电波传播基础知识—无线电波传播方式

电波传播基础知识—无线电波传播方式
电波传播基础知识—无线电波传播方式

无线电波的传播方式

一、无线电波的传播方式

无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。

1)地波,这是沿地球表面传播的无线电波。

2)天波,也即电离层波。地球大气层的高层存在着“电离层”。无线电波进入电离层时其方向会发生改变,出现“折射”。因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。我们把这种经电离层反射而折回地面的无线电波称为“天波”。

3)空间波,由发射天线直接到达接收点的电波,被称为直射波。有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。直射波和反射波合称为空间波。

4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。

在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。

二、电离层与天波传播

1.电离层概况

在业余无线电中,短波波段的远距离通信占据着极重要的位置。短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。

地球表面被厚厚的大气层包围着。大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。在这里,气温除局部外总是随高度上升而下降。人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。

在离地面约10到50公里的大气层是“同温层”。它对电波传播基本上没有影响。

离地面约50到400公里高空的空气很少流动。在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。

离地面50~90公里的称作口层。D层白天存在,晚上消失。D层的密度最小,对电波不易反射。当电波穿过口层时,频率较低的被吸收得较多。

90公里~140公里的是E层。通常情况下E层的密度也较小,只有对中波可以反射。在一些特定条件下,E层有可能反射高频率的无线电波。在盛夏或是隆冬,E层对电波的反射现象总是有规律地出现,你可以清楚地接收到远距离小功率电台发射的信号,而且可以发现可听别的范围是在有规律地变化。所以,爱好者们对这种不稳定的E层总是抱着极大的兴趣在进行观测研究。

高空200~300公里的是F1层,300~400公里是F2层。夏季以及部分春秋季的白天,F1层和F2层同时存在,且F2层的密度最大。到了夜晚,F1和F2合并成一个F2层,高度上升。F2层对电波的反射能力最强,它的存在是短波能够进行远距离通信的主要条件。

电离层示意阁请看图5.1。

2.电离层对电波传播的影响

人们发现,当电波以一定的入射角到达电离层时,它也会象光学中的反射那样以相同的角度离开电离层。显然,电离层越高或电波进入电离层时与电离层的夹角越小,电波从发射点经电离层反射到达地面的跨越距离越大。这就是利用天波可以进行远程通信的根本原出。而且,电波返回地面时又可能被大地反射而再次进入电离层,形成电离层的第二次、第三次反射,如图5.2所示。

由于电离层对电波的反射作用,这就使本来是直线传撇的电波有可能到达地球的背面或其他任何一个地方。电波经电离层一次反射称为“单跳”。

单跳的跨越距离取决于电离层的高度。

电波进入电离层的入射角度。电波进入电离层的入射角度取决于天线的结构和天线离地面的高度,而电离层的高度则与时间和季节有关。单跳距离的估算可以参照图.电离层对电波的反射作用和电波的频率以及电离层本身的密度有关,电波的频率越低越容易被反射:长波、中波、短波可以被反射,超短波、微波在一般情况下只能穿透电离层而不返回地面。电离层的密度越大对电波的反射作用越强:F2层的电子密度最大,它对电波的反射作用最大;凌晨时分电离层密度最小。只有低频卓的电波还有可能被反射。其余都穿透出去了。

电离层对无线电波有吸收作用,当电波进入电离层后,电离层内的自由电子受到电波的作用产生运动,与气体分子发生碰撞并消耗能量。这个能量是电波供给的,也即电波通过电离层时要消耗能量,这种现象称为电离层对电波的吸收。电离层对电波吸收作用的大小上要决定于电子密度和无线电波的频率,工作频个越低、电离层密度越大,吸收作用也就越大。所以从昼夜来说.白天比夜问吸收大;从季节来说.夏季比冬季吸收大。

由于电离层高度及密度的变化,由于电波在被反射过程中极化方向会发生旋转,接收到的信号强度会有或快或慢的周期性起伏变化,人们称之为“衰落现象”。

三、太阳黑子的影响

太阳黑子(Sunspot)的活动对电离层密度有着密切关系。黑子多的时候电离层密度大·因而短波的高频段要好用些;在黑子活动少的时候低频段好用些。当太阳黑于突然爆发时,会引起电离层的骚动,使短波通信中断。

太阳黑子的活动是有规律的。它以11年为一个周期,活动最利害的年份称太阳黑子高峰年,下一个高峰是在1989,1990年,最平静的时期是在其后的五年即1994~1996年。现在,正处于黑子活动的低谷时期。

怎样利用不同的业余波段

1.160米波段(1.8~2.0 MHz)

这是一个属于中波(MF)波段的业余频段。应该记往,业余无线电通信的前辈们就是从这些低频段开始为人类作出巨大贡献的。这个波段的电波以地波传播为主。

一般来说,地波传播的最大距离只有250公里,所以在太阳黑子活动的一般年份,这个频段只能用于本地、附近地区间的通信。但大量实践证明。在冬季黎明前一、两个小时内,在太阳落山前的一小时内,它有可能传播到几千公里以外的地方。

所以,国际上在每年的一、二月份都要为160米波段专门组织比赛,让热衷于这个波段通信的爱好得以大显身手。

各国对这个彼段的划分使用存在一些差别,如中国、美国、英国都是1.8~2.0MHz,澳大利亚是:1.8~1.860 MHz,而新西兰则分为1.803~1.813,1.875~1.900MHz 两段。

所以我们常需用“异频工作”方式来弥补各国规定上的不同,比如我们要和澳大利亚联络,就可在高于1.860 MHz 的频率上发射,而在低于1.860MHz的频率收听。

2, 80米波段(3.5~3.9MHz)

这是属于NF段中濒率最低的业余频段,也是一个最有利于初学者以较低的成本自制收发信设备的频段。和160米波段一样,它一般也是靠地波传插,晚上(一般要到零点以后)和邻近国家的联络比较有保障。在太阳黑子活动相对平静年份,晚上DX的效果相当不错,白天由于电离层的反射有时也能达到300公里远的地方。

应该了解,3.735 MH7,是国际规定的慢扫描电视(SSTV)信道。

80米波段和160米波段在夏季都会受到几百公里之内的雷电干扰以及非业余电台的干扰。

3, 40米波段(7.0~7.1MHZ)

这是一个专用的业余波段允:太阳黑子活动水平较低的年份,白天这个波段可以很好地用作国内或临近省份业余电台相互间联络。到了太阳黑子活动高峰年,就有可能只能和本地电台联络。晚上或是傍晚和清晨,在这个波段上可以联络列世界各地的电台。

各个国家对这个波段的规定也有所不同,比如美国可使用 7.0~7.3 MHz的范围,其中7.15~7.3 MHz 可以用话工作,而处于第二区的我国只能用 7.0~7.1 MHz,因此有时会要求在联络中使用异频工作的方式。

4. 20 米波段(14.0~14.35 MHz )

这是爱好者使用最多的“黄金”频段之一,许多同家规定有了高等级执照才能在这个频段上工作。无论是白天还是晚上,甚至在太阳黑子活动的低峰期,也还能够用这个波段和世界各地联络。和前面介绍的波段不同,这个波段开始出现“越距现象”了。即出现了一个地波传播到达不了,而天波一次单跳义超越过去的电波无法到达的“寂静区”。这是天波传播的一个特别的现象。受越距现象影响,要是国内或邻近省份电台之间的联络,比如北京和天津等地,南京和苏州、上海等地在多数情况下,都不能用20米波段进行联络。但由于电离层是在不断变化之中,所以寂静区的范围不是固定个变的。

5.15米波段(21.0 ~ 21.45 MHz)

这是一个最热闹的波段,世界范围内大量的新手也都活跃在这个频段里。在太阳黑子活动的低潮期,15米波段可以很好地用于远程通信,即使是太阳黑子活动的低峰期,它也是比较可靠的。而15米波段常与20米波段相辅相成,比如在20米波段上与欧洲联络不好,这时15米却变得好起来。

15米波段的越距现象更加明显,尤其是在降冬和盛夏季节,听本省或国内电台是很困难的.这个波段上经常有许多小功率电台活动。如日本在21.210~21.440 MHz 中分配了24个频道专门供给5瓦以下的小功率电台使用。

6.10米波段(28.0~29,7MHz)

这是一个理想的低功率远距离通信波段,甚至在太阳黑子活动的高峰期也是如此。当这个频段开通时,传播情况比较好时能达到像打电话那样的通信效果。由于频率比较高,晚上电离层较小的密度己不能对其形成反射,所以这个频段的远程通信只能在白天。

10米波段的天线设备是整个短波中尺寸最小的,而传播过程中的绕射能力又比超短波强,所以许多爱好者在近距离上用这个波段进行移动通信。

在10术波段 28.0~28.2Mliz一般用电报,28.2~28.25MHz是世界热闹的10米波段业余无线电信标台(BEACON),28.25 MHz 以上一般由于话,而29.4~

29.5MHz是业余卫星通信用的频卒。

7. 6术波段(50~54MHz)

6米波段属于VHF(甚高频)频段,其传播方式接近于光波,在视距范围内能保证可靠的通信。许多国家建有爱好者共用的6米波段自动中转系统,如澳大利亚,爱好者利用它可以用手持式对讲机进行环澳洲通信。

在大量的通信试验中人们发现,6米波也可以进行远距离通信。比如,我国苏州市的爱好者就在这个波段,同澳大利亚等几十个国家的业余电台联络过;又比如,澳大利亚爱好者经常能在当地收到我国江苏电视台一频道的信号(48.5~56.5MHz)。

这是怎么事呢?这是因为在大气层底部的对流层中,各种气候现象产生了许多冷热气团的环流,而大气层上部的同温层却不受其影响。这种大气物理特性的不均匀改变了甚高频电波的方向,使其沿着对流层和同温层之间的“夹层”传向远方。这种现象被称为“大气波导”。在微波破段,电磁波的传输往往要用一一种叫“波导管”的器件。这种金属管内壁光亮如镜,电磁波在里面由管壁连续反射跳跃前进。

这和我们所说的“对流层传播”十分相似。当然,这种被称为“对流层传播”的现象是受气象影响的,因而每次的持续时间不会很长。

现代科学证明,在电离层E 层的底部会出现一些电子密度不均匀的区域,对于频率为40 至 60 MHz 的无线电波有较好的散射作用。它的作用距离达1000至2200千米,有衰落现象,但不受电离层骚扰影响。

现代科学还证明,每昼夜有数以千亿计的流星进入大气层。这些流星在80至120千米的高空烧毁,形成一条细而长的电离子气体柱并迅速扩散。这对于工作频率为20至100MHz的无线电波来讲,也是一良好的散射媒体。而已由于这种“流星余迹”的散射点高,作用距离可达2000千米以上。

多么诱人的DX传播条件!让我们一起努力实践,分享这些科学成果吧。

8。 2 米波段(144~148MHz)

这也是属于甚高频的波段,其传播更依赖于直接波:爱好者主要用这个波段进行本地区内的通信。许多国家在这个波段上建有一种叫“REPEATER”的自动差转系统,爱好者用手持机通过它的差转可进行远距离通信。我闰的BYIPK曾经利用这种装置,再通过国际长途转接,成功地进行过长城一一一BYIPK(北京大坛公园附近)~一美国之间手持对讲机和手持对讲机的联络试验。

2米波段和6米波段一样,也有着“不可思议”的近7000公里的远距离联络记录。

气候造成的空气团块或不同的气温层形成了“对流层传播”,而突发性E层也为之米波段远距离传播创造了条件。和6米波段相比,这个波段的对流层传播受气候变化影响更大,而利用突发性E层的可能性也更大一些。

2米波段是业余爱好者进行各种空间通信试验的常用波段:业余卫星的下行频率用的是这个频段,145。810和145.900MHz就是业余卫星“奥斯卡10号”的信标发射频率;利用月球反射进行通信的“EME”试验也有在2米波段上进行的,等等。

业余频段一直延伸到微波波段。微波有可能用于远程无线电通信吗?

业余爱好者的回答是肯定的。

为了开发利用更高频率的无线电波段,全世界的爱好者都在不懈地进行着探索。

无线电波传播方式与各频段的利用

无线电波传播方式与各频段的利用 无线电通信是利用电磁波在空间传送信息的通信方式。电磁波由发射天线向外辐射出去,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。 (1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式; (2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小; (3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。 (4)空间波方式主要指直射波和反射波。电波在空间按直线传播,称为直射波。当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。 (5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。 (6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。利用对流层散射作用进行无线电波的传播称为对流层散射方式。 (7)视距传播指点到点或地球到卫星之间的电波传播。 附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。

在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可靠程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。下面简要地叙述几种传播方式(详细数学公式略)。 VLF(f< 30kHz) 频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。 LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化

无线电基础知识

1.2 选择题 1,属于特高频(UHF)的频带范围是(D )。 A、400~2000MHz B、300~2000MHz C、400~3000MHz D、300~3000MHz 2,IMP缩写代表(B ) A、放大增益 B、互调产物 C、网间协议 D、互调截获点 3,10W功率可由dBm表示为(D )。 A、10dBm B、20dBm C、30dBm D、40dBm 4,频率在(A )以下,在空中传播(不用人工波导)的电磁波叫无线电波。 A、3000GHz B、3000MHz C、300MHz D、300GHz 5,频率范围在30-300MHz的无线电波称为(A)。 A、米波 B、分米波 C、厘米波 D、毫米波 6,无线电监测中,常用一些单位有dBuv、dBm等,dBm是(C )单位。 A、电压 B、带宽 C、功率 D、增益 7,目前中国移动的GSM系统采用的是以下哪种方式(B )。 A、FDMA B、TDMA C、CDMA D、SDMA 8,PHS个人移动系统信道带宽为(A)。 A、288kHz B、200kHz C、25kHz D、30kHz 9,CDMA移动系统信道带宽为(A)。 A、1.23MHz B、1.5MHz C、1.75MHz D、1.85MHz 10,0dBW=(C)dBm. A、0 B、3 C、30 11,比2.5W主波信号低50dB的杂波信号功率是(B)μW。 A、2.5 B、25 C、250 12,频谱分析仪中的RBW称为(B)。 A、射频带宽 B、分辨率带宽 C、视频带宽 13,根据GB12046—89规定,必要带宽为1.5MHz的符号标识为(A )。 A、1M50 B、15M0 C、150M 14,发射频谱中90%能量所占频带宽度叫做(A )。 A、必要带宽 B、占用带宽 C、工作带宽 15,一发射机发射功率为10W,天线增益10dB,馈线损耗5dB,则有效辐射功率为(B)。 A、25dBW B、15dBW C、5dBW 16,电视伴音载频比图像载频(A)。 A、高 B、低 C、相等 17,在微波段中表述频段,字母代码S和C对应的频段是(C)。 A、1—2GHz和4/6GHz B、18—40GHz和8/12GHz C、2.5GHz和4/6GHz D、 4.8GHz和4/8GHz 18,联通CDMA下行与移动GSM上行频段之间只有(A )MHz保护带。 A、5 B、10 C、15 19,从广义来讲,产生莫尔斯码的调制方法是(A): A、ASK B、FSK C、PSK D、DAM 20,无线电频谱可以依据(A,B,C,D)来进行频率的复用。

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

无线电波传播途径

无线电波在均匀介质 (如空气)中,具有直线传播的特点。只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。 一、无线电波的发射与传播 无线电波既看不见,也摸不着,却充满了整个空间。广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。无线电波的频率范围很宽,频段不同,特性也不尽相同。我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。 (一)无线电波的发射过程 无线电波是通过天线发射到空间的。当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。其相互间的关系,如图2-1-1所示。如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。 图2-1-1 无线电波的发射 (二)无线电波的特性 l.无线电波的极化 交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。空间传播的无线电波都是极化波。当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。天线平行于地平面时,天线辐射的无线电波的电

无线电波传播模型与覆盖预测

无线电波传播模型 与 覆盖预测 河北全通通信有限责任公司 工程部网络服务组 二0 0二年四月二十日

第一节无线传播理论 1.1 无线传播基本原理 在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究、了解和据此进行的场强预测。它是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。 众所周知,无线电波可通过多种方式从发射天线传播到接收天线:直达波或自由空间波、地波或表面波、对流层反射波、电离层波。如图1-1所示。就电波传播而言,发射机同接收机间最简单的方式是自由空间传播。自由空间指该区域是各向同性(沿各个轴特性一样)且同类(均匀结构)。自由空间波的其他名字有直达波或视距波。如图1-1(a),直达波沿直线传播,所以可用于卫星和外部空间通信。另外,这个定义也可用于陆上视距传播(两个微波塔之间),见图1-1(b)。 第二种方式是地波或表面波。地波传播可看作是三种情况的综合,即直达波、反射波和表面波。表面波沿地球表面传播。从发射天线发出的一些能量直接到达接收机;有些能量经从地球表面反射后到达接收机;有些通过表面波到达接收机。表面波在地表面上传播,由于地面不是理想的,有些能量被地面吸收。当能量进入地面,它建立地面电流。这三种的表面波见图1-1(c)。第三种方式即对流层反射波产生于对流层,对流层是异类介质,由于天气情况而随时间变化。它的反射系数随高度增加而减少。这种缓慢变化的反射系数使电波弯曲。如图1-1(d)所示。对流层方式应用于波长小于10米(即频率大于30MHz)的无线通信中。第四种方式是经电离层反射传播。当电波波长小于1米(频率大于300MHz)时,电离层是反射体。从电离层反射的电波可能有一个或多个跳跃,见图1-1(e)。这种传播用于长距离通信。除了反射,由于折射率的不均匀,电离层可产生电波散射。另外,电离层中的流星也能散射电波。同对流层一样,电离层也具有连续波动的特性,在这种波动上是随机的快速波动。蜂窝系统的无线传播利用了第二种电波传播方式。这一点将在后文中论述。 在设计蜂窝系统时研究传播有两个原因。第一,它对于计算覆盖不同小区的场强提供必要的工具。因为在大多数情况下覆盖区域从几百米到几十公里,地波传播可以在这种情况下应用。第二,它可计算邻信道和同信道干扰。 预测场强有两种方法。第一种纯理论方法,适用于分离的物体,如山和其他固体物体。但这种预测忽略了地球的不规则性。第二种基于在各种环境的测量,包括不规则地形及人为障碍,尤其是在移动通信中普遍存在的较高的频率和较低的移动天线。第三种方法是结合上述两种方法的改进模型,基于测量和使用折射定律考虑山和其他障碍物的影响。在蜂窝系统中,至少有两种传播模型,第一种是FCC建议的模型。第二种设计模型由Okumura提供,覆盖边

无线基础知识与基本概念-知识点汇总

一.基础知识与基本概念 1. 第一代移动通信系统的主要特点是利用模拟传输方式实现话音业务;系统无线信道的随机变参特征使无线电波受多径快衰落和阴影慢衰落的影响 2. 第二代蜂窝移动通信系统以数字传输方式实现话音和低速数据业务。 3. 第三代蜂窝移动通信系统以更高速的数据业务和更好的频谱利用率为目标,采用宽带CDMA为主流技术,目前已形成两类三种空中接口标准,即WCDMA - FDD(简称WCDMA)、WCDMA - TDD(简称TD-SCDMA)和CDMA2000。 它的主要特点是:(可能多选题) 1) 新型的调制技术,包括多载波调制和可变速率调制技术; 2) 高效的信道编译码技术,除了沿用第二代的卷积码外,还对高速数据采用了Turbo 纠错编码技术; 3) Rake接收多径分集技术以提高接收灵敏度和实现软切换; 4) 软件无线电技术易于多模工作; 5) 智能天线技术有利于提高载干比; 6) 多用户检测技术以消除和降低多址干扰; 7) 可与固定网中的电路交换和分组交换网很好地相适应,满足各类用户对话音及高、中、低速率数据业务的需求。 4. “双工”两种方式:当收信和发信采用一对频率资源时,称为“频分双工”(FDD);而当收信和发信采用相同频率仅以时间分隔时称为“时分双工”(TDD)。 5. “多址”(Multi Access)技术:是指在多信道共用系统中,终端用户选择通信对象的传输方式,在蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division)多址”、“时分(Time Division)多址”和“码分(Code Division)多址”,简称FDMA、 TDMA和CDMA. 6. 发信功率及其单位换算: 1 dBW = 30dBm 7. 无线接收机的灵敏度是接收弱信号能力的量度,通常用μv、dBμv、dBmW表示; 电压电平(μv和dBμv)或功率电平(dBm) 8. 三阶互调干扰的特点(可能多选题): 1) 将发信频谱扩大了三倍; 2) 三阶互调产物以三倍(dB)数增加; 3) 互调产物对接收系统的影响应按被干扰系统的多址方式决定; 9. 香农定律:香农(shannon)信道容量公式可以用来论证信噪比,信道带宽和信道容量之间的关系,即: a) P?C=Blog2? 1+r???

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

无线电传输基本知识2

无线影音传输基本知识 前言 一提到无线传输,面前满是迷惑的眼睛。唉!苦也!去那什么科技书店看看有什么好玩的无线电小玩艺的书吧!很有趣的,越深入越有趣,真的不骗你,会迷倒一片的…... 下面我们复习一下常识。 一、电波是什么?电波是怎么传输的? 把它想象成由近及远或由远及近的波浪也行。 二、无线电波的频率、波长、速度 速度(υ)= 波长(λ)* 频率(?) 单位: 速度(υ)—m/s (米/秒) 波长(λ)—m (米) 频率(?)—Hz (赫兹) 光速(c)=3 X 108 m/s ? = c * λ 频率划分例子频率波长 市电: 50Hz 6000Km FM收音机100MHz 3m 手机GSM 900MHz 333mm 我们1.2G 1.2GHz 250mm 市话通 1.8GHz 167mm 我们2.4G 2.4GHz 125mm C波段卫星 4.0GHz 75mm Ku波段卫星12.0GHz 25mm 可见红光430GHz 0.7um 注:1GHz=1000MHz, 1MHz=1000kHz, 1KHz=1000Hz 1m=1000mm, 1mm=1000um(微米), 1um=1000nm(纳米) 当波长短到一定程度(微波段),无线电波就可像光线一样进行聚焦,定向传输. 三、无线电波的功率 衡量无线电波功率的常用单位:uW、mW、W、kW、dBm、dBW; 衡量无线电波电平的常用单位:dBuV、dBmV; 这些单位之间的换算关系如下: 1、功率单位之间的换算: 1kW=1000W 1W =1000mW 1mW=1000uW 1uW=1000nW dBm=10*log(Px/1mW) Px的单位为:mW dBW=10*log(Px/1W) Px的单位为:W 常用数据对照表: mW dBm 10 5 7

无线电波的传播方式

无线电波的传播方式 一、无线电波的传播方式 无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。 1)地波,这是沿地球表面传播的无线电波。 2)天波,也即电离层波。地球大气层的高层存在着“电离层”。无线电波进入电离层时其方向会发生改变,出现“折射”。因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。我们把这种经电离层反射而折回地面的无线电波称为“天波”。 3)空间波,由发射天线直接到达接收点的电波,被称为直射波。有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。直射波和反射波合称为空间波。 4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。 在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。 二、电离层与天波传播 1.电离层概况 在业余无线电中,短波波段的远距离通信占据着极重要的位置。短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。 地球表面被厚厚的大气层包围着。大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。在这里,气温除局部外总是随高度上升而下降。人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。 在离地面约10到50公里的大气层是“同温层”。它对电波传播基本上没有影响。 离地面约50到400公里高空的空气很少流动。在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。 离地面50~90公里的称作口层。D层白天存在,晚上消失。D层的密度最小,对电波不易反射。当电波穿过口层时,频率较低的被吸收得较多。 90公里~140公里的是E层。通常情况下E层的密度也较小,只有对中波可以反射。在一些特定条件下,E层有可能反射高频率的无线电波。在盛夏或是隆冬,E层对电波的反射现象总是有规律地出现,你可以清楚地接收到远距离小功率电台发射的信号,而且可以发现可听别的范围是在有规律地变化。所以,爱好者们对这种不稳定的E层总是抱着极大的兴趣在进行观测研究。 高空200~300公里的是F1层,300~400公里是F2层。夏季以及部分春秋季的白天,F1层和F2层同时存在,且F2层的密度最大。到了夜晚,F1和F2合并成一个F2层,高度上升。F2层对电波的反射能力最强,它的存在是短波能够进行远距离通信的主要条件。 电离层示意阁请看图5.1。 2.电离层对电波传播的影响 人们发现,当电波以一定的入射角到达电离层时,它也会象光学中的反射那样以相同的角度离开电离层。显然,电离层越高或电波进入电离层时与电离层的夹角越小,电波从发射点经电离层反射到达地面的跨越距离越大。这就是利用天波可以进行远程通信的根本原出。而且,电波返回地面时又可能被大地反射而再次进入电离层,形成电离层的第二次、第三次反射,如图5.2所示。

无线电波段划分及传播方式

无线电波段划分及传播方式 频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。 无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段。根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。 光速÷频率=波长 无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波 短波 1,000,000~10,000 10,000~1,000 1,000~100 100~~10 10~1

0.1~0.01 0.01~0.001 甚低频 低频 中频 高频 甚高频 特高频 超高频 极高频 3~30KHz 30~300KHz 300~3,000KHz 3~30MHz 30~300MHz 300~3,000MHz 3~30GHz 30~300GHz 超短波米波 分米波 厘米波

电波主要传播方式 电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。 任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种: 地表传播 对有些电波来说,地球本身就是一个障碍物。当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。那些走直线的电波就过不去了。只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。地面波传播无线电波沿着地球表面的传播方式,称为地面波传播。其特点是信号比较稳定,但电波频率愈高,地面波随距离的增加衰减愈快。因此,这种传播方式主要适用于长波和中波波段。天波传播声音碰到墙壁或高山就会反射回来形成回声,光线射到镜面上也会反射。无线电波也能够反射。在大气层中,从几十公里至几百公里的高空有几层“电离层”形成了一种天然的反射体,就象一只悬空的金属盖,电波射到“电离层’

电波传播的几个基本概念

电波传播的几个基本概念 目前GSM和CDMA移动通信使用的频段为: GSM:890 ~ 960 MHz,1710 ~1880 MHz CDMA: 806 ~ 896 MHz 806 ~ 960 MHz 频率范围属超短波范围; 1710 ~1880 MHz 频率范围属微波范围。 电波的频率不同,或者说波长不同,其传播特点也不完全相同,甚至很不相同 2.1自由空间通信距离方程 设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗L0 有以下表达式: L0 (dB) = 10 Lg(PT / PR ) = 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB) [举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ;f = 1910MHz 问:R = 500 m 时,PR = ? 解答:(1) L0 (dB) 的计算 L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB) = 32.45 + 65.62 - 6 - 7 – 7 = 78.07 (dB) (2)PR 的计算 PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 )

= 1 ( μW ) / ( 10 0.807 ) = 1 ( μW ) / 6.412 = 0.156 ( μW ) = 156 ( mμW ) # 顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失(10~15) dB 极限直视距离 超短波特别是微波,频率很高,波长很短,它的地表面波衰减很快,因此不能依靠地表面波作较远距离的传播。超短波特别是微波,主要是由空间波来传播的。简单地说,空间波是在空间范围内沿直线方向传播的波。显然,由于地球的曲率使空间波传播存在一个极限直视距离Rmax 。在最远直视距离之内的区域,习惯上称为照明区;极限直视距离Rmax 以外的区域,则称为阴影区。不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离Rmax内。 受地球曲率半径的影响,极限直视距离Rmax 和发射天线与接收天线的高度HT 与HR间的关系为: Rmax =3.57{ √HT (m) +√HR (m) } (km) 考虑到大气层对电波的折射作用,极限直视距离应修正为Rmax = 4.12 { √HT (m) +√HR (m) } (km) 由于电磁波的频率远低于光波的频率,电波传播的有效直视距离Re 约为极 限直视距离Rmax 的70% ,即Re = 0.7 Rmax .

无线基础知识与基本概念-知识点

一. 基础知识与基本概念 1. 第一代移动通信系统的主要特点是利用模拟传输方式实现话音业务;系统无线信道的随机变参特征使无线电波受多径快衰落和阴影慢衰落的影响 2. 第二代蜂窝移动通信系统以数字传输方式实现话音和低速数据业务。 3. 第三代蜂窝移动通信系统以更高速的数据业务和更好的频谱利用率为目标,采用宽带CDMA 为主流技术,目前已形成两类三种空中接口标准,即WCDMA - FDD (简称WCDMA )、WCDMA - TDD (简称TD-SCDMA )和CDMA2000。 它的主要特点是:(可能多选题) 1) 新型的调制技术,包括多载波调制和可变速率调制技术; 2) 高效的信道编译码技术,除了沿用第二代的卷积码外,还对高速数据采用了Turbo 纠错编码技术; 3) Rake 接收多径分集技术以提高接收灵敏度和实现软切换; 4) 软件无线电技术易于多模工作; 5) 智能天线技术有利于提高载干比; 6) 多用户检测技术以消除和降低多址干扰; 7) 可与固定网中的电路交换和分组交换网很好地相适应,满足各类用户对话音及高、 中、低速率数据业务的需求。 4. “双工”两种方式:当收信和发信采用一对频率资源时,称为“频分双工”(FDD );而当收信和发信采用相同频率仅以时间分隔时称为“时分双工”(TDD )。 5. “多址”(Multi Access )技术: 是指在多信道共用系统中,终端用户选择通信对象的传输方式,在蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN 码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division )多址”、“时分(Time Division )多址”和“码分(Code Division )多址”,简称FDMA 、 TDMA 和CDMA. 6. 发信功率及其单位换算: 1 dBW = 30dBm 7. 无线接收机的灵敏度是接收弱信号能力的量度,通常用μv 、dB μv 、dBmW 表示; 电压电平(μv 和dB μv )或功率电平(dBm ) 8. 三阶互调干扰的特点(可能多选题): 1) 将发信频谱扩大了三倍 ; 2) 三阶互调产物以三倍(dB )数增加; 3) 互调产物对接收系统的影响应按被干扰系统的多址方式决定; 9. 香农定律:香农(shannon )信道容量公式可以用来论证信噪比,信道带宽和信道容量之间的关系,即: a) ?? ? ??+=N P 1Blog C r 2 式中,C 是给定信号速率条件下的最大容量 2. B 是传输带宽

无线电波的基本概念、发射与接收原理

无线电波的基本概念、发射与接收原理 19世纪60年代,英国物理学家麦克斯韦总结前人的科学技术,提出了电磁波学说。20多年后,德国科学家赫兹通过实验,证明了电磁波的存在。 什么是电磁波呢?从电工学电磁感应现象知道,在电磁场里,磁场的任何变化会产生电场,电场的任何变化也会产生磁场。交变的电磁场不仅可能存在于电荷、电流或导体的周围,而且能够脱离其产生的波源向远处传播,这种在空间以—定速度传播的交变电磁场,就称为电磁波。无线电技术中使用的这一段电磁波称为无线电波。 无线电波的传播 理论分析和实验都表明无线电波是横波,即电场和磁场的方向都与波的传播方向垂直。而且电场强度与磁场强度的方向也总是相互垂直的。 无线电波在空间传播时,必然要受到大气层的影响,尤其以电离层的影响最为显著。电离层是由于从太阳及其他星体发出的放射性辐射进入大气层,使大气层被电离而形成的。电离层内含有自由电子是影响无线电波的主要因素。 电离层对无线电波的主要影响是使传播方向由电子密度较大区域向密度较小区域弯曲,即发生电波折射。这种影响随波段的不同而不相同。波长越长,折射越显著。30MHz以下的波被折回地面;30MHz以上的波,则穿透电离层。另外,电波受电离层的另—影响是能量被吸收而衰减。电离程度越大,衰减越大;波长越长,衰减亦越大。 无线电波的传播方式,因波长的不同而有不同的传播特性,分为地波、天波和空间波三种形式。 地波――沿地球表面空间向外传播的无线电波。中、长波均利用地波方式传播。 天波――依靠电离层的反射作用传播的无线电波叫做天波。短波多利用这种方式传播。 空间波――沿直线传播的无线电波。它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波。超短波的电视和雷达多采用空间波方式传播。 各种波长的传播特性如下 长波(见波段划分表)波长在3000M以上,中波在100—1000M。长波段主要用作发射标准时间信号。而中波主要用作本地无线电广播和海上通信及导航。 短波主要靠天波传播。传送距离较远,甚至可以用作国际无线电广播,远距离无线电话和电报通信等。 超短波是波长在10M—1m的波,只能用空间波传播,其主要以直线传播为主,由于有地球曲率的影响,传播距离较短,不得不靠增加天线高度来增加通信距离。如无线电视等。

无线电波的基本知识

三维工程技术培训讲义1无线电波的基本概念 无线电波的传播方向无线电波的极化方式无线电波的传播速度自由空间的传播知识无线电波的衰落特性 三维工程技术培训讲义 2 无线电波的基本概念 三维工程技术培训讲义3无线电波的传播方向三维工程技术培训讲义 4 无线电波的极化方式 无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化三维工程技术培训讲义5 无线电波的传播速度 无线电波和光波一样,它的传播速度和传播媒质有关。无线电波在真空中的传播速度等于光速。我们用C=300000公里/秒表示。在媒质中的传播速度为:Vε`=C/√ε,式中ε为传播媒质的相对数很接近,略大于1。因此,无线电波在三维工程技术培训讲义 6 无线电波的传播方式 )直射 直射是无线电波在自由空间传播的方式。)反射 当电磁波遇到比波长大得多的物体时,就会发生反射。反射常发

三维工程技术培训讲义7 无线电波的传播方式图示:①直射波②反射波③④绕射(衍射)波 三维工程技术培训讲义 8 无线电波的衰落特性 三维工程技术培训讲义9无线电波的衰落特性 对于移动通信的电波传播,其衰落特性由下列已知公式及图示表征 ---自由空间的传播衰耗: Lbs=32.45+20lgD(km)+20lgf(MHz) (5) ---准平滑地形市区路径传播衰耗中值:三维工程技术培训讲义 10 无线电波的衰落特性 自由空间的传播损耗 自由空间是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收,也不发生反射、折射、绕射和散射等现象。在下图所示的自由空间中,设在原点0有一辐射源,均匀地向各方向辐射,辐射功率为Pt 。经辐射且,能量均匀地分布在以0点为球心,d 为半径的球面上。已知球面的表面积为 4πd2 ,因此,在球面单位面积上的功率应为Pt/4πd2。若接收天线所能接),并将波长λ换算成相对率与传播距离有关。 三维工程技术培训讲义11无线电波的衰落特性 自由空间的传播损耗 ;自由空间损耗与距离的关系 三维工程技术培训讲义 12 准平无线电波的衰落特性

无线传播理论

HUAWEI TECHNOLOGIES CO., LTD.Internal https://www.360docs.net/doc/8c14003372.html, HUAWEI Confidential

l学习完本课程,您将能够: [掌握无线电波传播原理,为后 续的链路预算等做理论准备。

基本原理-无线频谱 不同的频段内的频率具有不同的传播特性 300-3000GHz EHF Extremely High Frequency 30-300GHz SHF Super High Frequency 3-30GHz UHF Ultra High Frequency 300-3000MHz VHF Very High Frequency 30-300MHz HF High Frequency 3-30MHz MF Medium Frequency 300-3000KHz LF Low Frequency 30-300KHz VLF Very-low Frequency 3-30KHz VF Voice Frequency 300-3000Hz ELF Extremely Low Frequency 30-300Hz 3-30Hz Designation Classification Frequency

基本原理-电磁波的传播 l 无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种 现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。[如果电波的电场方向垂直于地面,为垂直极化波[如果电波的电场方向与地面平行,为水平极化波

基本原理-电磁波的传播 l 池塘中的波纹:能量从源点向四周传播,并逐渐减弱 l 电磁波的传播与此类似,不同之处(当辐射源是各向同性的理想点源时): [在三维空间以球面波的形式传播[传播介质不同,空气、障碍物、反射物

天线与电波传播

天线与电波传播 天线部分: 引言 天线是一种用来发射或接收电磁波的器件,是任何无线电系统中的基本组成部分。换句话说,发射天线将传输线中的导行电磁波转换为“自由空间”波,接收天线则与此相反。于是信息可以在不同地点之间不通过任何连接设备传输,可用来传输信息的电磁波频率构成了电磁波谱。人类最大的自然资源之一就是电磁波谱,而天线在利用这种资源的过程中发挥了重要的作用。 第一讲:传输线基础知识 在通信系统中,传输线(馈线)是连接发射机与发射天线或接收机与接收天线的器件。为了更好的了解天线的性能及参数,首先简单介绍有关传输线的基础知识。 传输线根据频率的使用范围区分有两种类型:1、低频传输线;2、微波传输线。这里重点介绍微波传输线中无耗传输线的基础知识,主要包括反映传输线任一点特性的参量:反射系数Γ、阻抗Z 和驻波比ρ。 一、反射系数Γ 这里定义传输线上任一点处的电压反射系数为 ()()' ' ' ' ' ''' 2()()() 00j z j z j z l U z z U z U z e U z e e βββ-+--+ -Γ=== ==Γ (1) 由上式可以看出,反射系数的模是无耗传输线系统的不变量,即 ()'l z Γ=Γ (2) 此外,反射系数呈周期性,即 ()()''/2g z m z λΓ+=Γ (3) 二、阻抗Z

这里定义传输线上任一点处的阻抗为 ()() () '' 'U z Z z I z = (4) 经过一系列的推导,得出阻抗的最终表达式 ()'' 00'0t a n t a n l l Z j Z z Z z Z Z j Z z ββ+=+ (5) 三、驻波比ρ(VSWR) 这里定义传输线上任一点处的驻波比为 ()() 'm a x 'm i n U z U z ρ= (6) 经过一系列的推导,得出阻抗的最终表达式 11l l ρ+Γ= -Γ (7) 此外,这里还给出反射系数与阻抗的关系表达式 ()()() ()()()'' '' ' '0 11z Z z Z z Z z Z z Z z Z +Γ=-Γ-Γ= + (8) 这里还简单介绍一下传输线理论所要用到的一些基本参数,例如特性阻抗0Z 以及相位常数β,具体表达式如下: 02Z π βλ = == (9) 此外,不同的系统有不同的特性阻抗0Z ,为了统一和便于研究,常常提出归一化的概念,即阻抗 () '0 Z z Z 称为归一化阻抗 ()() '' Z z Z z Z = (10) 第二讲:基本振子的辐射

相关文档
最新文档