陀螺仪主要性能指标

陀螺仪主要性能指标
陀螺仪主要性能指标

常见的陀螺仪性能指标与解释

零偏

零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。

分辨率

陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。

标度因子

标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。

动态范围

陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

带宽

带宽是指陀螺能够精确测量输入角速度的频率范围,这个频段范围越大表明陀螺的动态响应能力越强。对于开环模式工作的陀螺,带宽定义为响应相位从0到滞后90度对应的频段,也可等同定义为振幅响应比为0.5 即3dB 点对应的频段。对于闭环模式工作的陀螺,带宽定义为控制及解调电路的带宽,一般指解调电路中使用的低通滤波器的截至频率。电路带宽实际上是反映该电路对输入信号的响应速度,带宽越宽,响应速度越快,允许通过的信号频率越高,若频率为某一值的正弦波信号通过电路时其能量被消耗一半,则这个频率便是此电路的带宽。

微型惯导系统MicroStrain产品3DM-GX4系列:

1.3DM-GX4-45? 辅助惯性导航GPS/INS

陀螺仪稳定性:10°/hr

陀螺仪量程:±75, 150, 300*, 900°/sec

加速度量程:±5*, 16 接口:USB or RS232

温度传感器量程:-40 °C to 85 °C

重量:20 grams 尺寸:44.2 x 24 x 11.3 mm 2.3DM-GX4-25?航姿参考系统(AHRS)

陀螺仪稳定性:10°/hr

陀螺仪量程:±75, 150, 300*, 900°/sec

加速度量程:±5*, 16 接口:USB or RS232

温度传感器量程:-40℃to 85℃

重量:16.5 grams 尺寸:36 x 24.4 x 11.1 mm 3.3DM-GX4-15? 惯性测试单元IMU

陀螺仪稳定性:10°/hr

陀螺仪量程:±75, 150, 300*, 900°/sec

加速度量程:±5*, 16 接口:USB or RS232

温度传感器量程:-40 °C to 85 °C

重量:16.5 grams 尺寸:36 x 24.4 x 11.1 mm

北京航空航天大学自动化学院导航专业惯性技术实验报告

成绩 陀螺仪理论及应用 实验报告 院(系)名称自动化科学与电气工程学院专业名称自动化 学生学号xxxxxxx 学生姓名xxx 指导教师 2015年6月

实验一陀螺仪基本特性试验 一、实验目的 1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。 2.学习使用陀螺实验用主要设备——转台。 3.利用线性回归方法进行数据处理。 二、实验设备 1.TZS-74陀螺仪表综合试验转台。 2.双自由度陀螺仪。 3.砝码。 4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。 三、实验内容和步骤 (一)定轴性实验 1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。 2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转动时陀螺仪的定轴性。 (二)进动性实验 1.外加力矩,观察进动现象。根据进动规律判断角动量H的方向,并和上面记下的 转速方向做一比较。 2.测量进动角速度和外加力矩的关系: (1)在加力杆的前后标尺上分别加不同重量的砝码,记录进动的角度与实践,列 表并计算出对应于每一外加力矩的进动角速度值,画出实验曲线。 (2)根据进动规律 x M H ω= (H J =Ω)计算出对应于每一外加力矩的进动角速 度,画出理论曲线。 (3)将实验曲线与理论曲线进行比较并说明产生误差的原因。 (4)用线性回归的方法进行数据处理,并通过求回归系数的方法求出角动量H的值。 3.测量进动角速度和角动量的关系 在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。根据实验结果说明进动角速度和角动量的关系。 (三)陀螺力矩实验 1.开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩效应,并说明原因。

主要性能参数

智能辅助驾驶(ADAS)测试能力构建申请 1 背景 JT/T 1094-2016营运客车安全技术条件要求,9米以上营运车应安装车道偏离预警系统和自动紧急制动系统。GB7258-2016送审稿中要求11米以上公路客车和旅游车客车应装备车道保持系统和自动紧急制动系统。为了满足法规需求和智能汽车未来发展趋势,我司汽车电子课也立项进行自动驾驶技术研究(QC201701030006),第一阶段预计17年底开发完成。 智能辅助驾驶是自动驾驶的低级阶段也是必经之路。现阶段,智能辅助驾驶主要包含FCW(前撞预警)、LDW(车道偏离报警)、AEB (自动紧急制动)LKA(车道保持)ACC (自适应巡航)。从功能的实现到批量商用需要经过软件仿真→硬件在环(HiL)→室内试验室→受控场地测试→开放公路测试这一历程。ADAS技术涉及主动安全,目前还不完全成熟,需要大量测试以提高产品精度和可靠性,为了降低委外测试费用,提高我司ADAS配置装车性能,道路试验课申请分阶段构建ADAS测试能力,包含人员培训和设备采购,本次申请主要是测试设备购买。 2 ADAS测试能力构建计划(2017-2020) 智能辅助驾驶测试设备要求精度高,价格昂贵,考虑到成本因素,建议分阶段构建测试能力,构建计划见表1 表1 ADAS能力构建计划 201 7 年 AD AS 测 试能构建计划 设备测试功能仅满足现阶段法规和研发需求,并考虑未来功能拓展性,能力构建见表2。试验用假车和假人采用自制方式,暂不购买;与汽车电子课协商,目前满足2车测试需求即可,暂不购买第三车设备;用于开放道路测试的移动基站暂不购买。 数据采集与分析用笔记本电脑建议单独购买,要求性能稳定,坚固耐用,抗震防水性好。配置要求:15寸屏幕,酷睿i7处理器,128G以上固态硬盘,500G以上机械硬盘。推 荐型号:tkinkpadT570,Dell的Latitude系列。

什么是陀螺仪

什么是陀螺仪 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外力矩在作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停 地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常 见的现象,许多人小时候都玩过的陀螺就是一例。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的 自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示, 作为驾驶和领航仪表使用。 陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这 个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转 得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信 号传给控制系统。 现代陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广 泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略 意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂, 它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的 阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅 速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作 可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航 仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集 成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞 格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度, 那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生 变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制 造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是 通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个 简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 编辑本段陀螺仪的用途 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要 的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

陀螺仪主要性能指标(优.选)

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

惯导实验报告——帅哥队

惯性导航实验报告 ——陀螺运动特性的研究 实验小组:111711班第四小组 学号:11171016-11171020 依次对应学号:王瑞捷廖旭博周林高硕赵大年指导老师:

惯导实验——陀螺特性的研究 一、实验目的 1、通过四个不同的小实验了解陀螺仪的运动特性 2、了解什么是陀螺的进动性 3、了解什么是陀螺的定轴性 4、了解什么是陀螺的陀螺力矩 二、实验内容 1、实验一 将高速旋转的陀螺转子放在插座上,观察并记录现象和分析原因。 2、实验二 将高速旋转的陀螺转子竖放在转盘上,观察并记录现象和分析原因。 3、实验三 将高速旋转的陀螺转子放在倾斜导轨上使之下滑,观察并记录现象和分析原因。 4、实验四 将高速旋转的陀螺系统放在插座上,分开内外轨使之相互垂直,再分别转动内外轨,观察并记录现象和分析原因。 三、实验记录及原理说明 实验一 1、看到的现象,体现了什么特性? 现象:可以看见陀螺转子呈锥形左右缓慢转动。 特性:体现了陀螺的进动性。 2、陀螺转速降低后,观察到的现象及原因? 现象:当陀螺的转速逐渐减慢时,锥形的角度开始变大,且其进动角速度变大。 原因:由于陀螺受到摩擦力的作用,其转速会逐渐降低,即陀螺的角动量H变小,而外力矩不变。由M=ω×H······M=ω*H*sin 可知,此时陀螺的进动角速度ω会变大,锥形角度也变大。 3、手提陀螺转子的感受及原因分析? 感受:当我们想把高速旋转的陀螺放到转动插座上时,手明显能感受到陀螺的“力”反作用于我们的手。 原因:这是因为高速旋转的陀螺在受到外力矩的时候,陀螺进动,此时陀螺存在一个反作用力矩(即陀螺力矩),其大小与外力矩相等,方向与之相反,并作用于给陀螺仪施加外力矩的物体上,即我们的手。 实验二 1、转盘与转子的转动方向是否一致?原因? 答:可以看见陀螺转子与转盘一起转动,方向一致。 原因:转盘与转子转动方向一致表现了高速旋转的陀螺有很好的定轴性。另外,在第一段实验中我们说明了陀螺具有陀螺力矩,本实验中竖直放在转盘上的转子与转盘之间存在微小摩擦力,转盘对转子有一个摩擦力矩,因此转子对转盘有一个大小相等方向相反的陀螺力矩。在这个力矩作用下,转盘随着转子有相同的转动方向。(以上是对书本学习后的想法,网上

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用) MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。 工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。 传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。 MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。 两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。 下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

三维轨迹仪的介绍及实验

三维轨迹仪的实验报告 实验目的:1确定光纤陀螺仪的工作原理; 2熟悉掌握三维轨迹仪实验的操作步骤; 3练习数据处理软件的应用; 4学会绘制三维轨迹图. 实验仪器:光纤陀螺仪,绳子,管道,计算机,数据处理软件,秒表 实验: 一光纤陀螺仪简介 按照最初的定义, 陀螺仪是一个高速旋转的质量。按照牛顿定律, 只要没有外力矩作用于这惯性质量上, 它的角动量矩在惯性空间是恒定的, 因此, 陀螺仪通过自身的惯性能有效地保持初始的姿态,这样在不需要借助外部参照物的情况下均可以测量飞行器的实际角位置和角速率。这种自主式测量角度和角速率就形成了今天的陀螺仪定义的基础。陀螺仪可以如此定义—它是一种这样的装置, 即使采用与角动量守恒定律完全不同的物理原理, 也能自主地测量出相对惯性空间的旋转运动。由于陀螺仪的自动测量和对外界干扰的不敏感性, 不管它是在飞行控制中, 还是在导航中都是极为重要的技术问题.

光纤陀螺仪(FOG)是一种基于Sagnac 效应实现载体相对于惯性空间角速度测量光纤传感器件。最早由美国学者V.Vali 和R.W.Shorthill 于1976 年提出,近几十年来,随着光纤通信技术和光纤传感技术的迅猛发展,光纤陀螺技术得到了快速进步,已成为惯性技术研究领域的主流陀螺,在军事、航海、空间技术和民用等领域都有较高的应用价值。与传统陀螺仪相比,光纤陀螺仪具有许多优点: 无旋转部件, 耐冲击, 使用寿命长; 结构简单, 重量轻, 外形尺寸小; 消耗功率小; 动态量程大等。因此, 它可以应用于更广阔的领域。 二分类与原理 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有 结构简单、价格便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关,主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 根据陀螺仪的使用情况, 以各种不同的精度要求给陀螺仪装置定等级(陀螺仪的精度可以通过陀螺仪轴相对于初始方向的漂移误差

软件系统性能的常见指标(优.选)

衡量一个软件系统性能的常见指标有: 1.响应时间(Response time) 响应时间就是用户感受软件系统为其服务所耗费的时间,对于网站系统来说,响应时间就是从点击了一个页面计时开始,到这个页面完全在浏览器里展现计时结束的这一段时间间隔,看起来很简单,但其实在这段响应时间内,软件系统在幕后经过了一系列的处理工作,贯穿了整个系统节点。根据“管辖区域”不同,响应时间可以细分为: (1)服务器端响应时间,这个时间指的是服务器完成交易请求执行的时间,不包括客户端到服务器端的反应(请求和耗费在网络上的通信时间),这个服务器端响应时间可以度量服务器的处理能力。 (2)网络响应时间,这是网络硬件传输交易请求和交易结果所耗费的时间。 (3)客户端响应时间,这是客户端在构建请求和展现交易结果时所耗费的时间,对于普通的瘦客户端Web应用来说,这个时间很短,通常可以忽略不计;但是对于胖客户端Web应用来说,比如Java applet、AJAX,由于客户端内嵌了大量的逻辑处理,耗费的时间有可能很长,从而成为系统的瓶颈,这是要注意的一个地方。 那么客户感受的响应时间其实是等于客户端响应时间+服务器端响应时间+网络响应 时间。细分的目的是为了方便定位性能瓶颈出现在哪个节点上(何为性能瓶颈,下一节中介绍)。 2.吞吐量(Throughput) 吞吐量是我们常见的一个软件性能指标,对于软件系统来说,“吞”进去的是请求,“吐”出来的是结果,而吞吐量反映的就是软件系统的“饭量”,也就是系统的处理能力,具体说来,就是指软件系统在每单位时间内能处理多少个事务/请求/单位数据等。但它的定义比较灵活,在不同的场景下有不同的诠释,比如数据库的吞吐量指的是单位时间内,不同SQL语句的执行数量;而网络的吞吐量指的是单位时间内在网络上传输的数据流量。吞吐量的大小由负载(如用户的数量)或行为方式来决定。举个例子,下载文件比浏览网页需要更高的网络吞吐量。 3.资源使用率(Resource utilization) 常见的资源有:CPU占用率、内存使用率、磁盘I/O、网络I/O。 我们将在Analysis结果分析一章中详细介绍如何理解和分析这些指标。 4.点击数(Hits per second) 点击数是衡量Web Server处理能力的一个很有用的指标。需要明确的是:点击数不是我们通常理解的用户鼠标点击次数,而是按照客户端向Web Server发起了多少次http请求计算的,一次鼠标可能触发多个http请求,这需要结合具体的Web系统实现来计算。5.并发用户数(Concurrent users) 并发用户数用来度量服务器并发容量和同步协调能力。在客户端指一批用户同时执行一个操作。并发数反映了软件系统的并发处理能力,和吞吐量不同的是,它大多是占用套接字、句柄等操作系统资源。 另外,度量软件系统的性能指标还有系统恢复时间等,其实凡是用户有关资源和时间的要求都可以被视作性能指标,都可以作为软件系统的度量,而性能测试就是为了验证这些性能指标是否被满足。

陀螺仪的详细介绍

陀螺仪 科技名词定义 中文名称:陀螺仪 英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 应用学科:船舶工程(一级学科);船舶通信导航(二级学科) 本内容由全国科学技术名词审定委员会审定公布 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 目录

编辑本段

陀螺仪 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么 陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 编辑本段陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验

实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录

方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法 蛇形试验

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

导航技术基础实验报告汇总

《导航技术基础》实验报告 学号: 姓名: 南京理工大学自动化学院

目录 实验一全球定位系统(GPS)实验 (2) 实验二陀螺仪原理实验 (4) 实验三 HMR3300传感器实验........................... (7) 实验四C100航向传感器实验... ... ... . (9)

实验一全球定位系统(GPS)实验 一. 实验目的 1、熟悉GPS的结构和工作原理; 2、熟悉GPS信号串口传输技术; 3、掌握GRMIN公司GPS25LP OEM板实验系统。 二. 设备清单 (1) GPS25LP OEM板1套 (2) 开关电源 1个 (3) 五金工具 1套 (4) 万用表 1只 (5) 《GRMIN公司GPS25LP OEM板技术资料》 1本 *上课期间,实验设备由组长保管,上课期间遗失或损坏的器件须按原价赔偿。 三、课堂要求 (1) 课前认真预习,精心准备; (2) 在不损坏器件或愿意赔偿的情况下自由使用器件; (3) 不同小组的器件不要混用; (4) 课后整理桌面; (5) 不在课堂做任何与学习无关的事; (6) 课后认真填写实验报告。 四、注意事项 (1) 轻拿轻放加GPS实验系统,防止摔落地面; (2) 避免直接接触GPS实验系统电路板; (3) 禁止带电插拔; (4) 常见问题的处理,参见技术手册。 五、实验内容与步骤 1、GPS实验系统电路连接 (1) 将GPS天线接入电路板;

(2) 检查电路连接是否正确; (3) 将GPS天线放至窗外; (4) 接通外接开关电源; (5) 记录所在位置的经纬度、高度、星数。 六、实验报告内容 1、记录从GPS接收到数据 2、数据分析 当前时间:3时23分40秒 实验室经度:11851.4462E 实验室纬度:3201.6107N 卫星编号:12 21 31 卫星数量:3 其他信息: GPS状态:正在估算;水平精确度:4.2;海拔高度:87.3米;大地水准面高度:2.3;GPGGA校验和是43; 定位模式:手动自动2D/3D;定位类型:2D定位;HDOP水平精度因子:4.2;VDOP垂直精度因子:4.2;

步态分析实验报告

步态分析方案设计 报告说明:我看了五篇关于步态分析的文献,并对其具体实验方法进行归纳。五篇文献的原文在文件夹中。最后为我的方案设计。 一、A practical gait analysis system using gyroscopes陀螺仪分析步态 本研究是为了调查使用单轴陀螺仪来研制简单便携步态分析系统的可行性。陀螺仪绑在小腿和大腿的皮肤表面,记录小腿和大腿角速度。这两部分的倾斜度和膝关节角度都来自角速度。使用从运动分析系统得到的信号来评估角速度和陀螺仪传来的信号,发现这些信号有不错的相关性。当转身时,腿部倾斜度和角度信号会发生漂移,有两种方法来解决这个问题:(1)自动复位系统,重新初始化每个步态周期的角度;(2)高通滤波。两种方法都能很好的纠正漂移。小腿部的单陀螺仪可以提供以下信息:腿部倾斜度、摆动频率、步数以及步幅和步速的估计。 具体方法: 受试者在步态实验室沿直线行走进行陀螺仪数据收集,陀螺仪用绳子固定在大腿和小腿部,感测轴沿中间-横向方向,以测量矢状平面中的角度。 两个人加入测试,一个是不完整的脊髓损伤,一个没有损伤。一运动分析系统使用各部分解剖学位置的回射标记物来评估腿部的偏移、腿部的角速度和膝角度。实验开始前5s,受试者直立站立以初始化倾斜角度和陀螺仪的偏置,随后,对象以一个自己喜欢的速度沿预定路径行走。进行了三组实验来分析陀螺仪的性能,并计算步幅、步态周期时间和每次行走期间的速度。第一个实验,数据来自两小腿上陀螺仪的信号,并与未损伤者进行比较。后两个实验是陀螺仪的数据与运动分析系统进行比较。第一个实验是比较小腿不同位置的陀螺仪信号,对于同一小腿上的两个点,先站立后倾斜,两个点的角速度、角度应该是相同的,陀螺仪一个放在胫骨关节处,一个放在胫骨靠近踝关节10cm处。第二个实验一个放置在大腿髌骨上方10cm处,一个在胫骨靠近踝关节10cm处,记录的是陀螺仪的角速度。第三个实验,陀螺仪放置于第二个相同,受试者直行4.5m然后转身180°。 二、Acoustic Gaits: Gait Analysis With Footstep Sounds 声步态 我们描述的是声步态——从人正常行走时的脚步声推导人的自然步态特征。我们引入了步态轮廓,这是从通过麦克风收集的脚步声时间信号得到的,可以说明某些时空步态参数,这些参数是通过对声步态轮廓的三个时间信号分析方法提取,三个时间信号分别是平方能量估计、希尔伯特变量和Teager–Kaiser能量。通过对这些参数估计的统计学分析,我们发现从步态轮廓获得的时空参数和步态特征可以连续可靠地评估目前用于标准化步态评估的临床和生物测定步态参数信息。我们的结论是Teager–Kaiser能量可以在不同时间、地点提供最稳定的步态参数估计。相对于目前实验室步态分析中使用的昂贵侵入式系统,如测力台、压力垫、可穿戴传感器,声步态使用便宜的麦克风和计算设备制成了准确非侵入式的步态分析系统,而且实验室的一些系统会改变正在测量的步态参数。

陀螺仪的选择

陀螺仪的选择:其机械性能是最重要的参数 作者:ADI公司Harvey Weinberg 选择陀螺仪时,需要考虑将最大 误差源最小化。在大多数应用中,振动敏感度是最大的误差源。其它参数可以轻松地通过校准或求取多个传感器的平均值来改善。偏置稳定度是误差预算较小的分量之一。 浏览高性能陀螺仪数据手册时,多数系统设计师关注的第一个要素是偏置稳定度规格。毕竟,它描述的是陀螺仪的分辨率下限,理所当然是反映陀螺仪性能的最佳指标!然而,实际的陀螺仪会因为多种原因而出现误差,使得用户无法获得数据手册中宣称的高偏置稳定度。的确,可能只有在实验室内才能获得那么高的性能。传统方法是借助补偿来最大程度地降低这些误差源的影响。本文将讨论多种此类技术及其局限性。最后,我们将讨论另一种可选范式——根据机械性能选择陀螺仪,以及必要时如何提高其偏置稳定度。 环境误差 所有中低价位的MEMS陀螺仪都有一定的时间-零点偏置和比例因子误差,此外还会随温度而发生一定的变化。因此,对陀螺仪进行温度补偿是很常见的做法。一般而言,陀螺仪集成温度传感器的目的就在于此。温度传感器的绝对精度并不重要,重要的是可重复性以及温度传感器与陀螺仪实际温度的紧密耦合。现代陀螺仪的温度传感器几乎毫不费力就能达到这些要求。 许多技术可以用于温度补偿,如多项式曲线拟合、分段线性近似等。只要记录了足够数量的温度点,并且在校准过程中采取了充分的措施,那么具体使用何种技术是无关紧要的。例如,在每个温度的放置时间不足是一个常见的误差源。然而,无论采用何种技术,无论有多细心,温度迟滞——即通过冷却与通过加热达到某一特定温度时的输出之差——都将是限制因素。 图1所示为陀螺仪ADXRS453的温度迟滞环路。温度从+25℃变为+130℃,再变为–45℃,最后回到+25℃,与此同时记录未补偿陀螺仪的零点偏置测量结果。加热周期与冷却周期中的+25℃零点偏置输出存在细微的差异(本例中约为0.2°/s),这就是温度迟滞。此误差无法通过补偿来消除,因为无论陀螺仪上电与否,它都会出现。此外,迟滞的幅度与所施加的温度“激励”量成比例。也就是说,施加于器件的温度范围越宽,则迟滞越大。

陀螺仪基本特性试验

陀螺仪基本特性试验一、实验目的 1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。 2.学习使用陀螺实验用主要设备——转台。 3.利用线性回归方法进行数据处理。 二、实验设备 1.TZS-74陀螺仪表综合试验转台。 2.双自由度陀螺仪。 3.砝码。 4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。 三、实验内容和步骤 (一)定轴性实验 1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。 2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转 动时陀螺仪的定轴性。 (二)进动性实验

1.外加力矩,观察进动现象。根据进动规律判断角动量H的方 向,并和上面记下的转速方向做一比较。 2.测量进动角速度和外加力矩的关系: (1)在加力杆的前后标尺上分别加不同重量的砝码,记录进动的角度与实践,列表并计算出对应于每一外加力矩的 进动角速度值,画出实验曲线。 (2)根据进动规律x M ω=(H J=Ω)计算出对应于每一外加 H 力矩的进动角速度,画出理论曲线。 (3)将实验曲线与理论曲线进行比较并说明产生误差的原因。 (4)用线性回归的方法进行数据处理,并通过求回归系数的方法求出角动量H的值。 3.测量进动角速度和角动量的关系 在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。 根据实验结果说明进动角速度和角动量的关系。 (三)陀螺力矩实验 1.开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩 效应,并说明原因。 2.观察双自由度陀螺仪在进动时的陀螺力矩效应。用手对内框 架加力矩,用手的感觉来测量陀螺力矩的大小和方向。说明陀螺力矩产生的原因。

陀螺仪实验 (3)

实验报告 88 数学系07级 姓名:宗艾俐 日期:08.11.15 学号:PB07025015 实验原理用自己的语言总结 实验题目:陀螺仪实验 实验目的: 1、通过测量角加速度确定陀螺仪的转动惯量; 2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量; 3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系; 4、观察和研究陀螺仪的章动频率与回转频率的关系。 实验原理: 1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度α为:α=d ωR /dt=M/I P (1) 式中ωR 为陀螺仪盘的角速度,I P 为陀螺仪盘的转动惯量。M=F .r 为使陀螺仪盘转动的力矩。由作用和反作用定律,作用力为: F=m(g-a) (2) 式中g 为重力加速度,a 为轨道加速度(或线加速度) 轨道加速度与角加速度的关系为: a=2h/t F 2; α=a/r (3) 式中h 为砝码下降的高度,r 如图1所示为转轴的半径,t F 为下落的时间。将(2)(3) 代入(1)可得:h mgr mr I t P F 2 2222+= (4) 测量多组t F 和h 的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。 2、如图3所示安装好陀螺仪,移动平衡物W 使陀螺仪AB 轴(X 轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕X 轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量L : L =I P .ωR (5) 当在陀螺仪的另一端挂上砝码m (50g )时就会产生一个附加的力矩M *,这将使原来的角动量发生改变: dL/dt =M *=m *gr * (6) 由于附加的力矩M *的方向垂直于原来的角动量的方向,将使角动量L 变化dL ,由图1可见: dL=Ld ? 图1 陀螺仪进动的矢量图

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。 5)修改程序设定不同运动长度,并重复执行步骤4)。 6)对记录实验数据,并进行误差分析。 2、实验数据处理

相关文档
最新文档