R () R s () C s 1() U s 1() U s 1() U s 1() I s 1() I s 2() I s 2() I s 2() I s () C s (b) (t) i R (t) u r(t)11 1=-?-=(t)]dt i (t)[i C 1 (t)u 211 1(t) i R c(t) (t)u 22 1=-?=(t)dt i C 1c(t)22 (s)H(s)(s)G G 1(s) (s)G G R(s)C(s)2121+= (s)H(s) (s)G G 1(s)G -N(s)C(s) 212+=

反馈控制理论

反馈控制理论B 项目作业 (第2周) 完成人: 完成时间:

1.安装Multisim软件,建立工作目录。借阅参考书或下载资料,列出资料目录;综述 Multisim是什么,能做什么。 解: 资料目录:NI_Circuit_Design_Suite_14_0_1_汉化破解版;NI_Circuit_Design_Suite_14_0_1.exe; Chinese-simplified;NI License Activator 1.2。 (1)Multisim是以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 (2)使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 2.设计电路仿真方案,利用5个电阻元件验证KVL。 解: 根据KVL关系得,串联的元件我们视它为一条支路在一条支路中电流处处相等,结点电电流之和为0,一个回路中各处电压之和为0.电路设计及其结果如图2所示 图2 五电阻构成电路 由图中结果可得:结点1处电流之和I1+I2+I3=0,得出结论:结点处电流之和为0。同样,在回路1中,

各支路电压U4+U5+U6=0,得出结论:回路中各处电压之和为0。KVL定律成立。 3.在Multisim中用三极管元件构建一个如图所示的分压偏置共射极放大电路, [1] 计算其直流工作点Q相关各参数和交流增益; 解: 通过对静态工作点得计算得出下图3-11的结果 图3-11 静态工作点的计算过程 计算结果及计算过程如图3-11所示。 该电路的最小信号模型及其交流电压增益计算如图3-12所示 图3-12 交流信号最小模型 [2] 设置电压信号源10mV,频率1kHz,用虚拟示波器测试其输入输出关系,描述示波 器所示曲线的特征【注:包括从虚拟示波器上读出的频率、幅值、形状特征等】解: 通过对相关数值的设定以及相关器件值的设定,得出图3-2所示的测量结果

自动控制原理作业答案

红色为重点(2016年考题) 第一章 1-2?仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 解??当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的系统的被控对象和控制装置各是什么? 解?工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。? 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。????系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。 解? 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压Uf。Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。? 在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压Uf正好等于给定电压Ur。此时,Ue=Ur-Uf=0,故U1=Ua=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使Uc保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。? 当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。

发动机原理

1.涡轮喷气发动机与活塞式发动机的比较 相同之处((11))均以空气和燃气作为工作介质。((22))它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。 不同之处(1)进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。(2)活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。 (3)涡喷发动机的推力在相当大的飞行速度范围内是随飞行速度增加而增加的。活塞式发动机的功率决定于气缸的尺寸和数目,可以认为与飞行速度无关。 2涡轮发动机主要性能指标 (1) 推力F单位推力每公斤空气流量所能产生的推力。Fs=F/Wa (2) 单位燃油消耗率(sfc)燃油流量:单位时间内消耗的燃料质量(Wf);耗油率:1小时每产生1牛顿推力所消耗的燃油量。(sfc=3600Wf/F)-(kg/N.s、kg/daN (3)推质比F/M每公斤质量所能产生的推力。 (4)单位迎面推力(Fa=F/A)单位横截面积所能产生的推力,与阻力相关。

(5)使用性能:a. 起动可靠性b. 加速性(5~18s)c. 工作安全可靠性d. 寿命 e. 维护性、噪声、污染排放、成本等 3.涡轴发动机主要性能指标 (1)功率(N=Wa××L=流量××动力涡轮轴功)-(kw) (2)单位功率(Ns=N/Wa)-(kw.s/kg) (3)耗油率sfc(sfc=3600Wf/N) -(kg/kw.s、kg/kw.h.h)1小时每产生1kw功率所消耗的燃油量。(4) 功重比N/G -(kw/kg)

状态反馈控制系统的设计与实现

控制工程学院课程实验报告: 现代控制理论课程实验报告 实验题目:状态反馈控制系统的设计与实现 班级自动化(工控)姓名曾晓波学号2009021178 日期2013-1-6 一、实验目的及内容 实验目的: (1 )掌握极点配置定理及状态反馈控制系统的设计方法; (2 )比较输出反馈与状态反馈的优缺点; (3 )训练程序设计能力。 实验内容: (1 )针对一个二阶系统,分别设计输出反馈和状态反馈控制器;(2 )分别测出两种情况下系统的阶跃响应; (3 )对实验结果进行对比分析。 二、实验设备 装有的机一台 三、实验原理 一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。

闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 (一) 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设( )受控系统的动态方程为 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 状态反馈系统结构图 状态反馈系统动态方程为 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式 x b v u 1 s C A k - y x &

为 )())(()(21*n f λλλλλλλ---=Λ (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(* λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k Λ 2 1 =k (二) 对线性定常连续系统∑(),若取系统的输出变量来构成反馈,则所得到的闭环控制系统称为输出反馈控制系统。输出反馈控制系统的结构图如图所示。 开环系统状态空间模型和输出反馈律分别为 H 为r *m 维的实矩阵,称为输出反馈矩阵。 则可得如下输出反馈闭环控制系统的状态空间模型: 输出反馈闭环系统可简记为H(),其传递函数阵为: (s)()-1B B ? A C H y - x u v + + + x ' 开环系统 A B C H '=+?? =?=-+x x u y x u y v ()A BHC B C '=-+??=? x x v y x

级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) %% % D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形 B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形 10.气流流过亚音速进气道时,(D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加 11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器 12.轴流式压气机的一级由(C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的(C )。 A相对速度增加, 压力下降 B绝对速度增加, 压力下降 C相对速度下降, 压力增加 D绝对速度下降, 压力增加 14.空气流过压气机整流环时, 气流的( C )。 A速度增加, 压力下降 B速度增加, 压力增加 C速度下降, 压力增加 D速度下降, 压力下降 15.压气机出口处的总压与压气机进口处的总压之比称为(A )。 A发动机的增压比 B发动机的压力比 C发动机的压缩比 D发动机的容积比

相关文档
最新文档