自动控制系统控制系统复习要点

自动控制系统控制系统复习要点
自动控制系统控制系统复习要点

运动控制系统复习要点

一期末考试的题型

与交流拖动控制系统比较,直流拖动控制系统是重点;考试内容各占50%左右。而直流电机控制的要求则是掌握,是以计算,分析,证明题方式出现;交流的要求是了解和一般掌握,交流电机则以选择、判断、填空、简述的方式出现。

10级考试题型及分数分配

1 判断题(15-20分,10~20小题)范围广,

2 选择题(15-20分,10~20小题)范围广

3 填空题(10分,10~20小题)内容深,细节区分

3 设计题(10分,1小题)

4 简述题(10-15分,3小题)

5 设计题(10-15分,2小题)

6 分析与计算题(15-20分,4小题)

7 证明题(10-15分,2小题)

二考试内容

主要依据教材中的作业和例题和复习题。

三课程内容复习纲要

直流拖动系统(掌握)

控制系统课程贯穿着一个基本方法:理论联系实际来分析问题解决问题。具体来说就是系统思想和模型化、工程化方法。

本书的基本结构是以学科历史发展过程或者说实际问题为逻辑起点,而一般的理论课程如物理、数学实际上是与科研实际过程相反的,以学习者的知识结构为逻辑起点,从定义、概念、定律再到定理。这是因为理论的发展意味着概念的创新。

控制系统是一门技术理论课程,它是从技术角度来总结的。正因为是技术角度出发的,具有综合性和实践性的特点。所以对学习者来说,必须具备一定的实践基础和专业理论基础。对初学者来说,表现出有一定的难度是不奇怪的,而且,

每一部分内容都仅是打下基础,深入的细节方面的知识,需要更进一步地查阅其它书籍和资料,从另一方面来看,这也给大家留下了自学和实践的空间。

从电压平衡方程式,导出调速方法,从反馈控制原理和静态参数的要求导出闭环控制系统;从静态与动态性能的矛盾分析了P调节器和I调节器,发展到PI调节器;从单闭环的调速系统无法控制起、制动动态电流,导出了带饱和非线性的PI调节器构成双闭环的系统结构,而双闭环的结构可以说交直流电动机控制的基本结构;从单向开关的晶闸管不能实现反转和回馈制动导出了可逆系统结构,又从可逆系统引起的环流问题导出有环流和无环流控制策略;再从调压调速的限制和宽调速范围的要求引出带弱磁控制的非独立弱磁控制系统。

问题一步一步深化。但思考问题的出发点是电压平衡方程式,磁链平衡方程式,转矩平衡方程式,再加半导体开关的特性导致的电力电子电路中的特殊问题(也就是电力电子技术),同时分析时用到了电路和电机中的基本概念如输入功率、输出功率、转差功率、功率因数、效率、损耗等等。

1闭环控制静差率与调速范围重点掌握

可控直流电源VM系统的主要问题直流脉宽调速系统的主要问题

单闭环稳态分析PI调节器

2 双闭环

稳态数学模型及动态性能分析非典型系统的典型化弱磁控制

实验电路模拟式PI调节器,过电流保护电路

3 数字控制(了解)(因为专门开设了微机控制技术课程)

数字测速数字PI调节器及其设计方法

4 可逆系统(掌握)

5 变压调速及其软起动器(了解)

6.1 VVVF 控制方式(掌握)

机械特性比较三段式控制:基频以下小于5HZ时,抬高电压补偿定子压降;基频以下大于5HZ时,恒压频比;基频以上,则恒定电压,弱磁升速;(以额定频率为50HZ为例)

6.2 PWM 模式spwm chbpwm svpwm(了解)(实际上这是现代电机控制的核心技术)

6.3 变频器的主要类型(了解)

6.4 标量控制系统转速开环转速闭环转差频率控制(一般掌握)

6.5 矢量控制原理坐标变换转子磁链定向(一般掌握)

6.6 矢量控制系统直接矢量控制间接矢量控制转子磁链估计和观测(理解)

6.7 直接转矩控制定子磁链的估计和观测(理解)

7 串级调速系统(高效率低功率因数)(掌握)

双馈调速的5种工况串级调速的工作原理起动停车顺序转子整流电路的特点及对机械特性的影响串级调速系统的功率因数及其改进方案双馈调速系统(了解)

8 同步电动机变频调速(了解)

特点及其类型他控变频(转速开环,交交变频,气隙磁场定向)自控变频(无刷直流,永磁同步电动机)

四复习要点

1直流电动机调压可获得恒转矩调速。调励磁可获得恒功率调速。用不同调速方法的直流调速系统有不同的调速特性。生产机机械有不同的负载转矩特性,采用可调速传动装置时需考虑使装置的调速特性与负载的要求相匹配,以获得良好的技术经济效果。负载特性与电机电磁转矩特性的配合(负载特性:1 恒定阻转矩负载2 位能性负载 3 转矩随转速变化的负载(通风机型,恒功率,转矩与转速成比例)4转矩随位置变化的负载)调速特性与负载调速要求的不匹配问题采用保种调速方式要考虑负载调速要求。当两者不匹配时,电动机的容量就得放大。电磁转矩在弱磁时具有恒功率性质,但仍能带动恒转矩负载。

2 供变压调速使用的可控直流电源有:旋转变流机组、静止可控整流器与直流斩波器。直流斩波器不同于相位控制调压的可控整流器,它是通过改变主开关元件的通断时间比例即占空比来调压的,有一系列优点。

3 V-M系统的几个特殊问题可归结为:整流电压的相位控制、整流电流的平波与波形的连续、调速机械特性及其分区。V-M系统的完整调速机械特性包含整流状态下与逆变状态、连续区与断续区。

4 调速范围与静差率是调速系统的两个相互关联的稳态性能指标。闭环控制相对于开环控制来讲,可使系统稳态性能指标得到改善。正确理解调速范围的静差率

中的理想空载转速指的是稳定运转的最低转速对应的理想空载转速,这就将调速范围和静差率联系起来了。闭环后,由于反馈作用降低了静差率,提高了调速范围。这部分内容要求会计算,会分析,会证明。

加转速负反馈和比例调节器的系统,可使稳态速降减小,但总是有静差,不可能使速降为零。该系统中,被反馈环所包围的加于控制系统前向通道上的各种扰动对转速的影响,都受到反馈控制的抑制。但反馈控制无力克服给定电源和检测反馈元件的误差。按照反馈控制的原理,即要控制什么物理量,就必须检测或间接检测这个物理量并变成电信号,组成闭环控制系统。

5单闭环系统的静态结构图和动态结构图应会推导。在作闭环调速系统的稳态参数计算时,可根据稳态性能指标、电动机及其它控制部件的已知参数来计算反馈检测元件与放大器的参数,这首先需找出系统的输入输出关系。然后根据各环节输入输出关系的算式来推导。也可根据结构图通过运算求出。

6 在有静差单转速闭环系统中,可以用电流截止负反馈来抑制突加给定电压的电流冲击,以保证系统有较大的比例系数来满足稳态性能指标。

7 P调节器动态响应快但静态有误差,且为保证较小的静差需要较大的放大系数,这就可能使得系统出现动态不稳定。I调节器静态无差但动态响应慢也会使系统不稳定。PI调节器综合了P和I调节器的优点,可使得系统响应较快且无静差。

8 根据直流电动机的电压平衡方程式,转矩平衡方程式,可以得到电机的动态模型。根据整流器的输出与输入关系,可将其视为一个惯性环节。

8 在带电流正反馈的电压负反馈调速系统中,省去了测速装置。但必须采用电流正反馈补偿电枢电阻引起的稳态速降。全补偿可做到无静差,但系统已处于稳定边缘,故不能指望用这类系统实现无静差调速。

第2章双闭环直流调速系统(重点)

1 转速电流双闭环调速系统克服了单闭环调速动态电流无法控制的缺点。可以根据原理图画出稳态结构图,进而得出静特性方程式。对于PI调节器组成的双闭环系统,其稳态参数计算比较简单。转速反馈系数和电流反馈系数可按照最高电压和最大电流及调节器的线性工作电压(或在数字系统中按位长)来选择。带饱和非线性的PI调节器组成的双闭环调速系统是本次课程的重点内容。利用饱和来实现准最优时间控制。要调节起动、制动电流的大小,只能是在正确调节电流

反馈系数的基础上,调节ASR的限幅值。也就是调节ASR中的限幅电路中的电位器。注意起动、制动电流需调节不同的电位器。对于正向电压给定,起动时,由于ASR反向,输出负的电压,所以应调节负电压限幅值。而对于制动,调节正电压限幅值。对于双闭环系统的稳态计算,见P55式(2-3)、(2-4)、(2-5)。是重点掌握的。PI调节器的输出与输入无关,是由后面环节的需要决定的。这一原理,在控制系统中经常用到。

2 根据双闭环系统原理图,可得到动态结构图。双闭环系统的特点是利用饱和非线性实现了“准时间最优”控制,但带来了转速超调。可以用附加微分控制器或采用智能控制器和内模控制器来改善动态性能。双闭环系统的另一特点就是稳中求快。先设计和调试内环,使其稳定并满足动态性能后,再设计和调试外环。这个前提是内环控制量比外环控制量变化慢得多(10倍以上)。

3 系统动态性能或调节器的工程设计基本思想是非典型系统的典型化,具体来讲就是零极点抵消方法再加上工程近似法。注意一般都是抵消大的惯性环节。一般电流环设计为典型I型系统,因为电流环强调跟随性能;而转速环设计为典型II 型系统,因为转速环强调抗干扰性能。

在微机控制系统中,将闭环控制视为运算,采用定时运算的方法实现实时控制。也就是说闭环控制可视为定时中断服务程序中间的运算,也就是说包括采样实际反馈值并加以滤波、计算给定与反馈的误差,对误差进行PI运算,输出PI 运算结果。由于电流比转速变化快得多,电流定时器设置要比速度环定时器短得多。定时器设置的时间就是采样周期。采样周期一般按控制对象的惯性时间常数来设定,最低要满足香农采样定理,以减小采样失真。实际的采样周期远小于香农采样定理计算值,并在实际调试中予以调整。采样周期越短,调节器的设计就可按连续系统设计再离散化。也可采用直接离散化的方法来设计调节器。在计算机系统中,PI调节器必须离散化。而PI调节器的离散化形式有很多种,如积分分离算法,增量式算法等。

4 在需要宽调速范围的直流调速系统中,常采用电枢电压与弱磁的配合控制。即基速以下调压调速,电磁转矩的性质属于恒转矩。而基速以上,由于电机电压的限制,只能弱磁调速,这时,其电磁转矩的性质属于恒功率。这就是说,控制规律要按照控制对象的物理约束来合理进行。

第3章可逆调速系统

1 从电动机转矩公式可得出改变转矩方向的两种基本方法:改变电枢电流或改变励磁磁通的方向。采用接触器切换、晶闸管开关切换、反并联线路都能实现。前两者都只适用于动态性能要求不高的情况。由于励磁绕组电感量大,改变励磁磁通方向的方法只适用于对快速性要求不高、正反转不频繁的可逆系统。

2 即使不需要正、反转,但只要它需要快速回馈制动,就必须采用正反两组晶闸管装置供电。因为回馈制动需使反组晶闸管工作在有源逆变状态才能实现。有源逆变需要一定的条件。而且有源逆变须防止逆变颠覆造成过电流的故障发生。但是,在位能式负载的情况下可以在只有一组晶闸管的情况下实现回馈制动(它可在二象限即I,IV象限运行)。

3 环流是采用正、反两组晶闸管供电后带来的新问题。可分为有环流系统和无环流系统。有环流系统中必须加环流电抗器,而无环流可省去环流电抗器,在控制策略上必须加上无环流逻辑来控制选触开关。

4仔细分析配合控制有环流可逆调速系统的正向制动过程,可以看到,过渡过程包含本组逆变、它组制动两个阶段,而它组制动又可分解为建流,逆变和减流三个子阶段。但最主要的是它组逆变电动机回馈制动阶段。该系统的突出优点是正反转时起动与制动过程完全衔接而适合快速正反转,但需要增设环流电抗器而增加负担,因此只适用于中、小容量系统。而采用逻辑无环流控制实现选触,可节省一套电流调节器与触发装置。

5 除了晶闸管直流电动机外,采用直流PWM调速系统,具有线路简单、功耗低、效率高和功率因数高、动态性能好等一系列优点。闭环PWM调速系统的静、动态分析与晶闸管调速系统基本上一样,所以重点在对主回路、PWM控制电路及其它特殊问题进行讨论。主回路分为不可逆、可逆;可逆又分为双极式,单极式和受限单极式。PWM全控型双极性桥式变流器供电的直流电动机分析见书中P14-15。其中的一个特殊问题是电能回馈与泵升电压的问题。这个问题同样出现在交直交变频器的主回路上。

第5章交流调速的基本类型和交流变压调速系统

1 交流调速系统按对转差功率的处理方式分为三类:转差功率消耗型、回馈型、不变型。

2相比较而言,变压调速适合于风机泵类负载。而对于恒转矩负载,变压调速的电动机,由于转差功率损耗与转差率s 成正比,所以不宜长期在低速下工作。 3 对于大容量的异步电动机,不能直接通电起动。必须采用降压起动,而虽然降压导致起动电流下降,但由于起动转矩与电压的平方成正比,又会出现起动转矩不够的问题。因此,降压起动只适用于空载起动。异步电动机在额定工况下运行时效率较高,异步电动机长期轻载时,由于输出功率很小,使得其它功率所占成分较大,使得效率很低。因此,有限地降低定子电压,可以降低气隙磁通,同时降低铁损和励磁电流,达到节能的目的。另外,VVVF 变频也可用来作软起动和空载节能,而且比调压方式更理想。由于调压调速能耗大,谐波严重,正在被变频调速所取代。只是在大容量的简单的软起动中发挥一定作用。

第6章 异步电动机变压变频调速系统

1变频调速的控制方式:根据变压器绕组电动势公式,可以得出稳态时保持定子磁通恒定时必须进行VVVF 变压变频协调控制;根据异步电动机的稳态等效电路,可以分析出恒压频比,怛定子磁通频比,恒气隙磁通频比,恒转子磁通频比的机械特性如图6-6。相关分析见式6-10,6-15,6-18。

从异步电动机稳态等效电路图6-5可以看出,如果抬高定子电压,能维持c E g =1/ω,会使线性段范围比c U s =1/ω更宽,但仍具非线性特征,也就是具有最大转矩;而进一步抬高定子电压,维持c E r =1/ω,则转矩仅与转差频率成正比,变成线性的而不再是非线性的。其条件是保持转子全磁通恒定不变而不是保持定子磁通或气隙磁通不变。而动态保持转子磁通恒定正是转子磁场定向矢量控制的控制规律。图6-6的比较与分析是重点。其实质是漏抗压降导致了机械特性的非线性。而恒转子磁通频比控制,抵消了转子漏抗的压降,所以将机械特性变成了线性的。

VVVF 的控制规律为三段式:基频以下小于5HZ 时,抬高电压补偿定子压降;基频以下大于5HZ 时,恒压频比;基频以上,则恒定电压,弱磁升速;

2采用VVVF 可以实现同步电动机的软起动但不能完全克服振荡及失步现象。为此,必须设计给定积分器使定子频率不要变化过快。这也就间接限制了起制电流。同样,在异步电动机VVVF 系统中,由于转矩与转差成正比,限制了定子频率变化率也就限制了转子转差也就间接限制了转矩即限制了起制动电流。

3 变频器分为交直交(间接变频)和交交变频(直接变频)两种。交直交变频又分为电压源型和电流源型。交直交变频器因调压与调频环节有差别,又有多种分为:可控整流器调压与六拍逆变器、不控整流器加斩波调压与六拍逆变器、不控整流加PWM同时变压变频的逆变器。交直交变频器分为电压源型和电流源型。直流输出通过并联电容输出的是电压源型变频器,通过串联电感输出的是电流源型变频器。而采用二极管不控整流器加全控型PWM逆变器构成的变频器中,SPWM逆变器是同时实现变压变频的。但可控整流器加可控逆变器构成的晶闸管交直交变频器,是通过整流器调压,逆变器变频。即变压和变频是分开的。交-交变频所用元件多,输出频率受限,最高频率不超过电网频率的1/3—1/2。所以只适用于低速大功率拖动系统。

4 SPWM控制模型主要分为电压正弦,电流正弦,圆形磁通三大类。还有消除指定次数谐波的控制技术。其中电流正弦也就是电流滞环跟踪PWM由于易于用模拟电路实现而较常用。而SPWM适用于微机控制,也有专用集成电路实现的。SVPWM由于TI公司的DSP中具有硬件产生电路,且比SPWM具有更高电压利用率,谐波分量小,正在推广应用。由于二极管输出直流电压幅值不变,所以SPWM逆变输出的是一系列等幅不等宽的矩形脉冲,其面积等效于正弦波面积,即平均值等效于正弦波。而SVPWM输出电压比SPWM高出15%,即直流电压的利用率高。

5 VVVF转速开环系统中由于本身没有自动限制起制动电流的作用,因此频率设定必须通过给定积分算法(电路)产生平缓的升速或降速信号;由于滑差较小时,转差频率与转矩成正比,因此控制转差频率也就间接控制了转矩,但其前提条件是保证气隙磁通不变,这可以根据图6-41的函数关系控制定子电压和频率来保证。转差频率系统可以构成双闭环系统,但还达不到直流双闭环系统,其原因是只在稳态下保证气隙磁通不变,没有控制定子电流的相位,而且存在正反馈环节也就影响控制的性能。

6 异步电动机是多变量、高阶、非线性、强耦合的系统。坐标变换是交流电机矢量控制的基础。根据磁动势或旋转磁场相等的原则,三相交流绕组可用二相交流绕组等效;3/2是三相静止坐标变成二相静止坐标,其目的是减少变量,即降阶。还可以用二相相互垂直的直流绕组旋转等效;矢量旋转变换VR是将两相静止坐

标变换到二相旋转坐标系,将交流量变换到直流量,扩展了频带,提高了动态响应。二相旋转坐标系中很有用的一种是两相同步旋转坐标系dq系,其旋转速度等于同步角速度。所以dq系对于转子来讲按转差频率旋转。将dq系定向到转子磁链方向,称之为mt系。也就是按转子磁链定向的旋转坐标系。这样的好处,如果保持转子磁链恒定并使之全在M轴,可将定子电流的励磁分量和转矩分量解耦,从而可以将之变成单变量系统,可单独闭环控制。而按照矢量控制方程6-135,6-136,6-137可以保证这一点。再加除法器可以将电流控制型的异步电动机分解成转速和磁通两个独立的线性子系统。其条件是式6-128,结果是6-129,式6-135,6-136构成的矢量控制方程式。反过来,根据矢量控制方程式,就可以像直流电机一样分别控制磁通和转速、电流分量来构建单闭环控制系统了,也就保证了转子磁通动态恒定并使分解到M轴上。

7 带磁链闭环和转速闭环的称为直接矢量控制,其中转子磁链计算是关键,计算模型中分为电流模型和电压模型两种。电流模型可分为两相静止坐标系和两相旋转坐标系两种,(如式6-142,143);电压模型(式144,145)更适合于中、高速范围,电流模型适合于低速。

8磁链开环转差型矢量控制系统也称为间接矢量控制系统。因为磁链闭环的系统中,磁链计算不准确,反而不如采用磁链开环控制,这时采用转差频率式的矢量控制方程,可以构成系统。转差频率式的矢量控制系统与转差频率式的标量控制系统不同的是控制了定子电流的幅值和相位。

9 直接转矩控制系统其特点是构成转矩和磁通闭环,采用非线性控制器构成砰砰控制器,利用转矩和磁链控制器输出的误差信号共同直接产生电压的SVPWM 波形。直接转矩控制体现了人工智能的思想,又是一种查表控制。这样控制了定子磁链和转矩,可以得到较快的转矩响应。由于是在定子坐标系,所用的转矩计算模型和磁链计算模型都是在两相静止坐标系上进行的,这就避开了旋转变换,简化了系统结构。直接转矩控制低速时的转矩脉动和磁链计算误差仍是待解决的问题。直接转矩控制与矢量控制系统的初步比较见表6-1。

第7章异步电动机双馈调速系统

1 双馈就是除了电机与交流电网直接连接外,转子侧也要与交流电网或外接电动势相连。从电路拓扑结构看,可认为是在转子绕组回路中附加一个交流电动势。

在恒定负载下,转子串附加电动势与转子电动势的同相时,电机可工作在超同步状态电动或回馈制动;而反相时,电机工作在次同步状态电动或回馈制动。而在位能负载时,转子串附加电动势与转子电动势反相时,还可工作在反转倒拉制动状态。要实现回馈制动,转子变频器必须能够进行双向功率流动,转子变频器只能输出转差功率时,则只须单向变频器。

2次同步电动状态下的双馈系统称之为串级调速系统,可用交直交变频器来实现交交变频,也就转子侧为不控整流器,经过有源逆变回馈电网。可通过调节逆变角实现平滑无级调速。

由于定子侧输入有功功率,而转子侧输出有功功率,所以串调效率高。由于转差功率与转差功率成正比,使得转子变频器的容量、电压等级与调速范围成正比,因此,从经济角度出发,串级调速和双馈调速常用于有限范围调速,而很少用于全范围调速。由于转子整流器不可控,所以不能实现电气制动,只能靠负载自由停车。

3虽然回馈转差功率效率高,但同时定子侧和转子侧都要吸收无功功率,所以功率因数低。普通串级调速系统是一种高效率低功率因数的系统。而且随着转差率的增大,也就是转速的降低,功率因数也降低,逆变器相控是功率因数低的主要原因。为提高功率因数,可采取斩波器的方法来固定逆变角;还可用PWM变流器取代晶闸管逆变器;内馈就是将转差功率不是回馈电网而是直接回馈定子,这必须在定子上增设一个小功率的调节绕组,通过这个调节绕组的设计还可以抵消晶闸管逆变器电流谐波中3次和5次分量。

4 由于异步电动机折算到转子侧的漏抗值比一般整流变压器的等效漏抗大,所以转子整流电路的换相重叠现象导致了转子等效电阻加大,使得串级调速机械特性变软,最大转矩减小。串级调速如同直流电动机一样可采用双闭环结构。但其等效电动势参数不是常数,从而使得转子直流回路的时间常数和放大系数都是转速的函数,而异步电动机的机电时间常也是转速和电流的函数。这使得调节器的参数设计困难,必须采用变参数或自适应设计,才能保证在整个调速范围动态性能一致。

5 由于变频器是按有限调速范围设计的,所以变频器只能承受串调运行时的转子电动势。而起动到串调前的低转速时,转差大,转子电压高,所以一般串级调速

系统不能直接起动,只能依靠频敏电阻起动到串调运行允许的最低转速才能加入串调装置。由于是有源逆变,所以逆变器应该先投入工作,而最后切离系统。对于有源逆变来说,最严重的故障是逆变失败导致的过电流,逆变失败的物理原因是机械能无法回馈变成电能,这其中有可能是电网瞬间停电,逆变时丢脉冲。对此,应加设瞬间停电保护措施。因此,串级调速起动和停车时开关的分合闸有严格的顺序。当转子变频器故障时,还可以切换到无调速状态即最高转速下短期运行。

第8章同步电动机变频调速系统

1 同步电动机变频调速属于转差功率不变型。同步电动机的矩角特性使得它不具备自起动能力,而在转子上加笼式绕组可以利用异步电动机转矩与转差成正比的特点实现异步起动。但如果转子落后的角度太大,便可能造成振荡到失步。采用VVVF可以实现同步电动机的软起动但不能完全克服振荡及失步现象。为此,必须设计给定积分器使定子频率不要变化过快。这也就间接限制了起制电流。同样,在异步电动机VVVF系统中,由于转矩与转差成正比,限制了定子频率变化率也就限制了转子转差也就间接限制了转矩即限制了起制动电流。

2 就频率控制而言,同步电动机变频调速系统可分为他控变频和自控变频两种。他控变频的特点是控制定子频率,而转子频率随之变化。换名话说,转速随着定子频率而变化,但负载较大时,转子转速可能跟不上定子频率变化,就会出现振荡或失步现象;自控变频则是根据转子位置直接控制变频装置的输出电压或电流的相位,使定子频率跟随转子频率变化。能从根本上杜绝失步现象。

他控变频同步电动机系统常用的包括转速开环恒压频比控制和交交变频大型低速同步电动机调速系统及高性能的气隙磁场定向的矢量控制系统。

3自控变频同步电动机调速系统是典型的机电一体化产品。梯形波(方波)变频调速系统即无刷直流电动机变频调速系统和永磁同步电动机变频调速系统是两类重要的应用越来越广泛的自控变频同步电动机调速系统。目前,常用于中小功率的伺服系统和体积空间要求严格的独立电源供电的驱动系统如车辆和船舰。

梯形波变频也称无刷直流电动机,它与永磁同步电动机一样都属于同步电动机。两个系统的主要区别在于:一方面,电机绕组设计使得气隙磁场或反电势波形不同,一个是梯形波一个是正弦波。另一方面,转子位置检测方式不同,一个

离散位置检测另一个是连续位置检测。

梯形波电动机如果忽略换相过程,可视为恒定电流和恒定反动势,即可等效为无刷直流电动机,可采用类似于直流电动机的方法来控制。这样控制结构简单。但由于离散位置检测检测导致开关换流时电流跳变从而导致了转矩脉动。

而永磁同步电动机由于装设了昂贵的连续转子位置检测器(如旋转变压器)可实现高性能的伺服控制。由于是正弦波交流,可采用矢量控制。当按转子磁链定向,定子电流励磁分量为零时,可得到如同直流同步机一样的转矩控制特性。控制的关键在于准确检测转子的空间位置。控制系统要比异步电动机简单。因为是同步电动机,这两种电动机的起动都是一个特殊问题。常规永磁电动机的最大局限是很难实施弱磁控制,只能在基速下调速。只有专门设计的电动机称之为IPM同步电动机,可以实现基速以上的恒功率运行。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

列车运行控制系统毕业设计

列车运行控制系统 铁路通信信号系统是铁路运输的基础设施,是实现铁路统一指挥调度,保证列车运行安全、提高运输效率和质量的关键技术设备,也是铁路信息化技术的重要技术领域。 现代信息类技术的迅速发展。对铁路信号、通信产品和服务产生了重要影响。铁路通信和信号技术,以及现代铁路信息化系统之间的关系和作用变得密不可分。车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。 在列车运行控制技术方面,计算机、通信、控制技术与信号技术集成为一个自动化水平很高的列车运行自动控制系统(简称列控系统)。列控系统不仅在行车安全方面提供了根本保障,而且在行车自动化控制、运营效率的提高及管理自动化等方面,提供了完善的功能,并向着运输综合自动化的方向发展。列控系统技术是现代化铁路的重要标志之一。 随着列车速度的提高,列车的运行安全除了以进路保证外,还必须以专用的安全设备,监督、强迫列车(司机)执行。这些安全设备从初级的列车自动停车装置、自动告警装置、列车速度自动监督系统(或列车速度自动检查装置)发展到列车速度自动控制系统。 列车自动控制系统(A TC)—般指系统设备(包括地面设备和车载设备),同时也是一种闭塞方式,主要包括: 1.以调度集中系统CTC为核心,综合集成为调度指挥控制中心。 2.以车站计算机联锁系统为核心,综合集成为车站控制中心。 3.以列车速度防护与控制为核心,综合集成为列车(车载)运行控制系统。 4、以移动通信(例如GSM-R)平台,构建通信信号一体化的总成系统(例如CTCS)。 列车自动控制系统(A TC)的主要功能有四项: ·检查列车在线路上的位置(列车检测)。 ·形成速度信号(调整列车间隔)。 ·向列车发送速度信号或目标距离信号(信号传输)。 ·按速度或目标距离信号控制列车制动(制动控制)。 上述一至三项功能由地面没备完成,第四项功能由车载设备完成。 本章主要内容为200km/h动车组司机驾驶所需要的列控ATP技术和GSM-R系统中的无线列调功能。 第一节列控ATP系统技术原理 一.列控ATP系统的组成与功能 列控ATP是列车超速防护和机车信号系统的一体化系统,列控ATP系统主要由车载设备及地面设备两大部分组成,地面设备与车载设备一起才能完成列车运行控制的功能。 图7.1.1是列车运行控制系统地面设备原理框图。

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.360docs.net/doc/8c18283482.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

液位自动控制系统设计与调试

液位自动控制系统设计 与调试 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。

2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

列车运行控制系统

列车运行控制系统

列车运行控制系统 -03-25 14:52:17| 分类:铁路基础知识 | 标签: |字号大中小订阅 根据列车在铁路线路上运行的客观条件和实际情况,对列车运行速度及制动方式等状态进行监督、控制和调整的技术装备。系统包括地面与车载两部分,地面设备产生出列车控制所需要的全部基础数据,例如列车的运行速度、间隔时分等;车载设备经过媒体将地面传来的信号进行信息处理,形成列车速度控制数据及列车制动模式,用来监督或控制列车安全运行。系统改变了传统的信号控制方式,能够连续、实时地监督列车的运行速度,自动控制列车的制动系统,实现列车的超速防护。列车控制方式能够由人工驾驶,也可由设备实行自动控制,使列车根据其本身性能条件自动调整追踪间隔,提高线路的经过能力。 新一代铁路信号设备是由列车调度控制系统及列车运行控制系统两大部分组成的。从技术发展的趋势看是向着数字化、网络化、自动化与智能化的方向发展。它的作用是保证行车安全、提高运输效率、节省能源、改进员工劳动条件。 发展中的列车控制系统将成为一个集列车运行控制、行车调度指挥、信息管理和设备监测为一体的综合业务管理的自动化系统。

列车运行控制系统的内容是随着技术发展而提高的,从初级阶段的机车信号与自动停车装置,发展到列车速度监督系统与列车自动操纵系统。 进入20世纪90年代,世界上已有许多国家开发了各自的列车运行控制系统,其中,在技术上具有代表性且已投入使用的主要有:德国的LZB系统,法国的VM300和TVM430系统,日本新干线的ATC系统等。这些系统的共同特点是:能够实现自动连续监督列车运行速度,可靠地防止人为错误操作所造成的恶性事故的发生,保证列车的高速安全运行。它们之间的主要区别体现在控制方式、制动模式及信息传输等形式方面。 中国近几年来,对国外列车控制系统进行了较深入的研究,对列车控制模式、轨道电路信息传输、轨道电缆信息传输等方面都已取得不少的成果。在开发过程中,还可借鉴欧洲列车控制系统“功能叠加”、“滚动衔接”的经验,从保证基本安全着手,分步完成并真正达到安全、高效、舒适的目标。 中国列车运行控制系统(CTCS)介绍 CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS概述

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

PWM温度自动控制系统的设计

《计算机控制技术》 课程设计 学生姓名: 学号: 专业班级:电气工程及其自动化(1)班 指导教师: 二○一二年十月二十九日

目录 1.课程设计目的 (3) 2.课程设计题目和要求 (3) 3.设计内容 (3) 4.设计总结 (10) 4.参考书目 (11) 5.附录

1.课程设计目的 通过本课程设计, 主要训练和培养学生的以下能力: (1).查阅资料:搜集与本设计有关部门的资料(包括从已发表的文献中和从生产现场中搜集)的能力; (2).方案的选择:树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力; (3).迅速准确的进行工程计算的能力,计算机应用能力; (4).用简洁的文字,清晰的图表来表达自己设计思想的能力。 2.课程设计题目和要求 题目:PWM温度自动控制系统的设计 要求: 1.要求设计温度控制系统,设定温度为230度,采用电阻丝作为加热器件,要求无余差,超调小,加热速度快。 2.硬件采用51系列单片机,采用固态继电器作为控制元件。 3采用keil c作为编程语言,采用结构化的设计方法。 4.要求用protel设计出硬件电路图。 5画出系统控制框图。 6 画出软件流程图。 3.设计内容 3.1 PID控制原理 将偏差的比例,积分和微分通过线性组合构成控制量,用这一控制对被控对象进行控制,这一样的控制器称PID控制器

3.1.1.模拟PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。为了说明控制器 (t)与实际输出信号n(t)进行比的原理,以图1.1的例子说明。给定输入信号n (t)-n(t),经过PID控制器调整输出控制信号u(t),u(t)对目较,其差值e(t)=n 标进行作用,使其按照期望运行。 常规的模拟PID控制系统原理框图如同1.2所示。该系统有模拟PID和被控对象组成。图中r(t)是给定的期望值,y(t)是系统的实际输出值,给定值与实际输出值,给定值与实际值构成控制偏差e(t): e(t)作为PID控制的输入,u(t)作为PID控制的输出和被控对象的输入。构成PID和被控对象的输入。构成PID控制的规律为: 其中:Kp为控制器的比例系数 Ti为控制器的积分时间,也称积分系数 Td为控制器的未分时间,也称微分系数

自动控制原理课程设计

金陵科技学院课程设计目录 目录 绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (10) 4.1校正前系统的传递函数的特征根....... 错误!未定义书签。 4.2校正后系统的传递函数的特征根....... 错误!未定义书签。五系统动态性能的分析.. (13) 5.1校正前系统的动态性能分析 (13) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图 (244) 八系统的对数幅频特性及对数相频特性 (24) 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性错误!未定义书签。总结 (267) 参考文献................................ 错误!未定义书签。

绪论 在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

热工自动化常用英文缩写字母含义

热工自动化常用英文缩写字母含义 AA:交流电流电量单点隔离输入模件 A/D:模/数转换 A/M:自动/手动 ABC:锅炉自动控制 ABS: AC:交流电 ACC燃烧自动控制: ACGIE:美国政府工业卫生联合会 ACK/NAK:确认/否认 ACP:辅助控制盘 ACS:自动控制系统(变频控制系统) ACT:执行机构或探头测量集电极接线 ADP:报警显示板 ADS:自动调节系统(电网总调遥控) ADSDOWN:遥控减 ADSPERM;遥控允许 ADSUP:遥控增 ADV:先进控制系统 AE:送风指令控制偏差 AEH:模拟式电液控制系统 AFC:送风控制系统 AGC:自动发电量控制(电网总调) AI:模拟量输入 AIEE:美国电气工程师协会 AIMLST:报警一览 ALD:实际负荷指令 ALE: ALERT:报警 ALMHIS:查询历史报警模块 ALMLST:报警一览模块 AM;数值量 AMM,LMM:逻辑主模块 AMM:模拟量主模件 AMR:电量计量和自动秒表功能 AM/FM/GIS:配电网地理信息系统 AND:与电路制造逻辑乘积的电路,即输入方面有一个是0时,输出也是0。ANSI:美国国家标准化协会 ANALOG:模拟量处理板 AO:模拟量输出 AOI:光学检查仪 AOM:模拟量输出模件 AP:应用处理机(多功能交流电单点隔离输入模件)

精选文库APC:电厂自动控制 APS:常用电 API:标准数据交换方式 AQZ:交流电量同期管理模件 AR:辅助继电器区 ARP:辅助继电器盘 ASCⅡ:美国标准信息交换码 ASDOWN:同期减 ASL:挂闸 ASM:模拟量子模件 ASME:美国机械工程学会 ASNT:美国非破坏性实验学会 ASPERM:同期允许 ASS:电气同期 ASS:自动同期系统 ASSISTANTS:向导 AST:停机保护 AST:主汽门跳机电磁阀 ASTM:美国材料实验学会 AST电磁阀:停机电磁阀 ASUP:同期增 ATC:汽轮机自起停控制系统 AUC: 自动电压控制 AUN:自动 AUTCAD:电子文档 AUTO:自动 AUTOSYN:自动同步 A V:交流电压电量单点隔离输入模件 A VI:电压和电流单点隔离输入模件 A VR:自动励磁调节系统(发动机自动电压调节装置) AWS:美国焊接协会 B C;通讯控制卡或基本控制器 BANDWIDTH:带宽 BASE: BC;I/O通讯卡(基本控制器) BCD:二~~十进制码 BCNET:网络型站控制卡 BCS:燃烧器控制系统 BD:锅炉负荷指令 BECR:炉额定负荷 BEM:单片微机控制器 BF:锅炉跟踪 BFA:炉跟踪自动 BFC:锅炉燃烧控制

自动控制系统毕业设计..

目录 摘要…………………………………………………………………第1章任务要求和方案设计…………………………………… 1.1 任务要求……………………………………………………… 2.1 总体方案确定及元件选择…………………………………….. 2.1.1 总体设计框图……………………………………………… 2.1.2 控制方案确定………………………………...…………… 2.1.3 系统组成……………………………………………… 2.1.4 单片机系统……………………………………….. 2.1.15 D/A转换........................................................................... 2.1.5 晶闸管控制………………………………………... 2.1.6 传感器……………………………………………… 2.1.7 信号放大电路………………………………………. 2.1.8 A/D转换……………………………………………. 2.1.9 设定温度及显示……………………………………. 第2章系统硬件设计……………………….…………………2.1 系统硬件框图……………………………………………2.2 系统组成部分之间接线分析…………………………… 第3章系统软件设计…………………………………………. 3.1程序流程图..…………………………………..…………… 第4章参数计算……………………………..………………... 4.1 系统各模块设计及参数计算 4.1.1、温度采集部分及转换部分

4.1.2、传感器输出信号放大电路部分:........................... 4.1.3、模数转换电路部分:............................ 4.1.4、ADC0804芯片外围电路的设计:....................... 4.1.5、数值处理部分及显示部分:............................. 4.1.6、PID算法的介绍....................................: 4.1.7、A/D转换模块.......................................... 4.1.7、A/D转换模块................................... 4.1.8 单片机基本系统调试............................... 4 .1. 9 注意事项:................................................................ 第5章测试方法和测试结果 5.1 系统测试仪器及设备 5.2 测试方法 5.3 测试结果 结束语........................................... 参考文献.…………………………………….……….……………

金陵科技学院自动控制原理课程设计

绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (8) 4.1校正前系统的传递函数的特征根 (8) 4.2校正后系统的传递函数的特征根 (10) 五系统动态性能的分析 (11) 5.1校正前系统的动态性能分析 (11) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性 (27) 总结................................... 错误!未定义书签。8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

电气传动自动控制系统课程设计.doc

课程设计报告书 题目:电气传动自动控制系统 报告人:王宗禹 学号:1043031325 班级:2010级34班 指导教师:肖勇 完成时间:2013年7月日 同组人:王大松 秦缘 龚剑 电气信息学院专业实验中心

一.设计任务 1.设计目标: (1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作 (2)已知条件: (3)稳态/动态指标:静态:s% ≤ 5% D = 3 动态:σi% ≤ 5% σn% ≤ 10% (4)期望调速性能示意说明:静差率小于5%,调速范围D=3. (5)系统电路结构示意图: 2.客观条件: (1)使用设备列表清单及主要设备功能描述: 二.系统建模(系统固有参数测定实验内容)

1.实验原理 (1)变流电源内阻Rn的测定: a.电路示意图如下: 可以等效如下: b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。 (2)电枢内阻 Ra、平波电感内阻 Rd的测定: a.电路示意图如下:

b.实验方法步骤: ◆电机静止,电枢回路外串限流电阻 ◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点) ◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra , Rd 的平均值. (3)电动机电势转速系数 Ce的测定: a.实验原理: 由公式 可以推导出Ce的测定公式: b.实验方法步骤: ◆空载启动电机并稳定运行(I d0大小基本恒定) ◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据 (4)整流电源放大系数 Ks的测定: a.实验原理: Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。故可以通过公式测定Ks.

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

自动控制系统课设

唐山学院 自动控制系统课程设计 题目基于MATLAB的按转子磁链定向的异步电动机仿真系 (部) 智能与信息工程学院 班级 12电本1班 姓名董智博 学号 4120208102 指导教师吕宏丽吴铮 2016 年 1 月 18 日至 1 月 22 日共 1 周 2016年 1 月 22 日

《自动控制系统》课程设计任务书

目录 1引言 (1) 2异步电动机的三相数学模型 (2) 2.1异步电动机动态数学模型的性质 (2) 2.2异步电机三相数学模型的建立过程 (2) 2.2.1磁链方程 (3) 2.2.2电压方程 (5) 2.2.3转矩方程 (6) 2.2.4运动方程 (7) 3坐标变换和状态方程 (9) 3.1坐标变换的基本思路 (9) 3.2三相--两相变换(3/2变换和2/3变换) (10) 3.3静止两相坐标系状态方程的建立 (11) 4系统模型生成及仿真............................... 错误!未定义书签。 4.1各模型实现 (14) 4.1.1 3/2变换模型 (14) 4.1.2异步电动机模型 (15) 4.2整体模型 (16) 4.3仿真参数设置 (17) 4.4仿真结果 (17) 5总结 (20) 参考文献 (21)

1引言 异步电动机具有非线性、强耦合性、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制系统和直接转矩控制系统是已经获得成熟应用的两种基于动态模型的高性能交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电机模型,然后模仿直流电机控制策略设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的正、负符号,根据当前定子磁链矢量所在位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足。但是无论是哪种控制方法都必须经过仿真设计后才可以进一步搭建电路实现异步电动机的调速。 本设计是基于MATLAB的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式经行仿真,模拟将要实施的转子磁链设计,查看设计后的转矩、磁链、电流、电压波形,对比观察空载起动和加载过程的转速仿真波形,观察异步电动机稳态电流波形,观察转子磁链波形。

热工自动控制论述题(新版)

热工自动控制论述题(新版) Without safety as a guarantee, it may be vanished in an instant! So the importance of safety is a subject that everyone must pay attention to. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0607

热工自动控制论述题(新版) 什么叫分散控制系统?它有什么特点? 分散控制系统又称总体分散型控制系统,它是以微处理机为核心的分散型直接控制装置。它的控制功能分散(以微处理机为中心构成子系统),管理集中(用计算机管理)。它与集中控制系统比较有以下特点: 1、可靠性高(即危险分散)。以微处理机为核心的微型机比中小型计算机的可靠性高,即使一部分系统故障也不会影响全局,当管理计算机故障时,各子系统仍能进行独立的控制。 2、系统结构合理(即结构分散)。系统的输入、输出数据预先通过子系统处理或选择,数据传输量减小,减轻了微型机的负荷,提高了控制速度。 3、由于信息量减小,使编程简单,修改、变动都很方便。

4、由于控制功能分散,子系统可靠性提高,对管理计算机的要求可以降低,对微型机的要求也可以降低。 试述单元机组自动调节有什么特点? 单元机组,即锅炉生产的蒸汽不通过母管,直接送到汽轮机,锅炉和汽轮机已经成为一个整体,需要有一个共同的控制点,需要锅炉和汽轮机紧密配合,协调一致,以适应外部负荷的需要。 单元机组,特别是有中间再热器的机组,当外部负荷时,由于中间再热器的容积滞后,使中低压缸的功率变化出现惯性,对电力系统调频不利,需要在调节系统上采取措施。 单元机组的动态特性与母管制差异较大。一般来讲,单元机组汽包压力、汽轮机进汽压力在燃烧侧扰动时变化较大,而蒸汽流量变化较小;母管制锅炉汽包压力变化小,而蒸汽流量变化较大。因此,单元机组汽压调节系统宜选用汽包压力或汽轮机进汽压力作为被调量,这同母管制锅炉差别较大(母管制的汽压力调节系统一般采用蒸汽流量加汽包压力微分信号)。至于送风和引风调节系统,单元制同母管制差异不大。

相关文档
最新文档