数值计算方法教案_曲线拟合与函数逼近

数值计算方法教案_曲线拟合与函数逼近
数值计算方法教案_曲线拟合与函数逼近

第三章 曲线拟合与函数逼近

一.曲线拟合 1.问题提出:

已知多组数据(),,1,2,,i i x y i N = ,由此预测函数()y f x =的表达式。 数据特点:(1)点数较多。(2)所给数据存在误差。

解决方法:构造一条曲线反映所给数据点的变化总趋势,即所谓的“曲线拟合”。 2.直线拟合的概念 设直线方程为y=a+bx 。

则残差为:?i i i e y y

=-,1,2,,i N = ,其中?i i y a bx =+。 残差i e 是衡量拟合好坏的重要标志。 可以用MATLAB 软件绘制残差的概念。 x=1:6;

y=[3,4.5,8,10,16,20];

p=polyfit(x,y,1); xi=0:0.01:7; yi=polyval(p,xi); plot(xi,yi,x,y, 'o'); y1=polyval(p,x); hold on for i=1:6

plot([i,i],[y(i),y1(i)], 'r');

end

可以绘制出如下图形:

三个准则: (1)max i e 最小 (2)1n

i i e =∑最小

(3)21

N i i e =∑最小

3.最小二乘法的直线拟合

问题:对于给定的数据点(),,1,2,,i i x y i N = ,求一次多项式y=a+bx ,使得总误差Q 最小。其中()2

21

1

N

N

i i i i i Q e y a bx ====-+????∑∑。根据

0,0.Q Q

a b

??==?? 2222

1

222N

i i i i i i i Q y a b x y a y x b x ab =??=++--+??∑

[]()1

2222N

i i i i i Q a y x b Na y b x a =?=-+=-+?∑∑∑ ()221

2222N

i i i i i i i i i Q bx y x x a b x x y a x b =???=-+=-+???∑∑∑∑ 故有以下方程组(正则方程):

2

i i

i

i i i aN b x y a x b x x y ?+=??+=??∑∑∑∑∑ 例1.给定数据表,求最小二乘拟合一次多项式

解:N=5,5

1

i i x =∑=702,5

1

i i y =∑=758,5

2

1

i i x =∑=99864,5

1

i i i x y =∑=108396。

则有方程组

570275870299864108396a b b b +=?

?

+=?

解得a=-60.9392,b=1.5138,则一次多项式为y=-60.9392+1.5138b 用MATLAB 计算并画图如下: x=[165,123,150,123,141]; y=[187,126,172,125,148];

A(1,1)=5;A(1,2)=sum(x);A(1,3)=sum(y); A(2,1)=sum(x);A(2,2)=sum(x.^2);A(2,3)=x*y'; B=rref(A); a=B(1,3);b=B(2,3); p=[b,a];

%以上四行,可以用一行命令 p=polyfit(x,y,1); 替代。 xi=min(x)-1:0.01:max(x)+1; yi=polyval(p,xi); plot(xi,yi,x,y, 'o'); 绘制如下图形

4.最小二乘法的多项式拟合

问题:对于给定的数据点(),,1,2,,i i x y i N = ,求m 次多项式0

m

j j j y a x ==∑(m<

得总误差Q 最小。其中2

2

110N

N

m j i i j i i i j Q e y a x ===??==- ???

∑∑∑。根据0,0,1,,k Q k m a ?==?

1020N

m j k i j i i i j y a x x ==??

--= ???∑∑ 故有正则方程:

011m

N N

j k k j i i i j i i a x y x +===??= ???∑∑∑ 当m=2时,有

201223

0122342012i i i i i i i i i i i i i

a N a x a x y a x a x a x y x a

x a x a x y x ?++=?++=??++=?∑∑∑∑∑∑∑∑∑∑∑

例2.求数据表的最小二乘法拟合的二次多项式函数

在MATLAB命令窗口输入:

x=-1:0.25:1;

y=[50,40,25,20,18,21,35,56,66];

A(1,1)=length(x);A(1,2)=sum(x);A(1,3)=sum(x.^2);A(1,4)=sum(y);

A(2,1)=sum(x);A(2,2)=sum(x.^2);A(2,3)=sum(x.^3);A(2,4)=y*x';

A(3,1)=sum(x.^2);A(3,2)=sum(x.^3);A(3,3)=sum(x.^4);A(3,4)=y*(x.^2)'; B=rref(A);

p=[B(3,4),B(2,4),B(1,4)];

%以上五行可以用p=polyfit(x,y,2); 替代

xi=min(x)-0.1:0.01:max(x)+0.1;

yi=polyval(p,xi);

plot(xi,yi,x,y, 'o');

可以绘制出如下图形:

例3.从三次多项式()32

32345P x x x x =-+-上找出21个点(),,1

,2,,21i i x y i = ,然后对这21个点进行“差错处理”,得到新的21个点,根据新的21个点拟合一个新的3次多项式函数,然后和原函数进行比较。

解:在MATLAB 命令窗口输入: p3=inline('2.*x.^3-3.*x.^2+4.*x-5'); x=-10:10; y=p3(x);

e=randn(1,length(x))*80; y=y+e; p=polyfit(x,y,3); xi=-10:0.01:10; yi=polyval(p,xi); plot(xi,yi,x,y, 'o');

hold on

fplot(p3,[-10,10],'r');

5.利用MATLAB的多项式拟合命令polyfit来实现多项式的插值例1.过随机6个数据点,构造5次多项式函数。

解:在MATLAB命令窗口输入:

x=1:6;

y=round(10*randn(1,6));

p=polyfit(x,y,length(x)-1);

xi=1:0.01:6;

yi=polyval(p,xi);

plot(xi,yi,x,y, 'o');

可以得到以下图形:

6.利用最小二乘法解超定方程组

例1.解下列超定方程组

24113532627

x y x y x y x y +=??-=?

?

+=??+=? 解:设超定方程的解为00,x x y y ==。

方法一:点()00,x y 到4条直线的距离平方分别为:

()

2

00212

2

241124

x y d +-=

+,()

()

2

00222

2

35335x y d --=

+-,()

2

00232

2

2612

x y d +-=

+,()

2

002422

2721x y d +-=

+

设()4

2001

,i i Q x y d ==∑,根据

00

0,0Q Q

x y ??==??,有: ()()()()000000002223222

24113532627203455x y x y x y x y ???+-+--++-++-=0 ()()()()000000002425222

24113532627203455

x y x y x y x y ???+----++-++-=0 化简有:

00002491299120

1294319450x y x y +-=??

+-=?

解得002.99, 1.30x y == 方法二:最小二乘法:

点()00,x y 关于4条直线的残差平方和为:

()2

002411Q x y =+-()2

00353x y +--()2

0026x y ++-+()2

0027x y +-

根据

00

0,0Q Q

x y ??==??,有: ()()()()00000000424116353226427x y x y x y x y +-+--++-++-=0 ()()()()000000008241110353426227x y x y x y x y +----++-++-=0 化简有:

0000183510

346480x y x y --=??

-+-=?

解得003.04, 1.24x y == 用MATLAB 命令有: syms x0 y0

f1=4*(2*x0+4*y0-11)+2*3*(3*x0-5*y0-3)+2*(x0+2*y0-6)+2*2*(2*x0+y0-7) f2=8*(2*x0+4*y0-11)-2*5*(3*x0-5*y0-3)+4*(x0+2*y0-6)+2*(2*x0+y0-7) 解得: f1 =

36*x0-6*y0-102 f2 f2 =

-6*x0+92*y0-96

继续在MATLAB 命令窗口输入: A=[36,-6,102;-6,92,96]; B=rref(A) x0=B(1,3) y0=B(2,3) 解得: x0 =

3.04029304029304 y0 =

1.24175824175824

方法三:最小二乘法(矩阵运算)

针对方程组Ax b =的最小二乘近似解即为方程组T T A Ax A b =的解 于是,在MATLAB 命令窗口输入: A=[2,4;3,-5;1,2;2,1]; b=[11;3;6;7]; x=inv(A'*A)*A'*b 计算结果为: x =

3.04029304029304

1.24175824175824

方法四:用MATLAB左除命令“\”

在MATLAB命令窗口输入:

A=[2,4;3,-5;1,2;2,1];

b=[11;3;6;7];

x=A\b

即可以得到答案

x =

3.04029304029304

1.24175824175824

可以看出用MATLAB的左除“\”命令计算得到的答案与最小二乘法得到的答案是一致的。其实,MATLAB的左除“\”命令就是按照最小二乘法的原来来编写的。

另外,可以用MATLAB的ezplot命令绘制四条直线的图形

ezplot('2*x+4*y=11');

hold on

ezplot('3*x-5*y=3');

ezplot('x+2*y=6');

ezplot('2*x+y=7');

plot(2.99,1.30,'o');

A=[2,4;3,-5;1,2;2,1];

b=[11;3;6;7];

x=A\b

plot(x(1),x(2),'*');

绘制图形如下:

二.函数逼近

问题,已知函数f(x),求一个多项式函数()n P x 在区间[a,b]上逼近f(x)。 解决方法:函数的最佳平方逼近。令

()()2

00,,n b

j n j a j Q a a a x f x dx =??=- ???

∑? ,使Q 最小,则有0,0,1,,k Q k n a ?==?

例1.求一次多项式()1P x 在0,2π??

????

上逼近函数()()sin f x x =。 解:构造直线为:y ax b =+,()()()2

20

,sin Q a b ax b x dx π

=+-?,

0,0.Q Q

a b

??==??则有 ()()()()20202sin 0

2sin 0

ax b x xdx ax b x dx π

π

?+-=????+-=??

??,

22220002220

00sin()sin()a x dx b xdx x x dx

a xdx

b dx x dx

πππ

πππ

?+=????+=???????? 32

2

1248

182a b a b ππππ?+=????+=?? 解得:

a=0.6644389,b=0.1147707 在MATLAB 命令窗口输入: xi=0:0.01:pi/2; yi=sin(xi); p=polyfit(xi,yi,1); pi=polyval(p,xi); plot(xi,yi,xi,pi); 可以绘制以下图形:

作业:

(1)用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据表拟合。

解:方法一,最小二乘法;方法二,用解超定方程组的思路来解题。

()5

2

21

i

i i Q a bx y ==+-∑,根据

0,0Q Q

a b

??==??,有: ()()5

2

1

5

221

2020i i i i i i i a bx y a bx y x ==?+-=????+-=??∑∑ 在MATLAB 命令窗口输入: x=[19,25,31,38,44]; y=[19,32.3,49,73.3,97.8];

A=[5,sum(x.^2),sum(y);sum(x.^2),sum(x.^4),x.^2*y'];

B=rref(A);

p=[B(2,3),0,B(1,3)];

xi=min(x):0.01:max(x);

yi=polyval(p,xi);

plot(xi,yi,x,y,'o');

绘制图形如下:

(2)已知数据表如下,试用二次多项式拟合。

(3)求一个形如bx

y ae

(a,b为常数,a>0)的经验公式,使它能和下表数据拟合。

解:公式bx

=可以变为:lny=lna+bx,进一步可以写为Y=A+bx。其中Y=lny,A=lna,

y ae

对应表格为:

(4)求函数y=在区间[1/4,1]上的最小一次式。

数据拟合与函数逼近

第十三章 数据拟合与函数逼近 数据拟合与函数逼近涉及到许多内容与方法,从不同角度出发,也有多种叫法。这一章,我们主要通地线性拟合而引出最小乘法这一根本方法。 13.1 数据拟合概念与直线拟合 插值法是一种用简单函数近似代替较复杂函数的方法,它的近似标准是在插值点处的误差为零。但有时,我们不要求具体某些点的误差为零,而是要求考虑整体的误差限制。对了达到这一目的,就需要引入拟合的方法,所以数据拟合与插值相比: 数据拟合--不要求近似 函数过所有的数据点,而要求它反映原函数整体的变化趋势。 插值法--在节点处取函数值。 实际给出的数据,总有观测误差的,而所求的插值函数要通过所有的节点,这样就会保留全部观测误差的影响,如果不是要求近似函数过所有的数据点,而是要求它反映原函数整的变化趋势,那么就可以用数据拟合的方法得到更简单活用的近似函数。 13.1.1 直线拟合 由给定的一组测定的离散数据(,)i i x y (1,2,,i N = ),求自变量x 和因变量y 的近似表达式()y x ?=的方法。影响因变量y 只有一个自变量x 的数据拟合方法就是直线拟合。 直线拟合最常用的近似标准是最小二乘原理,它也是流行的数据处理方法之一。 直线拟合步骤如下: (1) 做出给定数据的散点图(近似一条直线)。 (2) 设拟合函数为: i bx a y +=* (13.1.1) 然后,这里得到的*i y 和i y 可能不相同,记它们的差为: i i i i i bx a y y y --=-=* δ (13.1.2) 称之为误差。在原始数据给定以后,误差只依赖于b a ,的选取,因此,可以把误差的大小作为衡量b a ,的选取是否优良的主要标志。

第一章-集合与函数概念教案典型例题

集合与函数概念 知识点1:集合的含义 1》元素定义:我们把研究对象称为元素;集合定义:把一些元素组成的总体叫做集合2》集合表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3》集合相等:构成两个集合的元素完全一样。 典例分析 … 题型1:判断是否形成集合 例1:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;(2)我国的小河流; (3)非负奇数;(4)方程x2+1=0的解; (5)某校2011级新生;(6)血压很高的人; (7)著名的数学家;(8)平面直角坐标系内所有第三象限的点 … 能组成集合的是___________________。 例2:考察下列对象能形成一个集合的是____________________。 ①身材高大的人②所有的一元二次方程 ③直角坐标平面上纵横坐标相等的点④细长的矩形的全体 ⑤比2大的几个数⑥2的近似值的全体 ⑦所有的小正数⑧所有的数学难题 : 知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征: ①确定性:给定一个集合,一个元素在不在这个集合中就确定了。 ②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. , 如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}

2》元素与集合的关系有“属于∈”及“不属于?两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ?A 。 注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N * 或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ; ^ 典例分析 题型1:集合中元素的互异性的考察 例1:由实数-a, a, a , a 2 , - 5 a 5 为元素组成的集合中,最多有_______个元素,分别为__________。 例2:设a,b,c 分别为非零实数,则c c b b a a y ++= 所有的值构成的集合中元素分别为______________。 # 例3:含有三个实数的集合可表示为{1,,a b a },也可表示为{0,,2 b a a +},则=+20142013b a _________。 例4:集合{2,1,12 --x x }中的x 不能取得值有_______个。 例5:由4,2,2 a a -组成1个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A 、1 B 、-2 C 、6 D 、2 ¥ 例6:以实数a 2 ,2-a.,4为元素组成一个集合A ,A 中含有2个元素,则的a 值为 . 题型2:集合与元素之间关系的考察 例1:用“∈”或“ ?”符号填空: (1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。 … 例2:给出下面四个关系: 3∈R, 0.7?Q, 0∈{0}, 0∈N,其中正确的个数是:( )

集合与函数概念复习教案一对一教案

教师姓名学生姓名填写时间年级高一学科数学上课时间 阶段基础(√)提高()强化()课时计划第()次课共()次课 教学目标1、通过复习熟练掌握集合概念及其运算,以及集合的几种表示方法 2、通过复习熟练掌握函数的概念以及函数的性质,进一步体会运动变化、数形结合、代数转化以及集合与对应的数学思想方法 教学重难点教学重点:集合的概念与表示、集合的运算、函数的概念以及函数的性质教学难点:集合的运算、函数的概念以及性质的具体运用 教 学 过 程 课后作业:教学反思:

知识点一:集合的性质与运算 例1、已知集合{}2 1,1,3A x x =--,求实数x 应满足的条件. 例2、设{} 022=+-=q px x x A ,{} 05)2(62 =++++=q x p x x B ,若? ?????=21B A , 则=B A ( ) (A )??????-4,31 ,21 (B )??????-4,21 (C )??????31,21 (D)? ?????21 例3、如图U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P S C 、()u M P C S D 、 ()u M P C S 例4、设集合{}21<≤-=x x M ,{} 0≤-=k x x N ,若M N M = ,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[- 例5、设{ }{} I a A a a =-=-+241222 ,,,,,若{}1I C A =-,则a =__________。 知识点二:判断两函数是否为同一个函数 例6、试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f =)(,?? ?<-≥=; 01 , 01 )(x x x g (3)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); (4)x x f =)(1+x ,x x x g += 2)(; (5)12)(2--=x x x f ,12)(2--=t t t g

数值分析课件第3章函数逼近与曲线拟合

第三章 函数逼近与曲线拟合 1 函数的逼近与基本概念 1.1问题的提出 多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()k k k f x a x ∞ ==∑, ()(0)! k k f a k =在[1,1]-上收敛。当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。这个误差分布是不均匀的。当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最

大。

为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线性函数,显然误差会很大。 实验数据 真函数 插值多项式逼近 精确的线性逼近 图1

数值分析函数逼与曲线拟合

第三章 函数逼近与曲线拟合 1 函数的逼近与基本概念 1.1问题的提出 多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设 ()f x 是[1,1]-上的光滑函数,它的Taylor 级数0 ()k k k f x a x ∞ ==∑, ()(0) ! k k f a k = 在[1,1]-上收敛。当此级数收敛比较快时,1 1()()()n n n n e x f x s x a x ++=-≈。这个误差分布是不均匀的。当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经 济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

1.2范数与逼近 一、线性空间及赋范线性空间 要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。最常用的给集合赋予一种“加法”和“数乘”运算,使其构 成线性空间.例如将所有实 n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线 性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线 性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间. 在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间. 定义1 设 X 是数域K 上一个线性空间,在其上定义一个实值函数g ,即对于任意 ,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件 (1) 正定性:0x ≥,而且0x =当且仅当0x =; (2) 齐次性:x x αα=; (3) 三角不等式:x y x y +≤+; 实验数据 真函数 插值多项式逼近 精确的线性逼近 图1

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点

人教版高中数学必修1第一章集合与函数概念-《1.1集合》教案

集合(第1课时) 一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征 等集合的基础知识。 ②重点:集合的基本概念及集合元素的特征 ③难点:元素与集合的关系 ④注意点:注意元素与集合的关系的理解与判断;注意集合中元 素的基本属性的理解与把握。 二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合, 培养分析、判断的能力; ②由集合的学习感受数学的简洁美与和谐统一美。 三、教学过程: Ⅰ)情景设置: 军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。 Ⅱ)探求与研究: ①一般地,某些指定的对象集在一起就成为一个集合,也简称集。 问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子) ②为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个 整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个 整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、 B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记 为……(板书) 另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字 母a、b、c……(或x1、x2、x3……)表示 同学口答课本P5练习中的第1大题 ③分析刚才同学们所举出的集合例子,引出: 对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合 A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作 a A ④再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论: 集合中的元素具有确定性、互异性和无序性。 然后请同学们分别阅读课本P5和P40上相关的内容。 ⑤在数学里使用最多的集合当然是数集,请同学们阅读课本P4上与数集有 关的内容,并思考:常用的数集有哪些?各用什么专用字母来表示?你 能分别说出各数集中的几个元素吗?(板书N、Z、Q、R、N*(或N+)) 注意:数0是自然数集中的元素。这与同学们脑子里原来的自然数就是 1、2、3、4……的概念有所不同 同学们完成课本P5练习第2大题。

集合的概念教学设计

集合的概念及相关运算教学设计 一、教材分析 1.知识来源:集合的概念选自湖南教育出版社必修一中第一章集合与函数概念的第一小节; 2. 知识背景:作为现代数学基础的的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言.高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究。通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力。 3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的。 二、学情分析 1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过渡知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度。再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理。因此本节授课方法就显得十分重要。 2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也有一定的自主学习能力和探究能力。对集合概念的知识接纳和理解打下了良好的

基础,在教学过程中,充分调动学生已掌握的知识,增强学生的学习兴趣。 三、教学目标 (一)知识与技能目标 1.了解集合的含义与表示,理解集合间的基本关系,掌握集合的基本运算。能从集合间的运算分析出集合的基本关系,同时对于分类讨论问题,能区分取交还是取并. 2.学会在具体的问题中选择恰当的集合表示方法,理解集合有限和无限的特征,理清“元素和集合关系”和“集合与集合关系”符号的区别,不混淆。 3.学会正确使用集合补集思想,即为“正难则反”的思想。 (二)过程与方法目标 1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化. 2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合的本质. 3. 学生通过集合概念的学习,应掌握分类讨论思想、化简思想以及补集思想等。 (三)情感态度与价值观目标 1.在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力。 2.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的

人教版高中数学必修一第一章集合与函数概念教案

第一章 集 合 1 、1、1集合的含义 【探索新知】 在小学、初中我们就接触过“集合”一词。 例子: (1)自然数集合、正整数集合、实数集合等。 (2)不等式0722>--x x 解的集合(简称解集)。 (3)方程0232=+-x x 解的集合。 (4)到角两边距离相等的点的集合。 (5)二次函数2x y = 图像上点的集合。 (6)锐角三角形的集合 (7)二元一次方程12=+y x 解的集合。 (8)某班所有桌子的集合。 现在,我们要进一步明确集合的概念。 问题1、从字面上看,怎样解释“集合”一词? 2、如果上面例子中的数、点、图形、数对和物体等称为“研究对象”,那么集合又是什么呢? 1、集合、元素的概念 再看例子 (9)质数的集合。 (10)反比例函数x y 1=图像上所有点。 (11)2x 、2 y xy +、22y - (12)所有周长为20厘米的三角形。 问题3、从集合中元素个数看,上面例子(1)(2)(4)(5)(6)(7)(9)(10)(12)与例子(3)(8)(11)有什么不同? 2、有限集和无限集

指出:集合论是德国数学家Cantor (1845~1918)在十九世纪创立的,集合知识是现代数学的基本语言,为进一步研究数学提供了极大的便利。 集合、元素的记法 问题4、(1)集合、元素各用什么样的字母表示? (2)N 、)(+*N N 、Z 、Q 、R 等各表示什么集合? 元素与集合的关系 阅读教材填空: 如果a 是集合A 的元素 , 就记作_________,读作“____________”; 如果a 不是集合A 的元素,就记作__ ____,读作“______ _____”. 用∈或?填空: 1、6______N , 23-______Q , 31_______Z ,14.3_______Q π_______Q , 2、设不等式012>-x 的解集为A ,则 5_______A , 3-_______A 3、012=+-y x 的解集为B ,则)4,1(-_______B , )3,1(_______B , 2-_______B 问题5、元素a 与集合A 有几种可能的关系? 集合的性质 ① 确定性: 例子1、下列整体是集合吗? ①个子高的人的全体。②某本数学资料中难题的全体。③中国境内的海拔高的山峰的全体。 2、集合A 中的元素由∈Z,b ∈Z)组成,判断下列元素与集合A 的关系? (1)0 (2 (3 ②互异性: 例子、集合M 中的元素为1,x ,x 2-x ,求x 的范围?

数值计算方法教案_曲线拟合与函数逼近

第三章 曲线拟合与函数逼近 一.曲线拟合 1.问题提出: 已知多组数据(),,1,2,,i i x y i N = ,由此预测函数()y f x =的表达式。 数据特点:(1)点数较多。(2)所给数据存在误差。 解决方法:构造一条曲线反映所给数据点的变化总趋势,即所谓的“曲线拟合”。 2.直线拟合的概念 设直线方程为y=a+bx 。 则残差为:?i i i e y y =-,1,2,,i N = ,其中?i i y a bx =+。 残差i e 是衡量拟合好坏的重要标志。 可以用MATLAB 软件绘制残差的概念。 x=1:6; y=[3,4.5,8,10,16,20]; p=polyfit(x,y,1); xi=0:0.01:7; yi=polyval(p,xi); plot(xi,yi,x,y, 'o'); y1=polyval(p,x); hold on for i=1:6 plot([i,i],[y(i),y1(i)], 'r'); end 可以绘制出如下图形:

三个准则: (1)max i e 最小 (2)1n i i e =∑最小 (3)21 N i i e =∑最小 3.最小二乘法的直线拟合 问题:对于给定的数据点(),,1,2,,i i x y i N = ,求一次多项式y=a+bx ,使得总误差Q 最小。其中()2 21 1 N N i i i i i Q e y a bx ====-+????∑∑。根据 0,0.Q Q a b ??==?? 2222 1 222N i i i i i i i Q y a b x y a y x b x ab =??=++--+??∑

函数逼近与曲线拟合

实验二 函数逼近与曲线拟合报告 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。 t(分) 0 5 10 15 20 25 30 35 40 45 50 55 4(10)y -? 0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为23123()t a t a t a t ?=++; 3、打印出拟合函数()t ?,并打印出()j t ?与()j y t 的误差,1,2,,12j = ; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、* 绘制出曲线拟合图。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。 四、实验学时:2学时 五、实验步骤: 1.进入C 或matlab 开发环境; 2.根据实验内容和要求编写程序; 3.调试程序; 4.运行程序; 5.撰写报告,讨论分析实验结果.

解: 实验步骤 (一)算法流程 构造a1、a2、a3的线性方程组------构造误差平方和------对a1、a2、a3求偏导数------令偏导为零求得a1、a2、a3的值。 (二)编程步骤与分析 1. 绘制数据点(t,yi)的散点图 输入程序为: t=[0 5 10 15 20 25 30 35 40 45 50 55]; y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64].*1e-4 plot(t,y,'r*'), legend('实验数据(t,yi)') xlabel('x'), ylabel('y'), title('数据点(t,yi)的散点图'),显示结果为: 2.求参数a1、a2、a3的解析表达式 计算)(x f 在),(i i y x 处的函数值,即输入程序 syms a1 a2 a3 t=[0 5 10 15 20 25 30 35 40 45 50 55]; fi=a1.*t+ a2.*t.^2+ a3.*t.^3 运行后屏幕显示关于a1,a2, a3的线性方程组: fi = [ 0, 5*a1 + 25*a2 + 125*a3, 10*a1 + 100*a2 + 1000*a3, 15*a1 + 225*a2 + 3375*a3, 20*a1 + 400*a2 + 8000*a3, 25*a1 + 625*a2 + 15625*a3, 30*a1 + 900*a2 + 27000*a3, 35*a1 + 1225*a2 + 42875*a3, 40*a1 + 1600*a2 + 64000*a3, 45*a1 + 2025*a2 + 91125*a3, 50*a1 + 2500*a2 + 125000*a3, 55*a1 + 3025*a2 + 166375*a3] 构造误差平方和: y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64].*1e-4;

集合与函数概念教案

新人教A版高中数学必修一教案 第一章集合与函数概念 一. 课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力. 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识. 1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号. 2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力. 4、能在具体情境中,了解全集与空集的含义. 5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力. 6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集. 7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法. 9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 10. 通过具体实例,了解简单的分段函数,并能简单应用. 11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇

广东省2021高考数学学业水平合格考试总复习第1章集合与函数概念教师用书教案

第1章集合与函数概念 考纲展示考情汇总备考指导

函数 ①了解构成函数的要素,会求一些 简单函数的定义域和值域;了解映 射的概念. ②在实际情境中,会根据不同的需 要选择恰当的方法(如图象法、列 表法、解析法)表示函数. ③了解简单的分段函数,并能简单 应用. ④理解函数的单调性、最大值、最 小值及其几何意义;结合具体函 数,了解函数奇偶性的含义. ⑤会运用函数图象理解和研究函 数的性质. 2017年1月T2, 2017年1月T14, 2018年1月T3 2018年1月T14 2019年1月T3 2019年1月T19 2020年1月T5 2020年1月T7 集合的基本运算 1.集合的概念与性质 集合是指定的某些对象的全体.集合中元素的特性有:确定性(集合中的元素应该是确定的,不能模棱两可)、互异性(集合中的元素应该是互不相同的)、无序性(集合中元素的排列是无序的).元素和集合的关系是属于或不属于关系.表示集合的方法要掌握字母表示法、列举法、描述法及Venn图法.根据元素个数的多少集合可分为:有限集、无限集.2.集合间的基本关系及基本运算 关系或运算自然语言符号语言图形语言

A ?B(或B?A) 集合A中任意一个元素都是 集合B中的元素. A?B(或B?A) ? (x∈A?x∈B) A∩B 由所有属于集合A且属于集 合B的所有元素所组成的集 合. A∩B={x|x∈A且 x∈B} A∪B 由所有属于集合A或属于集 合B的元素组成的集合. A∪B={x|x∈A或 x∈B} ?U A 已知全集U,集合A?U,由 U中所有不属于A的元素组 成的集合,叫做A相对于U 的补集. ?U A={x|x∈U,且x? A} 1.(2018·1月广东学考)已知集合M={-1,0,1,2},N={x|-1≤x<2},则M∩N=( ) A.{0,1,2} B.{-1,0,1} C.M D.N B[M∩N={-1,0,1},故选B.] 2.(2019·1月广东学考)已知集合A={0,2,4},B={-2,0,2},则A∪B=( ) A.{0,2} B.{-2,4} C.[0,2] D.{-2,0,2,4} D[A∪B={-2,0,2,4}.] 3.(2020·1月广东学考)已知集合M={-1,0,1,2},N={1,2,3},则M∪N=( ) A.M B.N C.{-1,0,1,2,3} D.{1,2} C[∵M={-1,0,1,2},N={1,2,3}, ∴M∪N={-1,0,1,2,3}.故选C.] 集合基本运算的方法技巧 (1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助 Venn图运算. (2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. (3)集合的交、并、补运算口诀如下:交集元素仔细找,属于A且属于B;并集元素勿遗漏,切记重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集. [最新模拟快练] 1.(2020·广东学考模拟)设集合A={1,2,3},B={2,3,4},则A∪B=( )

函数逼近与曲线拟合

函数逼近与曲线拟合 3.1函数逼近的基本概念 3.1.1 函数逼近与函数空间 在数值计算中常要计算函数值,如计算机中计算基本初等函数及其他特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的 简单表达式,这些都涉及到在区间上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题.上章讨论的插值法就是函数逼近问题的一种.本章讨论的函数逼近,是指“对函数类A中给定的函数,记作,要求在另一类简单的便于计算的函数类B中求函数,使与的误差在某种度量意义下最小”.函数类A通常是区间上的连续函数,记作,称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等.函 数逼近是数值分析的基础,为了在数学上描述更精确,先要介绍代数和分析中一些基本概念及预备知识. 数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将为样的集合称为空间.例如将所有实n维向量组成集合,按向量加法及向量与数的乘法构成实数域上的线性空间,记作,称为n维向量空间.类似地,对次数不超过n(n为正整数)的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域上的一个线性空间,用表示,称为多项式空间.所有定义在上的连续函数集合,按函数加法和数与函数乘法构 成数域上的线性空间,记作.类似地,记为具有p阶的连续导数的函数空间. 定义1设集合S是数域P上的线性空间,元素,如果存在不全为零的数,使得

, (3.1.1)则称线性相关.否则,若等式(3.1.1)只对成立,则称线性无关. 若线性空间S是由n个线性无关元素生成的,即对都有 则称为空间S的一组基,记为,并称空间S为n维空间,系数称为x在基下的坐标,记作,如果S中有无限个线性无关元素,…,则称S为无限维线性空间. 下面考察次数不超过n次的多项式集合,其元素表示为 , (3.1.2)它由个系数唯一确定.线性无关,它是的一组基,故,且是的坐标向量,是维的.对连续函数,它不能用有限个线性无关的函数表示,故是无限维的,但它的任一元素均可用有限维的逼近,使误差 (为任给的小正数),这就是著名的Weierstrass定理.定理1(Weierstrass)设,则对任何,总存在一个代数多项式,使

集合与函数概念(复习教案)

《集合与函数概念》复习 一、知识要点 1、集合的含义; 2、集合间的基本关系; 3、集合的运算; 4、函数的概念; 5、函数的基本性质; 6、映射的概念。 二、知识梳理 1、集合中元素的性质 (1)确定性:即集合中的元素必须是的,任何一个对象都能明确判断它“是”或者“不是”某个集合的元素,二者必居其一。 (2)互异性:集合中任意两个元素都是的,换言之,同一个集合里不能重复出现。(3)无序性:集合与它的元素的组成方式无关的。 2、集合的表示方法 (1)列举法:把集合中的元素出来,写在内表示集合的方法。列举法表示集合的特点是清晰、直观。常适用于集合中元素较少时。 (2)描述法:把集合中的元素的描述出来,写在内表示集合的方法。一般形式是{x|p},其中竖线前面的x叫做此集合的元素,p指出元素x所具有的公共属性。描述法便于从整体把握一个集合,常适用于集合中元素的公共属性较为明显时。 (3)韦恩图:为了形象的表示集合,有时常用一些封闭的表示一个集合,这样的图形称为韦恩图,在解题时,利用韦恩图“数”和“形”结合,使得解答十分直观。 3、元素与集合的关系 如果一个元素a是集合A的元素,称元素a 集合A,记为,否则称元素a 集合A,记为。 4、子集、交集、并集、补集 (1)子集的定义:对于集合A和B,如果集合A的任意一个元素都是集合B的元素,我们就说集合A 集合B,或集合B 集合A,也可以说集合A是集合B 的子集。记作或,如果集合A不包含于集合B,或集合B不包含集合A,就记作。 规定:空集是任何集合的子集。 如果A是B的子集,且A≠B,称集合A是集合B的,记作。(2)交集的定义:一般地,由属于集合A 属于集合B的元素所组成的集合,叫做A、B 的交集。记作。即A∩B={x|x∈A且∈B}。 (3)并集的定义:一般地,由属于集合A 属于集合B的元素所组成的集合,叫做A、B 的并集。记作。即A∪B={x|x∈A或∈B}。 (4)补集的定义:一般地,设U是一个集合,A是U的一个子集,由U中所有A的元素组成的集合,叫做U中子集A的补集,记作。即CUA={X|X∈U,但X∈A}5、函数的概念 (1)函数定义:给定两个非空数集A和B,如果按照某个对应关系f ,对于A中的, 在集合B中都有的数f (x) 与之对应, 那么就称f:A→B为集合A到集合B的一个函数,记作y= f (x),x∈A. 其中,x叫做自变量, X的取值范围A叫做, 与X的值对应的y值叫做函数值, 函

高中数学必修一集合的基本运算教案学生

第一章集合与函数概念 1.1集合 教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 教学重点:集合的交集与并集、补集的概念; 教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 【知识点】 1.并集 一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union) 记作:A∪B 读作:“A并B” 即:A∪B={x|x∈A,或x∈B} Venn 说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。 说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。 问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。 2.交集 一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。 记作:A∩B 读作:“A交B” 即:A∩B={x|∈A,且x∈B} 交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。 拓展:求下列各图中集合A 与B 的并集与交集 说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集 3. 补集 全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。 补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:C U A 即:C U A={x|x ∈U 且x ∈A} 补集的Venn 图表示 说明:补集的概念必须要有全集的限制 4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交 集与并集的关键是“且”与“或” ,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。 5. 集合基本运算的一些结论: A ∩B ?A ,A ∩ B ?B , A ∩A=A ,A ∩?=?,A ∩B= B ∩A A ?A ∪ B ,B ?A ∪B ,A ∪A=A ,A ∪?=A,A ∪B=B ∪A (C U A )∪A=U ,(C U A )∩A=? 若A ∩B=A ,则A ?B ,反之也成立 若A ∪B=B ,则A ?B ,反之也成立 若x ∈(A ∩B ),则x ∈A 且x ∈B 若x ∈(A ∪B ),则x ∈A ,或x ∈B A

高中数学-函数的概念教案

高中数学-函数的概念教案 教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画 函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数(function). 记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评) (二)典型例题 1.求函数定义域 课本P19例1 解:(略) 说明: ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○3函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P20例2

数值计算课程设计,拟合方法与拟合函数的选取

题目:拟合方法与拟合函数的选取 提交日期:2013年5月13日

目录 一、拟合问题的提出 (1) 二、拟合准则 (1) 三、拟合函数的选取 (1) 四、函数拟合实 (2) 4.1多项式拟合 (2) 4.2 指数与复合函数拟合 (4) 4.3 分段拟合 (7) 五、总结 (12) 六、参考文献 (12)

一、 拟合问题的提出 在很多科学实验中,我们通过测量或观察等方法获得一组看上去杂乱无章的数据,为了找出这些数据之间的某种规律和联系,即寻找一个较简单的函数曲线,使之在一定准则下最接近这些数据点,以便突显各数据点的先后变化趋势,由此便产生了曲线拟合的概念。 曲线拟合在实际中有着很广泛的实用价值。因为我们所获取的实验数据本身往往带有测量误差,难免会出现个别数据误差过大的现象。相比于插值法,曲线拟合时,不要求曲线严格地经过每一个数据点,这样就能有效降低个别数据对整体数据规律的干扰作用;另外,实验数据往往很多,插值法会比较繁杂,拟合方法则更实际更高效。 二、拟合准则 在曲线拟合中,有几种不同的误差准则: 1.最大误差: 2.平均误差 3.均方根误差 4.误差平方和 通过求误差的最小值,可得该准则下的最佳拟合曲线。由于误差平方和容易进行最小化计算,故而我们通常采用该标准,称之为最小二乘准则。以下课程实验都是在最小二乘准则下实现的。 三、拟合函数的选取 曲线拟合时,首要也最关键的一步就是选取恰当的拟合函数。对于一组给定的数据, 我们可以先做出其散点图,判断应该采用什么样的曲线来作拟合,然后在直观判断的基础上,选取多组曲线分别作拟合,然后比较,看哪条曲线的最小二乘指标最小,也即拟合的最好。 一般来说,选取多项式作为拟合曲线,是简单且常用的。MATLAB 中有现成的多项式拟合程序,调用格式为f=polyfit(x,y,n),其中输入参数x ,y 为要拟合的数据,n 为拟合多项式的系数,输出参数f 为拟合多项式的系数向量。 | )(|max ||max 11i i n i i n i y x f E -==≤≤≤≤δ

相关文档
最新文档