医学细胞生物学重点

医学细胞生物学重点
医学细胞生物学重点

医学细胞生物学重点https://www.360docs.net/doc/8c15353485.html,work Information Technology Company.2020YEAR

1、液态镶嵌模型的内容:液态镶嵌模型主要把生物膜看成是球蛋白质和脂类的二维排列的液态体,不是静止的,而是一种具有流动性特点的结构。膜中的脂类双层既具有固体分子排列的有序性,又具有液体的流动性,即流动的脂质双分子层构成膜的连续主体,各种球状蛋白质分子镶嵌在脂类双层分子中。蛋白质分子的非极性部分嵌入脂类双层分子的疏水区;极性部分则外露于膜的表面,似一群岛屿一样,无规则地分散在脂类的海洋中。这个模型主要强调了膜的流动性和脂类分子与蛋白质分子的镶嵌关系。

2、论述细胞有丝分裂各期主要特点:

间期:G1期主要进行RNA和蛋白质的合成。S期DNA复制,组蛋白和非组蛋白合成。G2期进一步合成新的RNA和蛋白质,主要合成有丝分裂因子和由有丝分裂器。

分裂期:前期:染色体螺旋化成染色体,确定分裂极,核仁核膜消失

中期:染色体进一步压缩。纺锤体的微管与染色体着丝粒动粒相连。染色体排列在赤道板上形成赤道板。

后期:着丝粒纵裂为二,姐妹染色单体在纺锤体的作用下,向两极移动。

末期:染色体到达两极后,解螺旋、伸长、核仁重现,核膜重建,纺锤体消失,子细胞核形成,进行胞质分裂。一个母细胞分裂为两个子细胞。

3、为什么说线粒体是一个半自主的细胞器?

线粒体中既存在DNA(mtDNA),又有蛋白质合成系统(mtRNA、mt核糖体、氨基酸活化酶等)。但由于线粒体自身的遗传系统贮存信息很少,构建线粒体的信息大部分来自细胞核的DNA。事实上,线粒体的转录和翻译过程完全依赖于细胞核的遗传装置,如没有细胞核的作用,mtDNA本身能进行复制,所以线粒体的生物合成涉及两个彼此分开的遗传系统,是由细胞核和线粒体两个基因组共同协调控制,因此线粒体只是一个半自主性的细胞器。

4、钠钾泵:钠钾泵是嵌在质膜类脂双层中的一种蛋白质,实质上就是Na+ — k+ ATP酶,它具有载体和酶的活性。其作用过程可分为两个步骤:第一步,在细胞膜内侧,有Na+ ,Mg+存在下,ATP酶被Na+激活,将ATP分解为ADP和高能磷酸根。磷酸根和ATP酶共价结合形成磷酸—ATP酶中间体(即酶的磷酸化),引起酶蛋白分子发生构象变化,而与Na+的亲和力降低,Na+被分离释放,将Na+带到膜外。第二步,改变构象的ATP酶,在膜的外侧有K+存在时,与K+亲和力大,并与之结合,激活磷酸酶,使其发生去磷酸作用,同时酶又恢复到原来构象,将K+移至膜内释放。

5、受体介导的胞吞作用:这是特异性很强的胞吞作用,大分子先与细胞膜上的特异性受体(镶嵌在细胞膜上的蛋白质分子)相识并结合,然后通过膜囊泡系统完成物质的传送。举例:血中胆固醇的吸收,LDL颗粒悬浮在血中,当细胞需要胆固醇时,细胞即合成跨膜受体蛋白,并将其插入质膜中。LDL颗粒外层蛋白可与质膜有被小窝上存在的LDL受体特异结合,这种结合可诱使尚未结合的LDL受

体向有被小窝处移动来与LDL结合,并引起有被小窝继续内陷,使LDL颗粒同受体一起进入细胞质内,形成有被小泡。接着有被小泡迅速地脱衣被成为无被小泡,无被小泡与胞质中的晚期内体发生融合,由于内体的膜上的H+ — ATP酶可以将H+泵入内体,可使晚期内体内部pH下降至5-6,在这样的酸性条件下,受体与LDL颗粒解离,并分隔到两个小囊泡中,含受体的小泡返回到质膜参与受体再循环;含有LDL的小泡与溶酶体融合,被其中的酶分解成游离的胆固醇进入细胞质,成为细胞合成膜的原材料。

一、微管的装配:微管的体外组装, 1)异二聚体→原纤维→微管。首先a、b微管蛋白形成异二聚体,即聚合。先先由一些异二聚体集合成片状的核心,再经过侧面增加异二聚体而使之扩展成13条原纤维丝,即环围成微管,再将新的异二聚体不断加到微管的顶部,使之延长。

2)踏车行为;微管的体内组装,稳定微管:鞭毛,动态微管:纺锤体。(影响微管装配的因素秋水仙素、长春花碱等能使微管解聚.,紫杉醇能促进微管的组装并稳定已组装的微管。)

6、内膜系统各细胞器的特征酶分别是:内质网:葡萄糖-6-磷酸酶,高尔基复合体:糖基转移酶;溶酶体:酸性磷酸酶;过氧化物酶体:过氧化氢酶。

7、粗面内质网的功能:蛋白质(分泌蛋白、膜蛋白、溶酶体蛋白)的合成,新生多肽链的折叠与装配,蛋白质N-连接糖基化,蛋白质的胞内运输。

8、高尔基复合体结构:高尔基复合体由成簇的高尔基体聚集而成,是一种封闭的膜性囊泡状结构,从下到上分别为小囊泡,扁平囊,大囊泡。

9、高尔基复合体的功能:1·胞内物质的转送运输和细胞的分泌活动;2·糖蛋白的加工合成,N连接的糖蛋白和O连接的糖蛋白的糖基化;3·蛋白质的水解;4·蛋白质的分选与胞内膜泡运输;5·溶酶体的形成;6·膜的转变,即膜流。

10、溶酶体类型:初级溶酶体体腔中的酶通常处于非活性状态;次级溶酶体是溶酶体的一种功能作用状态;三级溶酶体酶的活性逐渐降低至最终消失。

11、线粒体结构:线粒体由内,外两层单位膜围成的膜性囊,外膜光滑,其上有许多转运蛋白,通透性大,分子量1万以下的分子可自由通过。内膜向内凹陷形成嵴,嵴上有许多基粒(104-105),为ATP酶复合体,由头部,柄部和基片组成.。内膜所围的内部空间充满了基质,含三羧酸循环、脂肪酸氧化等有关的酶及线粒体DNA、rRNA、 tRNA 等。

12、游离和附着核糖体上合成蛋白质的差异:游离于胞质中的核糖体合成细胞本身所需蛋白质,可能是特定酶,也可能是特定结构蛋

白,如细胞内代谢酶、红细胞内血红蛋白、肌细胞的肌动蛋白等。附着于内质网上的核糖体合成大多是外输性蛋白质,如 1)分泌蛋白,如激素、抗体、酶类等;少量如2)膜整合蛋白;3)内质网,高尔基体,溶酶体内的可溶性驻留蛋白。

13、核膜结构:1)由内,外两层单位膜组成,核膜外层与内质网相连续,上有核糖体附着,核膜内层与核纤层蛋白相连. 2)核周间隙外膜与内膜之间的腔隙,与内质网腔相连3)核孔复合体

14、核小体:核小体是由200bp左右的DNA和一个组蛋白组成的八聚体呈圆盘型颗粒状。组蛋白八聚体由H2A+·H2B·H3·H4各两分子聚合而成,构成核小体的核心,相对分子质量为100 000(染色质的基本结构单位:核小体)。

15、核仁周期:核仁在细胞分裂前期消失,末期又重现。细胞从间期进入分裂期,染色质浓缩形成染色体,含有rRNA基因的染色质袢环逐渐缩回到染色体,停止转录,核仁消失。细胞分裂结束进入末期,染色体含rRNA基因的核仁组织区解旋和伸展,开始转录,重新形成核仁。

16、减数分裂前期Ⅰ的特征性变化:(1)细线期染色质凝集成线状,称染色线,其上有念珠状结构,称染色粒。(2)偶线期染色体仍为细线状,同源染色体配对,二价体:一对同源染色体,四分体:二价体可见为4条染色单体,同源染色体:大小及着丝粒位置相同的一对染色体,其中一条来自父亲,一条来自母亲,联会: 同源染色体的配

对,联会复合体:联会时同源染色体之间形成的一种蛋白质的复合结构。(3)粗线期染色体变粗变短,复制的染色体已能看清,同源染色体中非姐妹染色单体进行片断交叉,互换. 非姐妹染色单体互换:联会后四条染色单体在一起,会发生非姐妹染色单体间交换,即部分片断裂后重融合,使染色体片断发生交换而改变原有的遗传结构。 (4)双线期染色体进一步螺旋化,同源染色体开始分开,染色体互换完成;合成大量RNA 。(5)终变期染色体高度螺旋化,核仁核膜消失17、后期Ⅰ的特征性变化:同源染色体分开,非同源染色体之间自由组合,染色体数目减半。

18、减数分裂的意义:1保持生物种类染色体数目稳定;2生物遗传变异的基础;3性染色体配对; 4是遗传学三大基本定律的细胞学基础

19、试以多级螺旋模型为例,说明染色体的构建。

一级结构:核小体是染色质的基本结构单位,核小体由H1、H2A、H2B、H3、H4及200碱基对DNA组成,分为核心颗粒(八聚体)和连接部分。DNA围绕核心部分1·75圈,将DNA压缩7倍。二级结构:每6个核小体围绕一圈形成螺线管,压缩6倍。三级结构:螺线管进一步盘曲形成超螺线管,压缩40倍。四级结构:超螺线管进一步折叠成染色体,压缩6倍。

20、简述核糖体的重要功能活性部位。

答:小亚基上有mRNA结合部位

大亚基上有氨酰tRNA结合位;肽基tRNA结合位;转肽酶部位;中央管;出口位。

21、概述细胞核的主要功能。

核DNA贮存复制遗传物质,细胞核内进行DNA转录RNA指导蛋白质的生物合成

在一定程度上控制细胞的生长、发育、繁殖、遗传和代谢,是细胞生命活动的调节中心

细胞核各成分相互协调,细胞核在整个生命活动中起了重要作用22、易化扩散:一些非脂溶性(或亲水性)的物质,如糖·氨基酸·核苷酸·金属离子等,不能以简单扩散方式进出细胞,它们凭借载体蛋白的帮助穿过细胞膜,但不消耗细胞的代谢能,将溶质顺浓度梯度进行转运,这种方式称为易化扩散或帮助扩散。

医学细胞生物学 课后思考题

课后思考题 1.请描述细胞的发现与“细胞学说”的主要内容 1604年荷兰眼镜商詹森发明了第一台显微镜 1665年英国物理学家虎克最早观察到细胞 1675年荷兰生物学家列文虎克发现活细胞 细胞学说:施来登和施旺 1、一切生物都是由细胞组成的 2、细胞是生物体形态结构和功能活动的基本单位 3、“细胞来源”:一切细胞只来源于原来的细胞,一切病理现象都基于细胞的损伤 2. 如何理解细胞生物学说在医学科学中的作用地位 细胞生物学是现代医学的重要基础理论。细胞生物学的研究有助于医学重大课题的解决,治病机理的阐明、诊断、治疗、预防都依赖于(分子)细胞生物学的发展 4.简述DNA的结构特点和功能 结构特点: (1)两条脱氧核苷酸组成双链,为右手螺旋。两条单链走向相反,一条由5'-3',另一条由3'-5' (2)亲水的脱氧核糖——磷酸位于螺旋的外侧。 (3)双螺旋内侧碱基互补配对:A=T;C≡T;A+G=C+T(嘌呤数等于嘧啶数) (4)碱基平面垂直螺旋中心轴,每10对碱基螺旋一周,螺距 功能: (1)携带和传递遗传信息——遗传信息的载体; (2)表达:产生生物的遗传性状——作为模版转录RNA,从而控制蛋白质的合成 (3)突变:产生变异,引导进化

6.试比较DND和RNA的异同 相同点: (1)其基本单位都由一分子五碳糖,一分子磷酸和一分子碱基构成 (2)都含有磷酸二酯键 不同点: (1)两者基本单位的五碳糖不同,DNA的是脱氧核糖,RNA的是核糖 (2)DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶 (3)DNA为双链,RNA为单链 7.试描述蛋白质的各级结构特征 (1)蛋白质的一级结构:组成蛋白质的氨基酸种类、数目和排列顺序 (2)蛋白质的二级结构:局部或某一段肽链的空间结构,由氢键维持。有以下几种构象单元: 1.α-螺旋:右手螺旋,每一周有3.6个氨基酸,螺距0.54nm 2.β-折叠:锯齿状,不同肽链间由氢键维系 3.其余有β-转角、无规则卷曲、π螺旋等 (3)蛋白质的三级结构:在二级结构的基础上,整条肽链中全部氨基酸残基的相对空间位置,主要依靠R基团(侧链)间的相互作用维持 (4)蛋白质的四级结构:两条或两条以上的多肽链所组成的蛋白质中各亚基的空间排列和相互接触的布局 8.简述膜脂和膜蛋白的类型以及各自的特点 膜脂: (1)磷脂:是细胞膜中最重要的脂类,通常大于膜脂总量的50%,磷脂酰碱基+甘油基团(鞘氨醇)+脂肪酸,前二者为极性头部(亲水),后者为非极性尾部(疏水) A 甘油磷脂:以甘油为骨架的磷脂类,因丙三醇柔性好,故甘油磷脂分子较柔软; B 鞘磷脂:以鞘氨醇为骨架的磷脂类。鞘氨醇分子刚性强,故鞘磷脂分子较硬(2).胆固醇,有极性头部(羟基)、非极性的固醇环和烃链。散布于磷脂分子间,其功能是增加膜的稳定性,调节膜的流动性 (3).糖脂:寡糖+鞘氨醇+脂肪酸 由糖基和脂类组成,占膜脂总量的5%以下。在神经细胞膜上糖脂含量较高,约占5-10%,糖脂也是两性分子。其结构与SM相似,只是由一个或多个糖残基代替了磷脂酰胆碱而与鞘氨醇的羟基结合 膜蛋白: 1.内在蛋白(整合蛋白):占膜蛋白的70-80%,是膜功能的主要承担者(运输蛋白、酶、受体等)。不同程度地镶嵌在类脂双分子层中,有的为跨膜蛋白。以疏水键和共价键镶嵌在膜内,与膜结合紧密

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

2017秋医学细胞生物学总复习提纲

2017秋医学细胞生物学总复习提纲 网考特别提醒:每道题都有答题限制时间,若时间到了没有主动点提交,系统默认完成考试而自动退出(虽然可以跟老师说明情况得以继续进入系统考试,但上一道题不会再出现),不能回看,所以要在注意时间的前提下认真思考作答。 一.主要题型 1.英译汉10道,合计10分(一些重点章节的重点单词, 不考汉译英); 2.问答题2个(以细胞膜、内膜系统、细胞核、细胞周期、 或细胞凋亡等章节内容为主,2题合计20分); 3.实验图片题10道,合计10分。(电镜图片及光镜图片。 电镜图片以实验手册后面的图片为主;光镜图片以实验 课做过看过的重点结构为主); 4.选择题(合计60分):单选60道,合计54分,多选6 道,合计6分。 以上四项卷面满分合计100分,折算率80%后为80分; 5.平时3次实验到勤及实验报告平均分折算率20%后为 20分。 二.重点章节(以下为往届同学总结,仅供参考) 第4、5、8、13章,是出问答题最有可能的章节。 三.主要内容(以下为往届同学总结,仅供参考) 第一章 1. 细胞生物学发展史中的里程碑式事件(每个阶段1-2件事); 2. 英文:医学细胞生物学

第二章 1. 影响细胞形态的几个方面因素,请看教材 2. 最小的细胞是什么,大小如何 3. 真核细胞的结构(膜相结构与非膜相结构各包括哪些成员) 4. 真核细胞与原核细胞的区别 5. 主要生物小分子的结构特点:氨基酸、核苷酸 6. 蛋白质掌握1,2级结构;DNA,RNA的基本结构特点和类型 7. 英文:氨基酸、蛋白质、核酸、核苷酸 第三章 1. 光学显微镜与电学显微镜的主要特点及其主要差别 2.光镜和电镜的最大分辨率,最大放大倍数 3. 老师PPT上有光镜及电镜标本制作厚薄及特殊要求。 4. 荧光显微镜的光源,相差显微镜及暗视野显微镜的主要的适用 标本、优点。 5. 英文:显微结构、超微结构、细胞培养 第四章 1. 重点章节,所以各个角落都有可能出选择题 2. 细胞膜电镜图片,主要化学组成3类。 3. 膜脂知识的第一段,及其四个分类主要作用,分布特点 糖脂中的两个最,最简单的糖脂脑苷脂,最复杂的神经节苷脂7个单糖残基 4. 膜蛋白关注膜内在蛋白与大小分子的跨膜运输连接在一起记忆 5. 膜糖是与细胞表面及细胞被的概念进行整合记忆,同时与细胞的特化结构联系在一起 6. 流动镶嵌模型 7. 重点:膜脂和膜蛋白的流动性方式及影响因素,有关的验证实验(膜蛋白流动性的) 8. 重点:小分子物质转运方式、特点及功能,区别 9. 主动运输Na-K泵工作原理及过程,膜转运蛋白类型

医学细胞生物学复习(带答案)

细胞衰老与死亡 1.衰老细胞的特征之一是常常出现下列哪种结构的固缩 A.核仁B.细胞核 C.染色体 D.脂褐质 E.线粒体 2.小鼠成纤维细胞体外培养平均分裂次数为 A.25 次B.50 次 C.100 次 D.140 次 E.12 次 3.细胞凋亡与细胞坏死最主要的区别是后者出现 A.细胞核肿胀 B.内质网扩张 C.细胞变形D.炎症反应 E.细胞质变形 4.细胞凋亡指的是 A.细胞因增龄而导致的正常死亡 B.细胞因损伤而导致的死亡 C.机体细胞程序性的自杀死亡 D.机体细胞非程序性的自杀死亡 E.细胞因衰老而导致死亡 5.下列哪项不属细胞衰老的特征 A.原生质减少,细胞形状改变 B.细胞膜磷脂含量下降,胆固醇含量上升C.线粒体数目减少,核膜皱襞D.脂褐素减少,细胞代谢能力下降 E.核明显变化为核固缩,常染色体减少 6.迅速判断细胞是否死亡的方法是 A.形态学改变 B.功能状态检测 C.繁殖能力测定D.活性染色法 E.内部结构观察 7.机体中寿命最长的细胞是 A.红细胞 B.表皮细胞 C.白细胞 D.上皮细胞E.神经细胞

细胞的统一性与多样性 1. 肠上皮细胞由肠腔吸收葡萄糖,是属于 A.单纯扩散 B.易化扩散 C.主动转运 D.入胞作用 E.吞噬 2. 在一般生理情况下,每分解一分子ATP,钠泵转运可使 A. 2个Na+移出膜外 B. 2个K+移入膜内 C. 2个Na+移出膜外,同时有2个K+移入膜内 D. 3个Na+移出膜外,同时有2个K+移入膜内 E. 2个Na+移出膜外,同时有3个K+移入膜内 小分子的跨膜运输 1.肠上皮细胞由肠腔吸收葡萄糖,是属于 A. 单纯扩散 B. 易化扩散 C. 主动转运 D. 入胞作用 E. 吞噬核糖体 1.多聚核糖体是指 A.细胞中有两个以上的核糖体集中成一团 B.一条mRNA 串连多个核糖体的结构组合 C.细胞中两个以上的核糖体聚集成簇状或菊花状结构D.rRNA 的聚合体 E.附着在内质网上的核糖体

(完整版)医学细胞生物学常用简答题详细答案.docx

细胞生物学复习-简答题 第三章真核细胞的基本结构 膜的流动性和不对称性极其生理意义 流动性:膜蛋白和膜脂处于不断运动的状态。主要由膜脂双层的动态变化引起,质膜的流动性由膜脂和蛋白质的分子运动两个方面组成。 膜质分子的运动:侧向移动、旋转、翻转运动、左右摆动 膜蛋白的运动:侧向移动、旋转 生理意义: 1、质膜的流动性是保证其正常功能的必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞 分化以及激素的作用等等都与膜的流动性密切相关。 2、当膜的流动性低于一定的阈值时,许多酶的活动和跨膜运输将停止。 不对称性:质膜的内外两层的组分和功能有明显的差异,称为膜的不对称性。 膜脂、膜蛋白和糖在膜上均呈不对称分布,导致膜功能的不对称性和方向性,即膜内外两层的流动性不同,使物 质传递有一定方向,信号的接受和传递也有一定方向 生理意义: 1、保证了生命活动有序进行 2、保证了膜功能的方向性 影响膜流动性的因素 1、胆固醇:相变温度以上,会降低膜的流动性;相变温度以下,则阻碍晶态形成。 2、脂肪酸链的饱和度:不饱和脂肪酸链越多,膜流动性越强。 3、脂肪酸链的长度:长链脂肪酸使膜流动性降低。 4 、卵磷脂 / 鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。 5、膜蛋白:镶嵌蛋白越多流动性越小 6、其他因素:温度、酸碱度、离子强度等 细胞外被作用 1、保护、润滑作用:如消化道、呼吸道和生殖道的上皮细胞的糖萼 2、决定抗原 3、许多膜受体是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递 RER和 SER的区别 存在细胞形状结构功能 RER在蛋白质合成囊状或扁平膜上含有特殊的参与蛋白质合成和修 旺盛的细胞中囊状,核糖核糖体连接蛋饰加工(糖基化,酰 发达。体和 ER 无白,可与核糖体基化,二硫键形成, 论在结构上60S 大亚基上的氨基酸的羟化,以及 还是功能上糖蛋白连接新生多肽链折叠成三 都不可分割级结构) SER在特化的细胞泡样网状结脂类和类固醇激素合 中发达构,无核糖成场所。 体附着肝细胞 SER解毒

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

医学细胞生物学名词解释

《细胞生物学》名词解释 1.拟核:原核细胞仅由细胞膜包绕,在细胞质内含有DNA区域,但 无被膜包围,该区域称为拟核。 2.单位膜:电子显微镜下,生物膜呈“两暗一明”的铁轨样形态,称 为单位膜。 3.脂质体:膜脂都是两亲性分子,具有亲水的极性头部和疏水的非 极性尾部。当这些两亲性分子被水环境包围时,它们就聚集起来,使疏水的尾部埋在里面,亲水的头部露在外面与水接触,形成双分子层。为了避免双分子层两端疏水尾部与水接触,其游离端往往能自动闭合,形成自我封闭的脂质体。 4.主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度,由 低浓度一侧向高浓度一侧进行的跨膜转运方式。 5.自由扩散:不需要跨膜运输蛋白协助,转运是由高浓度向低浓度 方向进行,所需的能量来自高浓度本身所包含的势能,不需要能量的一种跨膜转运方式。 6.易化扩散:一些非脂溶性(或亲水性)的物质不能通过简单扩散 的方式通过细胞膜,但它们在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运,称为易化扩散。 7.协同运输:是一类由Na+-K+泵(或H+泵)与载体蛋白协同作用, 间接消耗ATP所完成的主动运输方式。

8.內吞作用:又称胞吞作用或入胞作用,它是质膜内陷,包围细胞 外物质形成胞吞泡,脱离质膜进入细胞内的转运过程。分为,吞噬作用、吞饮作用及受体介导的内吞作用。 9.核孔复合体:核空上镶嵌有复杂的结构,它是由多个蛋白质颗粒 以特殊的方式排列成的蛋白分子复合物,称为核孔复合体。 10.核纤层:是附着于内核膜下的纤维蛋白网。它与中间纤维及核骨 架相互连接,形成贯穿于细胞核与细胞质的骨架体系。 11.核定位信号:亲核蛋白是一类在细胞质中合成,需要或能够进入 细胞核发挥功能的蛋白质,通常它们是4~8个氨基酸组成的特殊序列来保证整个蛋白质能够通过核孔复合体被转运到核内,该序列称为核定位序列或核定位信号。 12.常染色质:是间期核内碱性染料染色时着色较浅,螺旋化程度低, 处于伸展状态的染色质细丝。 13.异染色质:间期核中处于凝缩状态,结构致密,无转录活性,用 碱性染料染色较深。分为,结构异染色质、兼性异染色质。 14.端粒:是染色体末端特化部位,由富含G的端粒DNA和蛋白质 构成。 15.基因组:指细胞或生物体的一套完整的单倍体遗传物质,是所有 染色体上全部基因和基因间的DNA的总和,它含有一个生物体进行各种生命活动所需的全部遗传信息。 16.核型:是指一个体细胞的全部染色体在有丝分裂中期的表现,包 括染色体数目、大小的形态特征。

最新医用细胞生物学知识点(完整版)

医用细胞生物学知识点 By 小羊,小生(修整)友情提示:知识点很多,重点加粗,书中的表格均有,有些重点需掌握绘图(请查阅书本)。主要考点:名词解释,细胞的结构与功能。建议系统总结一下内质网,高尔基复合体,溶酶体的标志酶和各自的功能。1.细胞生物学(cell biology):细胞生物学是从细胞的显微,亚显微和分子三个水平对细胞的各种生命活动开展研究的学科。 2.对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 ⑥细胞具有全能性。 3.生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 4.原核细胞与真核细胞的比较:p13表2-1 5.真核细胞特点的理解: ①以脂质及蛋白质成分为基础的膜相结构体系-生物膜系统 ②以核酸,蛋白质为主要成分的遗传信息表达体系-遗传信息表达系统 ③由特异蛋白质分子构成的细胞骨架体系-细胞骨架系统 ④细胞质溶胶 6.生物大分子:细胞内主要的大分子有核酸,蛋白质,多糖。 7.核酸(nucleic acid)的基本单位:核苷酸。 8.核苷酸:核苷酸由戊糖,碱基和磷酸三部分组成。 9.DNA分子的双螺旋结构模型(p18图2-8):DNA分子由两条相互平行而方向相反的多核苷酸链组成,

即一条链中磷酸二酯键连接的核苷酸方向是5’→3’,另一条是3’→5’,两条链围绕着同一个中心轴以右手方向盘绕成双螺旋结构。简而言之:DNA分子是由两条反向平行的核苷酸链组成。 10.基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 11.动物细胞内含有的主要RNA种类及功能:p20表2-3 12.核酶(ribozyme):核酶是具有酶活性的RNA分子。 13.蛋白质(protein)的基本单位:氨基酸。 14.肽键:肽键是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合而成的化学键。15.肽(peptide):氨基酸通过肽键而连接成的化合物称为肽。 16.蛋白质分子的二级结构:α-螺旋,β-片层。 17.酶(enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 18.酶的特性:高催化效率,高度专一性,高度不稳定性。 19.光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显微镜。 20.细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。

医学细胞生物学要点

1.电镜与光镜的主要区别?什么叫显微镜分辨率?光学显微镜是以可见光为照明源,将微小的物体形成放大影像的光学仪器;而电子显微镜则是以电子束为照明源,通过电子流对样品的透射或反射及电磁透镜的多级放大后在荧光屏上成像的大型仪器。显微镜分辨率:分辨率或称分辨力是指在人眼明视距离处,能够清楚地分辨被检物体细微结构最小间隔的能力。 2.电镜主要分哪二类?透视和扫描 3.流式细胞术在科学研究中的应用?目前该技术广泛应用于生物大分子物质的定量,细胞周期分析,细胞表面抗原表达,细胞因子的检测,活细胞分类纯化等领域。 4.配制培养基时调节pH值的目的是什么?因为有的培养物对生长环境PH值要求高,有的则要求低,不同培养物的最适生长pH不同 5.细胞传代培养的目的是什么?传代培养是组织培养常规保种方法之一。也是几乎所有细胞生物学实验的基础。当细胞在培养瓶中长满后就需要将其稀释分种成多瓶,细胞才能继续生长。这一过程就叫传代。传代培养可获得大量细胞供实验所需。 6.蛋白质电泳的种类及特点?蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。特点:分辨力高和固相免疫测定特异性高,敏感等 7.核酸杂交技术的分类?根据杂交对象的不同可分为:DNA与DNA;RNA与DNA另外:Western blot,根据杂交对象位置的不同可分为:固相杂交,液相杂交,原位杂交。 8.聚合酶链式反应PCR的实施步骤是什么?1.DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。3.延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。4.还有就是体外快速DNA复制 9.细胞膜的基本特征是什么?细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动。此外,细胞所必需的养分的吸收和代谢产物的排出都要通过细胞膜。所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性。这是细胞膜最基本的一种功能。如果细胞丧失了这种功能,细胞就会死亡.。细胞膜除了通过选择性渗透来调节和控制细胞内,外的物质交换外,还能以"胞吞"和"胞吐"的方式,帮助细胞从外界环境中摄取液体小滴和捕获食物颗粒,供应细胞在生命活动中对营养物质的需求。细胞膜也能接收外界信号的刺激使细胞做出反应,从而调节细胞的生命活动。细胞膜不单是细胞的物理屏障,也是在细胞生命活动中有复杂功能的重要结构。 10.细胞膜上膜脂和膜蛋白的种类?膜脂有磷脂,糖脂,胆固醇,膜蛋白有膜内在蛋白(整合膜蛋白)(2)膜外在蛋白(周边膜蛋白)(3)脂锚定蛋白(连接蛋白) 11.简述真核细胞中小分子和大分子的跨膜运输途径和主要特点?(1)小分子和离子(需载体蛋白,通道蛋白)被动运输(简单扩散和易化扩散)顺浓度梯度主动运输(消耗能量),(2)大分子物质胞吞胞吐(消耗能量) 12.载体蛋白和通道蛋白在物质跨膜运输中的作用?通道蛋白只参与被动运输,载体蛋白既参与主动运输又参与被动运输,(1)通道蛋白:在蛋白质中心形成一个亲水性的通道,使特定溶质穿越。被动运输②载体蛋白:通过蛋白质发生可逆的构象变化进行物质运输。 主动或被动; 13.胞饮作用和吞噬作用的区别?一、吞噬作用,细胞内吞较大的固体颗粒物质,如细菌、细胞碎片等,称为吞噬作用。吞噬现象是原生动物获取营养物质的主要方式,在后生动物中亦存在吞噬现象。如:在哺乳动物中,中性颗粒白细胞和巨噬细胞具有极强的吞噬能

医学细胞生物学总复习提纲

细胞生物总复习提纲 特别提醒:每道题都有答题限制时间,若时间到了没有主动点提交,系统都会自动提交更新为下一道(系统会默认提交测试者点选得答案,若无点选则无答案),不能回瞧,所以要在注意时间得前提下认真思考作答。 一.主要题型 1.英译汉5道,合计5分(一些重点章节得重点单词,不 考汉译英); 2.问答题2个(以细胞膜、内膜系统、细胞核、细胞周期、 细胞凋亡等章节内容为主,2题分别为12分与8分, 合计20分); 3.实验图片题10道,合计15分。(电镜图片及光镜图片。 电镜图片以实验手册后面得图片为主;光镜图片以实验 课做过瞧过得重点结构为主); 4.选择题:单选60道,合计54分,多选6道,合计6分。 以上四项卷面满分合计100分,折算率90%后为90分; 5.平时3次实验到勤及实验报告平均分折算率10%后为 10分。 二.重点章节 第4、5、8、13章。就是出问答题最有可能得章节。 三.主要内容

第一章 1、细胞生物学发展史中得里程碑式事件(每个阶段1-2件事); 2、基本概念:医学细胞生物学(英文)。 第二章 1、细胞得形状要结合有关实例来记忆 影响细胞形态得几个方面因素,请瞧教材 2、最小得细胞 3、真核细胞得结构 4、真核细胞与原核细胞得区别 5、分子基础记忆氨基酸,核苷酸(基团及分类,化学键) 6、蛋白质掌握1,2级结构;DNA,RNA得基本结构特点与类型 7、英文:原核细胞、真核细胞、膜相结构、非膜相结构、氨基 酸、蛋白质、核酸、核苷酸 第三章 1、光学显微镜与电学显微镜得主要特点及其主要差别 2.分辨率,分辨力得概念理解 3、最高分辨率,最大放大倍数 4、老师PPT上有光镜及电镜标本制作厚薄及特殊要求。 5、荧光显微镜得光源,相差显微镜及暗视野显微镜得主要得适 用标本、优点。 6、细胞培养技术关注细胞融合得概念,诱导融合方法手段,成 功得例子

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受与释放H+与e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲就是离子的电化学梯度),ATP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白与辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受与提供电子的氧化还原中心都就是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型与突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列就是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位就是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1、原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2、核酶:将具有酶功能的RNA称为核酶。 3、N-端规则(N-end rule): 每一种蛋白质都有寿命特征, 称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4、泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一就是对被降解的蛋白质进行标记,由泛素完成;二就是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1、核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,就是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:就是细胞核内外膜融合形成的小孔,直径约为70 nm,就是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 就是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5、输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合物输出到细胞质, 而后快速通过核孔复合物回到细胞核。 核输出信号:作为核内物质输出细胞核的信号,帮助核内的某些分子迅速通过核孔进入细

医用细胞生物学思考题2

1.生物膜主要是由哪些分子组成?它们在膜结构中各起什么作用? 答: 细胞膜的化学组成基本相同,主要由脂类50%、蛋白质42%和糖类2%~8%组成。 细胞膜中还含有少量水分、无机盐与金属离子等。 细胞膜上含蛋白质的有糖蛋白和载体蛋白,糖蛋白对细胞外物质有识别作用,是多糖-蛋白质复合物。载体蛋白与被传递的分子特异结合使其越过质膜。 细胞膜是的基本结构是磷脂双分子层,蛋白质镶嵌在其中,具有流动性,但是其中蛋白质是大分子,流动性不如脂质强。 细胞膜糖类主要是一些寡糖链和多糖链,以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白。细胞膜上的金属离子可能改变细胞膜对一些物质的通透性(影响某些离子通道)。 2.为什么说膜脂质分子是两亲性分子?两亲性分子有何特点?它对构成细胞膜结构有何意义? 答: 因为它含有极性的头部和非极性的尾部,可以起到连接的作用,同时又有一定的流动性。

特点:既有极性端又有非极性端的分子,也就是同时具有疏水性与亲水性区的分子。例如磷脂,其烷基端是疏水端,磷酸端是亲水端。 意义:它们在水溶液中能自动聚拢形成脂双分子层,其游离端往往有自动闭合的趋势,形成一种自我封闭而稳定的中空结构,从而有利于细胞内部的稳定 3.在细胞膜中膜蛋白有何重要功能?膜蛋白以什么方式与脂双层相结合? 答:膜蛋白功能:①转运分子进出细胞②接受周围环境中激素或其他化学物质信号,递到细胞内③支撑连接细胞骨架成分与细胞间质成分④与细胞分化和细胞间连接有关⑤结合于膜上的各种酶能催化细胞各种化学反应。 膜蛋白分成三类:膜内在蛋白、膜外在蛋白、脂锚定蛋白 结合方式:膜内在蛋白全部或部分插入细胞膜内,直接与脂双分子层的疏水区域相互作用。 膜外在蛋白:不直接与脂双层疏水部分相互连接,一般以非共价键附着在脂类分子头部极性区或跨膜蛋白亲水区的一侧,间接与膜结合。 脂锚定蛋白:一般通过共价键与脂双层内的脂类分子结合。

医用细胞生物学知识点(完整版)

医用细胞生物学知识点 By 小羊,小生(修整)友情提示:知识点很多,重点加粗,书中得表格均有,有些重点需掌握绘图(请查阅书本)。主要考点:名词解释,细胞得结构与功能。建议系统总结一下内质网,高尔基复合体,溶酶体得标志酶与各自得功能。 1.细胞生物学(cell biology):细胞生物学就是从细胞得显微,亚显微与分子三个水平对细胞得各种生命活动开展研究得学科。 2.对细胞概念理解得五个角度: ①细胞就是构成有机体得基本单位; ②细胞就是代谢与功能得基本单位; ③细胞就是有机体生长与发育得基础; ④细胞就是遗传得基本单位; ⑤没有细胞就没有完整得生命。 ⑥细胞具有全能性。 3.生物界划分得三个类型:原核细胞、古核细胞与真核细胞。 4.原核细胞与真核细胞得比较:p13表2-1 5.真核细胞特点得理解: ①以脂质及蛋白质成分为基础得膜相结构体系-生物膜系统 ②以核酸,蛋白质为主要成分得遗传信息表达体系-遗传信息表达系统 ③由特异蛋白质分子构成得细胞骨架体系-细胞骨架系统 ④细胞质溶胶 6.生物大分子:细胞内主要得大分子有核酸,蛋白质,多糖。 7.核酸(nucleic acid)得基本单位:核苷酸。 8.核苷酸:核苷酸由戊糖,碱基与磷酸三部分组成。 9.DNA分子得双螺旋结构模型(p18图2-8):DNA分子由两条相互平行而方向相反得多核苷酸链组成,即一条链中磷酸二酯键连接得核苷酸方向就是5’→3’,另一条就是3’→5’,两条链围绕着同一个中心轴

以右手方向盘绕成双螺旋结构。简而言之:DNA分子就是由两条反向平行得核苷酸链组成。 10.基因组:细胞或生物体得一套完整得单倍体遗传物质称为基因组。 11 12.核酶(ribozyme):核酶就是具有酶活性得RNA分子。 13.蛋白质(protein)得基本单位:氨基酸。 14.肽键:肽键就是一个氨基酸分子上得羧基与另一个氨基酸分子上得氨基经脱水缩合而成得化学键。15.肽(peptide):氨基酸通过肽键而连接成得化合物称为肽。 16.蛋白质分子得二级结构:α-螺旋,β-片层。 17.酶(enzyme):酶就是由生物体细胞产生得具有催化剂作用得蛋白质。 18.酶得特性:高催化效率,高度专一性,高度不稳定性。 19.光学显微镜得种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显微镜。 20.细胞培养:细胞培养就是指细胞在体外得培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存得基本条件,让它在培养器皿中继续生存、生长与繁殖得方法。 21.细胞膜(cell membrane):细胞膜就是包围在细胞质表面得一层薄膜,又称质膜(plasma membrane)。22.生物膜(biomembrane):目前把质膜与细胞内膜系统总称为生物膜。

完整word版,医学细胞生物学大题总结要点,推荐文档

医学细胞生物学复习资料 第一章 1、细胞学与细胞生物学有何不同?细胞学是在光学显微镜水平,研究细胞的化学组成、形态结构及功能的学科,其研究对象是某个细胞、细胞器、生物大分子或某个生命活动的现象;细胞生物学是应用现代物理、化学技术和分子生物学方法,从细胞整体、显微、亚显微和分子等水平上研究细胞结构、功能及生命活动规律的学科,其研究对象是质膜、细胞质、细胞核的结构、功能及其相互关系,细胞总体和动态的功能活动以及这些相互关系和功能活动的分子基础。 2、细胞生物学与医学有何关系?以学生为何要学习细胞生物学? (1)细胞生物学在细胞分化、细胞凋亡、癌基因等方面的研究,使人们对疾病病因、病理、及发病机制有了全新的认识;以细胞生物学的原理、方法探究疾病的病因、诊断、治疗是医学研究的重要手段。 (2)作为医学生,学习细胞生物学的基本理论,掌握细胞生物学研究的基本技能,将为学习其他基础医学和临床医学课程打下坚实的基础。 第二章 1、为什么说细胞的各种生命活动现象的研究要从显微、亚显微、分子 3 个水平进行? 细胞的直径大多为10~20 微米,相当于人眼睛的分辨率的五分之一,况且细胞内还有精细复杂的内部结构和生理活动,所以研究细胞的各种生命活动现象必须借助仪器设备和相关的实验方法从而从显微、亚显微、分子 3 个水平进行。 2、光学显微镜技术与电子显微镜技术有哪些不同?二者为什么不能相互替代? (1)组成结构:光学显微镜由三部分组成:照明系统,光学放大系统,机械系统电子显微镜由五部分组成:电子照明系统,电子透镜成像系统,真空系统,记录系统,电源系统。 分辨率:光学显微镜为0.2 微米,电子显微镜为0.2 纳米所能观察到的细胞结构:显微结构;亚显微结构 (2)电子显微镜大大提高了显微镜的分辨率,观察到的亚显微结构是超出光学显微镜分辨水平的细胞结构,有力促进了细胞生物学的发展。 3、细胞培养的过程及注意事项有哪些?为什么说体外培养方法是生物医药领域不可或缺的技术?过程:准备,取材,培养注意事项:实验材料要新鲜;无菌操作;注意酶的浓度和控制消化时间;培养液的选择第三章 1、为什么说细胞是生命活动的基本单位?自然界的生物都是有细胞构成的,除病毒外,基本结构都是相似的。简单的低等生物仅有单细胞组成,高等动物由执行各种功能的细胞群构成,各种细胞分工合作,共同实现生物体完整的生命活动。因此细胞是生命活动的基本单位。 2、分析比较原核细胞与真核细胞的联系与区别。 区别见P25 表3-2 联系:原核细胞与真核细胞均有脂双层和蛋白质构成的质膜,遗传物质均为DNA ,都利用核糖体进行蛋白质合成,都能独立进行生命活动。 4. 简述原生质中主要成分的结构及功能主要成分可分为小分子物质和大分子物质两类。小分子物质由无机物(水和无机盐)和有机小分子(单糖、脂肪酸、核苷酸和氨基酸等)组成;大分子物质由核算、蛋白质、脂类和多糖等。 小分子是组成大分子的基本机构单位,不仅是分子大笑和结构的变化,更赋予了大分子与小分子的生物学特性。大分子能完成细胞的各种复杂的功能,如:组装细胞成分,催化化学反应,产生运输以及储存,传输和表达遗传物质。 第四章 1. 质膜由哪些成分组成?这些成分是如何构成质膜的?有何特性?主要是由脂类、蛋白质、糖类组成,此外还有少量水、无机盐和金属离子。 (1)脂类:质膜中的类脂分子排列成连续的双层,构成质膜的骨架——脂双层 (2)膜蛋白质:约占细胞蛋白质总量的25%,其功能主要是由蛋白质决定的,具有运输、接受和传导细胞内外各种化学信号的受体。整合蛋白质又称内在蛋白质。在双层中的是质膜功能的主要承担者。周边蛋白质有成外在蛋白质 (3)膜糖不单独存在,多数以 1 条或多条寡糖链与膜蛋白质共价结合形成糖蛋白,少数以 1 条寡糖链与膜貭共价结合形成糖脂。 质膜具有流动性、不对称性。体融合形成内吞体膜上有H+ 泵,可将胞质中的

医学细胞生物学复习题(含部分答案)

细胞生物学复习提纲 细胞生物学概论 1.细胞学说 2.中心法则 3.真核细胞与原核细胞的共同点和主要区别 4.光学显微镜与电镜原理 细胞膜与细胞表面(第四章、第十章) 1.膜的流动镶嵌模型是怎样形成的?它在膜生物学研究中有什么开创意义? 2.细胞膜的主要成分是什么?有何功能? 3.细胞膜的主要特性有哪些?有何生物学意义? 4.根据什么证明膜蛋白具有运动性,有几种运动方式?并简要说明影响和限制其运动的主要因素。 5.细胞连接分为哪几种类型,各种类型的分子结构和功能有何特点?(P241-249) 物质的跨膜运输与信号传递(第四章、第十二章) 1.比较主动运输与被动运输的特点及其生物学意义。 2.小肠上皮细胞膜上的载体蛋白转运葡萄糖,什么时候是协同运输,什么时候是协助扩散?(P89) 3.两类膜转运蛋白(载体蛋白和通道蛋白)工作原理的主要差别如何?4.说明Na+-K+泵的工作原理及其生物学意义。 5.以动物细胞摄入LDL为例,概述受体介导胞吞的组成结构、运行过程及生理意义。 6.比较两种胞吐途径(结构性分泌途和调节性分泌途径)的特点及功能。7.甾类激素是如何通过胞内受体介导的信号通路去调节基因表达?(P281)8.以突触处神经递质作用为例,说明离子通道偶联受体介导的信号通路特点。(P90-91、P278) 9.概述G蛋白偶联受体介导的信号通路的组成、特点及主要功能。

10.简述受体酪氨酸激酶介导的信号通路的特点。 11.体外培养的正常细胞须贴壁生长、分裂,而癌细胞却能悬浮培养,为什么?(正常细胞和癌细胞相比有接触抑制现象,使其只能贴壁生长;而且癌细胞的质膜结构发生了变化,间隙连接减少或者消失,细胞通讯受阻) 细胞质基质与内膜系统 1.rER合成哪几种蛋白质?其去向如何? 2.肝炎病毒患者的肝细胞内质网有什么特征?(P134) 3.概述由内质网到高尔基体进行蛋白质糖基化的类型、修饰和加工过程,并说说蛋白质糖基化的生理功能。 4.溶酶体和过氧化物酶体是如何形成的?特征上有何异同点?分别说说它们有哪些功能? 5.溶酶体酶内含有多种水解酶,为什么溶酶体膜不被消化?(P119高度糖基化的跨膜蛋白lgpAhe lgpB) 6.简介1999年诺贝尔奖——信号肽假说的研究成果及其意义。 7.细胞内蛋白质分选和定向有哪些途径? 8.概述膜泡(囊泡)运输中的三种有被小泡的特征,发生部位及功能。 (P127-133 网格蛋白有被囊泡、COPII有被囊泡、COPI有被囊泡) 线粒体 1.概述ATP合酶复合体的分子结构及ATP合成酶的作用机制。(P150、P153结合变构机制) 2.氧化磷酸化的两大结构基础是什么?(P149 呼吸链和ATP合酶复合体)3.化学渗透假说是如何解释偶联氧化磷酸化机理的?(P151-152) 9.为何说线粒体是半自主性细胞器? 10.为什么成熟的人类红细胞完全依靠糖酵解来供能? 细胞核

医用细胞生物学思考题

1.生物膜主要是由哪些分子组成它们在膜结构中各起什么作用 答: 细胞膜的化学组成基本相同,主要由脂类50%、蛋白质42%和糖类2%~8%组成。 细胞膜中还含有少量水分、无机盐与金属离子等。 细胞膜上含蛋白质的有糖蛋白和载体蛋白,糖蛋白对细胞外物质有识别作用,是多糖-蛋白质复合物。载体蛋白与被传递的分子特异结合使其越过质膜。 细胞膜是的基本结构是磷脂双分子层,蛋白质镶嵌在其中,具有流动性,但是其中蛋白质是大分子,流动性不如脂质强。 细胞膜糖类主要是一些寡糖链和多糖链,以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白。细胞膜上的金属离子可能改变细胞膜对一些物质的通透性(影响某些离子通道)。 2.为什么说膜脂质分子是两亲性分子两亲性分子有何特点它对构成细胞膜结构有何意义 答: 因为它含有极性的头部和非极性的尾部,可以起到连接的作用,同时又有一定的流动性。 特点:既有极性端又有非极性端的分子,也就是同时具有疏水性与亲水性区的分子。例如磷脂,其烷基端是疏水端,磷酸端是亲水端。

意义:它们在水溶液中能自动聚拢形成脂双分子层,其游离端往往有自动闭合的趋势,形成一种自我封闭而稳定的中空结构,从而有利于细胞内部的稳定 3.在细胞膜中膜蛋白有何重要功能膜蛋白以什么方式与脂双层相结合 答:膜蛋白功能:①转运分子进出细胞②接受周围环境中激素或其他化学物质信号,递到细胞内③支撑连接细胞骨架成分与细胞间质成分④与细胞分化和细胞间连接有关⑤结合于膜上的各种酶能催化细胞各种化学反应。 膜蛋白分成三类:膜内在蛋白、膜外在蛋白、脂锚定蛋白 结合方式:膜内在蛋白全部或部分插入细胞膜内,直接与脂双分子层的疏水区域相互作用。 膜外在蛋白:不直接与脂双层疏水部分相互连接,一般以非共价键附着在脂类分子头部极性区或跨膜蛋白亲水区的一侧,间接与膜结合。 脂锚定蛋白:一般通过共价键与脂双层内的脂类分子结合。 4.举例说明细胞膜的不对称性。

相关文档
最新文档