差压式流量计设计说明书

差压式流量计设计说明书
差压式流量计设计说明书

一、流量测量的依据

1. 流量与差压换算公式

依据流体力学公式,对于差压式流量计中流量和差压的关系式可以简化为

Q=C 其中0C 即作为本设计中流量系数,修改0C 即可以修正Q 与P ?的关系。

2. 流量与电流换算公式

本设计中流量范围为0~1000L/min ,流量计输出信号4~20mA ,依据流体力学公式和信号转换特点有如下关系式:

max Q Q max P I-4

=

P 16

?? 即可得到Q 与I 的关系式:

max Q Q 若假设流量为500L/min ,依据计算公式可知,

2

500I=16+4=8 mA 1000??? ???

二、差压式流量计的结构设计

1. 整体结构框图,如图所示

2. 电容式差压传感器(差动电容)

如图所示,即为一种电容式差压传感器。当流量计的两路过程压力从测量容室的两侧施加到隔离膜片后,经硅油灌冲液传至中心膜片上,中心膜片是一个边缘张紧的膜片,在压力作用下,产生相应的位移,该位移即形成差动电容变化。

将该差动电容接入一个LC 振荡回路(或LRC 振荡回路)中,差动电容的容值变化将会导致振荡电路的振荡频率改变。 3. f-V 转换电路(频率-电压转换电路)

频率电压转换电路可实现频率到电压的转换。这里选用美国NS 公司生产的精密频率电压转换芯片LM331。LM331性能价格比高、外围电路简单、可单电源供电、低功耗的集成电路。LM331动态范围宽达100dB ,工作频率低到0.1Hz 时尚有较好的线性度,数字分辨率达12位。LM331的输出驱动器采用集电极开路形式,因此可通过选择逻辑电流和外接电阻来灵活改变输出脉冲的逻辑电平,以适配TTL 、DTL 和CMOS 等不同逻辑电路。LM331可工作在4.0V ~40V 之间,输出可高达40V ,而且可以防止VCC 短路。 这里假设频率范围0~10KHz 进行设计,电路图如图,转换后电压范围0~5V 。 改变Rs 的阻值可以调节转换后电压范围。()

4. 调理电路

由于f-V 转换电路后的输出电压已经在0~5V 范围内,故暂不需要放大电路。 调理电路部分只主要考虑抗混叠滤波电路。根据设计要求总采样周期0.5s ,共采集100个点,每个点采样周期为5ms ,所以采样频率为200Hz 。

根据抗混叠滤波器设计原理:

· 2s k f k f k =≥()

其中s f 为采样频率,k f 为截止频率。

考虑到AD 转换位数m=12,这里取k=5,故低通滤波器的截止频率为40Hz 。 低通滤波器采用巴特沃斯设计法,假设截止频率40Hz ,通带最大衰减3dB ,阻带起始频率50Hz ,阻带最小衰减25dB 。 首先确定巴特沃斯低通滤波器的阶数N :

25

-

20

s =10=0.053δ

()

2

1

lg -10.053 2.5502

N =

=4.2355800.6021

2lg 40≥

?? ???

()

取N=5。

低通滤波器3dB 截止频率()c p =2f =80=251 rad/s ππΩ 则五阶巴特沃斯滤波器的传输函数为:

5

4

3

2

c c c c c -125-104-73521

=

s s s s s +3.236+4.236+4.236+3.236+11

=

1.00310s +8.15310s

2.67910s 6.72410s 0.129s+1H s -??????????

? ? ? ? ?ΩΩΩΩΩ??????????

??+?+?+()

传递函数(已经归一化)确定后,根据sallen-key 拓扑结构即可设计出模拟电路结构,此处不再详述。 5. A/D 转换

A/D 转换要求精度101

0.1%2

≈,所以至少选用10位以上AD 。考虑到AD 转

换的精度特点(AD 后两位精度不高),最终选用12位或以上的ADC 。

这里可以有两种选择:

(1) TI 生产的DSP 系列中绝大部分已经内置了A/D 转换模块,且精度足

够。TMS320F2812中自带12位ADC 模块。

(2) 选用外接的AD 芯片。

若选用外接AD 芯片,要求主要有两点:1. 转换精度为12位或更高;2. 输出电压最好便于与DSP 连接;3. 转换时间小于5ms ;4. 仅需一个通道就能满足功能。

由于现在市面上的单通道12位AD 芯片已经几乎不再生产,外接AD 芯片最终选用16位的AD 芯片AD977A 。

AD977A 工作电压为单电源供电0~5V ,输入通道数1,内部基准电平2.5V 。 6. DSP 选型

DSP 选择的主要指标有如下几点:

(1) 运算精度。定点精度就足够,不需要浮点运算,16位或32位均可。 (2) 运算速率。一般DSP 运算速率在100MHz 以上,设计中采样速率仅为

200Hz ,故一般DSP 几乎都能满足数据处理要求。

(3) 功耗。TMS320C5000系列为低功耗系列,本设计没有功耗要求。 (4) 硬件资源。本设计中不使用DSP 内部ADC ,硬件资源要求不多。主要

考虑数字部分使用FIR 滤波。I/O 引脚数一般也能达到要求。

(5) 资料丰富程度,使用普及度。TMS320F2812资料多,应用广泛。 (6) 最好有JTAG 口,便于调试。

经过查阅资料,TMS320C5000系列,像5404、5502是最低功耗的;

TMS320C6000系列,是最佳处理的,但价格高;TMS320C2000系列,像2810、2812、2407是最佳控制的。决定选用TMS320F2812作为选本设计的DSP 芯片 7. DSP 与AD 接口电路

由于TMS320F2812管脚最高耐压为4.6V ,查阅AD977A 芯片资料后得知,

min OH V =4.0V ,若直接相连,也能使用,但为了安全起见,使用SN74LVTH245A 转换电平后连接。具体连接如图所示,其中/OE 为低电平使能端,DIR 为电平转换方向控制端,接DSP 的一个I/O 口进行控制。

8. D/A 芯片以及EEPROM

由于信号经TMS320F2812处理后需要转换为4~20mA 电流信号进行输出故选用D/A 芯片进行数模转换。选用D/A 芯片为12位D/A 芯片AD8522,它使用单电源0~5V 供电,V IHmin =2.4V 小于3.3V 可以直接与DSP 相连省去了电平转换过程。

由于采集和计算累计流量时会产生大量数据,需要进行存储,选用3.3V 的EEPROM 进行存储,连接如图。 9. 总体电路图

三、差压式流量计的软件设计

1.系统程序框图

如图,本设计主要包含初始化程序、AD采集程序、数字滤波程序、流量计

算程序、数据存储程序和232通讯程序。

初始化程序部分主要完成DSP系统初始化、各器件工作状态初始化以及从EEPROM中读取电压调整参数,设置AD977A的参考电源等工作。

AD采集程序负责控制AD977A采集信号,并将转换结果传输至TMS320F2812中,供DSP进行进一步处理。利用DSP内部的定时器产生中断,定时启动AD977A 采集信号和转换结果数据传输。

数字滤波程序是将因外界干扰使被测信号中混入的噪声脉冲滤掉,提高信号质量。

流量计算部分主要是依据从EEPROM读取出流量系数后,进行电压—压力——流量数值转换,先计算出瞬时流量,将瞬时流量叠加可得到累计流量。

数据存储程序主要是从EEPROM中读取数据,数据主要有电压调整参数、流量系数、显示设置、检测次数和累计流量的存储结果。

232通信程序(中断形式)是DSP与PC机之间的桥梁,通过232通信PC机可以修改流量系数、显示方式和检测次数等。232通讯采用中断的方式进行(232中断优先级高于AD采集定时器中断的优先级),读取数据后立刻存入EEPROM 中然后退出中断。随后在主程序中从EEPROM中读出这些值,作出相应变化。

100点采样时间共0.5s作为一个采样大周期,采样后还得进行滤波、流量计算的步骤,整个程序一个大周期设为1s(系统周期),也就是该差压式流量计1s 更新一次流量显示数值。

2.数字滤波部分设计

数字滤波主要有FIR、IIR两种滤波形式,这里考虑到信号特点和设计要求,选用FIR型数字滤波。

FIR数字滤波设计这里主要借助MATLAB中的滤波器设计和分析工具进行辅助设计。

如图,滤波器阶数设置为15阶,低通滤波器,采用窗函数的方法进行设计,窗函数选择Kaiser窗,采样频率设为200Hz,截止频率设为40Hz,设计好的滤波器如函数图所示。改用汉宁窗设计的FIR滤波器如下图所示。

若进一步要求通带最大衰减3dB,阻带最小衰减25dB,发现汉宁窗更符合设计要求故最终采用汉宁窗进行FIR滤波器设计。

滤波器的的系数如上图所示。再将MATLAB中的设计的滤波器通过Targets 中的Generate C header进行导出,导出如下(考虑到DSP定点运算和运算精度,系数矩阵已经进行量化)

之后只需将该头文件导入TI提供的CCS软件中,就能得到DSP的FIR滤波程序。

FIR滤波后得到100个采样值再进行中值滤波,先将100个采样值按大小排序,去掉最大的20个和最小的20个,再对剩下的60个数据进行算术平均,最后所得的数值作为这个采样大周期(0.5s)的采集数据。

中值滤波程序如下:

#define N 100 //定义获得的数据个数

char filter()

{

char value_buff[N]; //定义存储数据的数组

char count,i,j,temp;

int sum=0;

for(count=0;count

{

value_buf[count]=get_data();

delay(); //如果采集数据比较慢,那么就需要延时或中断}

for(j=0;j

{

for(i=0;i

{

if(value_buff[i]>value_buff[i+1]

{

temp=value_buff[i];

value_buff[i]=value_buff[i+1];

value_buff[i+1]=temp;

}

}

}

for(count=10;cont

sum+=value[count];

return (char)(sum/(N-20));

}

3.AD采集程序

AD转换器AD977A与F2812是通过三线I/0接口连接,即读取/转换控制引脚R/C、数据引脚DATA、时钟引脚DCLK。工作时,利用F2812片内定时器产生的中断,定时启动AD977A工作,设定为每5ms采样转换一次。根据AD977A器件时序,用F2812控制这三线I/O接口的高低电平来驱动AD转换和读取数据。当引脚R/C为高电平时,AD977A为读取转换数据模式;当引脚R/C为低电平时,AD977A进入模数转换模式。F2812通过改变R/C引脚状态来控制AD977A完成信号采集和数据传输工作。相关的数据采集程序如下:

#inelude”DSP28lx_Deviee.h”

#define ADC_RC GPioDataRegs.GPBDAT.bit.GPIOB0

#define ADC_DATA GPioDataRegs.GPBDAT.bit.GPIOB1

#define ADC_CLK GPioDataRegs.GPBDAT.bit.GPIOB2

long int Data;

int mark=0;

//初始化I/O口

Void InitIO(void)

{

EALLOW;

GPioMuxRegs.GPBMUX.all=0x0000;

GPioMuxRegs.GPBDIR.all=0x0005;

EDIS;

}

//读取AD977A的转换结果数据

int ReadADC(void)

{

int i;

int result=0;

ADC_CLK=0;

ADC_RC=1;

ADC_CLK=1;

for(i=0;i<16;i++)

{

ADC_CLK=0;

if(ADC_DATA&&0x0001)

result|=0x0001; //读1

else

result&=0xFFFE; //读0

ADC_CLK=1;

}

return(result);

}

//设置定时器

void InitTimer()

{

EvaRegs.GPTCONA.all=0;

EvaRegs.T1PR=0x03D0; //定时周期为5.12us*(T1PR+1)=0.005s EvaRegs.T1CNT=0x0000;

EvaRegs.EVAIMRA.bit.T1PINT=1;

EvaRegs.EVAIFRA.bit.T1PINT=1;

EvaRegs.T1CON.all=0x1740;

}

//中断服务程序

interrupt void eva_timer1_isr(void)

{

mark=1; //修改标记

EvaRegs.EVAIMRA.bit.T1PINT=1;

EvaRegs.EVAIFRA.bit.T1PINT=1;

PieCtrlRegs.PIEACK.all=PIEACK_GROUP2;

}

void main(void)

{

······

InitIO();

ADC_RC=0; //启动ADC转换

InitTimer(); //初始化定时器,打开定时器

······

for(;;)

{

······

if(mark==1)

{

mark=0; //修改标记

Data=ReadADC(); //读AD977A转换数据

ADC_RC=0; //启动ADC转换

}

}

}

4.流量计算程序

AD采样值经过数字滤波后,DSP从EEPROM中读出流量系数后,先计算瞬时流量(L/min),在计算累计流量(m3/h)。累计流量为1h(这个系统周期与前3599个系统周期)瞬时流量的累积和。

程序如下:

void shunshi()

{

result_filter=result_filter>>16; //右移16位,相当于除以2^16 shunshi=result_filter*1000*C; //乘以满量程1000L/min和流量系数C return sunshiflow;

}

void leiji()

{

leijiflow=sunshiflow*60/1000/3600+leiji*3599/3600; //注意单位换算return leijiflow;

}

void outprint()

{

switch(print_type) //选择显示方式:瞬时流量/累计流量{

case 0:print (sunshiflow);break;

case 1:print (leijiflow);break;

default:print(error);break;

}

}

详解孔板差压式流量计的原理及公式

详解孔板差压式流量计的原理及公式-彩 差压式流量计在各个行业都应用广泛、历史悠久,在各类流量仪表中其使用量占居首位. 近年来,由于各种新型流量计的不断涌现,致使它的用量有所下降。 差压式孔板流量计由三部分组成,即由节流装置、导压管和差压计。差压式流量计是利用流体流动的节流原理来实现流量测量的.节流原理是流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象. 1、差压孔板流量计的原理 流动流体的能量有静压能和动能两种形式.流体具有静压能是因为有压力,具有动能是因为有流动速度,在一定条件下,这两种形式的能量是可以相互转化 . 根据能量守恒定律,在没有外 加能量的前提下,流体所具有的静压能和动能,再加上用以克服流体流动阻力的能量损失,其能量总和是相等的 .

图 2 表示在节流装置前后截面Ⅰ、Ⅱ及Ⅲ处流体压力与速度的分布情况.流体在到达截面Ⅰ之前,以一定的流速v1流动,此时静压力为p1. 在接近节流装置时,由于遇到节流装置的阻碍,使靠近管壁处的流体受到节流装置的阻挡作用,使部分动能转化为静压能,使得节流装置入口端面靠近管壁处的流体静压力升高,并且远大于管径中心处的压力,因此节流装置入口端面 处产生一径向压差 .

在径向压差的作用下,流体产生径向加速度,从而使靠近管壁处的流体质点的流动方向倾斜于管道中心轴线,出现缩脉现象.由于受到惯性作用,流速的最小截面并不在节流装置的孔口处,而是经过节流装置之后仍继续收缩,到截面Ⅱ处流速达到最小,此时流速大,即v2,之后流速又逐渐扩大,至截面Ⅲ后完全恢复,流速逐渐降到原值,即v3=v1. 2、差压孔板式流量方程推导 流体流经节流装置时,不对外做功,没有外加能量,流体本身也没有温度变化 . 在管道内流动的流体,对于管道中任意两个截面都符合伯努利方程,现选截面Ⅰ和Ⅱ(见图2)进行分析。流体的伯努利方程:

差压式流量计的静压误差成因及修正

差压式流量计的静压误差成因及修正 其差压刻度通常是负压室通大气的条件下校验的装置到现场通入实际使用静压校零时,威力巴流量计、V锥流量计以及孔板流量计等差压式流量计使用的差压变送器。往往发现零位输出与负压室通大气校验时的零位输出不一致。这种正负压室通入相同静压得到零位输出偏离通入大气校验时的零位称为静压误差。静压误差可高达±0.5%FS智能型差压变送器中,差压变送器的静压误差是由其正负压室膜盒有效面积不相等引起的DMP9051系列差压变送器中。由于装有静压传感器,通过实验的方法测出静压在规定的范围内变化时零位输出的偏离值,然后在表内的单片机中将静压误差予以校正。经过静压误差在线校正的差压变送器,其静压误差一般可降低到±0.1%以下,从而使丈量精度得到有效提高。 必将给流量计丈量流量带来误差,差压变送器的静压误差如果不进行修正。尤其是相对流量较小时,影响更可观。例如有一台DMP9051差压变送器与节流装置组成差压式流量计,常用压力条件下其静压误差为0.5%FS因未对此静压误差作调整就投入运行,则实际流量为零时,仪表的流量示值就可能达到 7.1%FS虽然小信号切除功能就将这一矛盾掩盖掉,但是其影响客观上是存在而且在全量程范围内±0.5%FS差压偏离总是起作用。 但是残存的静压误差在仪表投运时还必须在使用现场通入实际静压的静压误差再一次检查校核。其方法是向正负压室通入相同的静压,差压变送器在生产厂家出厂前零位作为一个重要指标检验过。将三阀组的高低压阀中一个打开,另一个关闭,将平衡阀打开,如果怀疑正负压室内尚未充溢被测介质,则可通过正负压室上的排气(或排液)阀排净积气(或积液)然后检查变送器的输出。

差压式流量计的组成及安装

差压式流量计的组成及安装 在生产过程中需要实时对工质流量要进行测量,以控制生产过程中的工作状况,衡量设备的效率和经 济核算的重要指标。所以流量测量是工业企业能源管理的重要手段。差压式流量计便是其中的一种形式。 差压式流量计是工业上使用最多的流量计之一,而孔板是差压式流量计选用最多的一种节流元件,它具有 结构简单、安装方便、价格低等特点。 一、差压式流量计的组成 它是由节流元件、差压计(一般用差压变送器)、引压导管和流量显示记录仪(采用BSD-98型多功能流 量积算仪)。 1、节流元件 在管道中安装一个固定的阻挡体,它中间开一个小孔,当流体流过这个开孔横截面时,就会发生流束 的收缩,这时流体的流动速度加快,压力降低,在阻挡体前后产生一个较大的压力差。这个压力差随流量 变化,流量越大,差压越大,因此,通过测量这个压力差就可以推算出流量的大小,这个过程叫节流过程 ,其中造成流束收缩的元件叫节流元件。 煤气流量计使用的是差压式流量计,使用的节流元件为标准孔板,引压管为φ18×2无缝钢管,差压 变送器是罗斯蒙特的3051差压变送器。并配有BSD-1151压力变送器和热电阻作为温度压力补偿。 2、节流元件(标准孔板)的取压方式 节流元件的取压方式有多种,如角接取压和法兰取压等,标准孔板取压方式采用的是环室取压,即在

孔板两侧安装前后环室,并由法兰将环室、孔板、垫片紧固在一起。 二、差压式流量计的安装 包括四部分: 1、节流元件(标准孔板)的安装 2、差压信号管路(引压管)的安装 3、差压计(3051差压变送器)的安装 4、流量显示记录仪(BSD-98型多功能流量计算仪)的安装 相关信息:电磁流量计涡街流量计超声波流量计椭圆齿轮流量计液位计

孔板流量计工作原理

孔板流量计工作原理 充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是 在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节 流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定 律为基准的。 孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用可靠等特点。详细介绍: 一、概述孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用 可靠等特点。孔板节流装置是标准节流件可不需标定直接依照国家 标准生产,1.国家标准GB2624-81<流量测量节流装置的设计安装和使用;2.国际标准ISO5167<国际标准组织规定的各种节流装置; 3.化工部标准GJ516-87-HK06。 二、工作原理充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力

差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。 孔板流量计由截流元件孔板、均压环、三阀组和智能多参数变送器组成。 三阀组: 三阀组的作用是将差压变送器的正负压室与引压管导通或切断,导通或切断差压变送器。 停用时:关闭负压阀,打开平衡阀,关闭正压阀. 投用时:打开正压阀,关闭平衡阀,打开负压阀.在有隔离液的情况下要确保三阀组不能同时打开,防止隔离液因为差压而跑掉. 五阀组比三阀组多2个排污阀。 初次使用时应先打开平衡阀,再打开低压侧负压阀,接着是打开高压侧正压阀,最后关闭平衡阀,变送器工作,这样操作很好的保护了变 送器。在变送器的工作过程中也可以打开平衡阀给变送器调零等操作 孔板流量计的安装位置是直管的前10D后5D。 造成孔板测量不准的几个原因:

孔板流量计选型

孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量装置,可测量气体、蒸汽、液体及天然气的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。 孔板流量计相关参数下面安徽康泰来为您分享! 孔板流量计节流装置结构简单,且牢固、性能稳定可靠,是工业中常用到的流量测量仪表,孔板流量计节流装置通常分为:标准孔板、圆缺孔板、偏心孔板、内藏孔板、限流孔板、环形孔板、喷嘴孔板、环室孔板等,孔板流量计节流装置与差压变送器配套使用,充满管道的流体,当它们流经管道内的节流装置时,流体将在节流装置的节流件处形成局部收缩,节流装置使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后

产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小,孔板流量计前后产生一个静压力差,该压力差与流量存在着一定的函数关系,流量越大,压力差就越大.差压信号传送给差压变送器,转换成4~20ma信号输出,远转给流量积算仪,实现流体流量的计量.质量型流量计,利用智能型差压变送器,对工况温/压进行自动补偿后,实现对流体质量流量的测量。 标准孔板是一类规格最多的标准节流装置,广泛应用于各种流体特别是气体流量测量中,孔板的结构因压力、通径、取压方式的不同而不同。 智能节流装置(孔板流量计)是集流量、温度、压力检测功能于一体,并能进行温度、压力自动补偿的流量计,该孔板流量计采用先进的微机技术与微功耗新技术,功能强,结构紧凑,操作简单,使用方便,牢固,性能稳定可靠. 一体化孔板流量计是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量,孔板流量计节流装置包括环室孔板,喷嘴等。 环形孔板是冷凝水可以从环形孔板的边沿流走,最小流通面是紧贴管内壁的圆环,而标准孔板最小流通面是处于管中心的同心圆。流体中的杂质流速较低,一般是紧贴着管壁边流动。 孔板流量计结构:节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等取压装置:环室、取压法兰、夹持环、导压管等、连接法兰、紧固件、测量管,标准孔板按常用取压方式可分为角接取压、法兰取压、径距取压三种类型。 安徽康泰电气有限公司生产的仪器仪表包括:热电阻、热电偶、双金属温度计、温度变送器、压力表、压力变送器、液位计、液位变送器、流量计、智能数显仪、仪表管阀件等,电线电缆包括:电力电缆、

差压流量计常见故障及处理[1]

差压流量计常见故障及处理试卷 姓名分数 一、判断题(15×2′=30′) 1、用节流式流量计测量流量时,流量越小,测量误差越小。() 2、若流量孔板接反,将导致流量的测量值增加。() 3、差压流量计导压管路阀门组成系统中,当平衡阀门泄漏时,仪表指示值将偏低。() 4、使用差压变送器反吹风方式测量流量,当负压管泄漏时,流量示值减小。() 5、智能变送器的零点和量程都可以在手持通信器上进行设定和修改,所以智能变送器不需 要压力信号进行校验。() 6、德尔塔巴流量计测量流量时,对直管段没有要求。() 7、超声波液位计不适合测量带有较高压力罐体设备的液位。() 8、流量是一个动态量,其测量过程应与流体的物理性质无关。() 9、靶式流量计适用于测量粘性介质和悬浮颗粒的介质。() 10、电磁流量计的感应信号电压方向与所加的磁场方向垂直,并且与被测流体的运动方向垂 直。() 11、电磁流量计适用测管内具有一定导电性液体的瞬时体积流量。() 12、用差压法测液位,启动变送器时应先打开平衡阀和正负压阀中的一个阀,然后关闭平衡 阀,开启另一个阀。() 13、罗斯蒙特3051C智能变送器的传感器是硅电容式,它将被测参数转换成电容的变化然 后通过测电容来得到被测差压式压力值。() 14、超声波流量计的输出信号与被测流体的流量成线性关系。() 15、电磁流量计电源的相线和中线,激励绕组的相线和中线以及变送器输出信号的1、2端 子线是不能随意对换。() 二、选择题(13×2′=26′) 1、用差压法测量容器液位时,液位的高低取决于() A、容器上下两点的压力差 B、压力差、容器截面积和介质密度 C、压力差、介质密度和取压点位置 D、容器截面积和介质密度 2、用双法兰变送器测量容器内的液位,变送器的零点和量程均已校正号,后因维护需要,仪表的安装位置上移了一段距离,则变送器() A、零点上升,量程不变 B、零点下降,量程不变 C、零点不变,量程增大 D、零点和量程都不变 3、用节流装置测量气体流量,如果实际工作温度高于设计工作温度,这时仪表的指示值将() A、大于真实值 B、小于真实值 C、没有影响 4、1151压力变送器的测量原0~100kPa,现零点迁移100%,则仪表的测量范围() A、0~100kPa B、50~100kPa C、-50~+50kPa D、100~200kPa 5、管道上安装孔板时如果将方向装反了会造成() A、差压计倒指示 B、差压计指示变小 C、差压计指示变大 D、对差压指示无影响 6、设计节流装置时为了使流量系数稳定不变,应设定()雷诺数 A、最大流量 B、最小流量 C、常用流量D中间流量 7、标准孔板的安装要求管道的内表面应清洁的直管段要求是() A、上游5D,下游10D B、上游10D,下游5D

孔板流量计计算公式

孔板流量计计算公式 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式孔板流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0. *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能

仪表自动化第三章习题:流量检测

第三章流量检测 1.某差压式流量计的流量刻度上限为320m3/h ,差压上限2500Pa。当仪表指针指在160m3/h时,求相应的差压是多少 (流量计不带开方器)? 解:由流量基本方程式可知 流量是与差压的平方根成正比的。当测量的所有条件都不变时,可以认为式中的α、ε、F0、ρ1均为不变的数。如果假定上题中的 Q1 = 320m3/h ;Δp1 = 2500Pa ; Q2 = 160m3/h ;所求的差压为Δp2 ,则存在下述关系 代入上述数据,得 该例说明了差压式流量计的标尺如以差压刻度,则是均匀的,但以流量刻度时,如果不加开方器,则流量标尺刻度是不均匀的。当流量值是满刻度的1/2时,指针却指在标尺满刻度的1/4处。 2.通常认为差压式流量计是属于定节流面积变压降式流量计,而转子流量计是属于变节流面积定压降式流量计,为什么? 解:这可以从它们的工作原理上来分析。

差压式流量计在工作过程中,只要节流元件结构已定,则其尺寸是不变的,因此它是属于定节流面积的。当流量变化时,在节流元件两侧的压降也随之而改变,差压式流量计就是根据这个压降的变化来测量流量的,因此是属于变压降式的。 转子流量计在工作过程中转子是随着流量变化而上下移动的,由于锥形管上部的直径较下部的大,所以转子在锥形管内上下移动时,转子与锥形管间的环隙是变化的,即流体流通面积是变化的,因此它是属于变节流面积的。 由于转子在工作过程中截面积不变,重力也不变,而转子两端的静压差作用于转子上的力恒等于转子的重力,转子才能平衡在一定的高度上,所以在工作过程中,尽管转子随着流量的变化上下移动,但作用在转子两侧的静压差却是恒定不变的,所以它是属于定压降式流量计。 3.流量检测方法有哪些?有哪些常用的流量检测仪表? (1)节流差压法 在管路内安装上节流元件,使流体在此处流动状态发生变化,造成节流元件的上、下游间产生压力差。由于此压力差和流量间有一定函数关系,因此,检测此压差,即可变换出流量。常用的节流元件有:孔板、喷嘴等。 (2)容积法 按一定的容积空间输送流体,容积空间的运动次数(或运动速度)与流量成正比。记录运动次数或速度,则可得出一段时间内的累积流量。容积式流量计,有椭园齿轮式流量计、膜式煤气表及旋转叶轮式水表

差压式流量计的原理及设计

差压式流量计的原理及设计 今天为大家介绍一项国家实用新型专利——一种差压式流量计。该专利由力合科技(湖南)股份有限公司申请,并于2018年11月30日获得授权公告。 内容说明本发明涉及流量测量技术领域,尤其涉及一种差压式流量计。 发明背景目前流量测量技术在工业生产,能源计量,环境保护等领域具有不可或缺的作用,与国民经济、科学研究等有密切的联系。流量计有差压式流量计、转子流量计等。其中,差压式流量计是根据安装于管道中流量检测件在不同点产生的差压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。 专利公告号为CN103424149A的发明专利,公开了一种橄榄形差压式流量计,该专利中的差压式流量计结构较复杂,不易安装;正压压力小,压差变化小,灵敏度不够高;节流元件构造复杂,不宜加工。 此外,现有流量计多采用金属材质,易腐蚀。因此,针对以上不足,需要对现有流量计进行改进设计。 发明内容本发明要解决的技术问题是提供一种差压式流量计,以解决现有差压式流量计结构复杂,所测压差变化小,灵敏度不够高,节流元件不易加工安装,流量计易腐蚀的问题。 为了解决上述技术问题,本发明提供了一种差压式流量计,包括测量管,设置在测量管内的节流元件,其具有与测量管内壁适配的贴合面,以及前后隔离并穿过测量管一侧管壁伸入到测量管腔内的第一采压管和第二采压管,便于压力采集,并能获得测量管中较大的稳定压差,使得流量计具有更高的响应灵敏度和精度。 优选地,所述节流元件是一个与所述测量管内壁形成一个流体窄道的柱体。所述第一采压管在所述测量管腔内折弯后垂直于所述测量管的贴合侧管壁伸向壁外。所述第一采压管与所述第二采压管分别设置在所述节流元件的两侧,所述第一采压管的进管口轴线与所述测量管的轴线平行。 所述第二采压管与所述节流元件一侧的径向端面紧密贴合。所述第二采压管穿过所述节流

详解孔板流量计

详解孔板流量计 差压式流量计作为经典与最古老的流量计,应用范围最为广泛。不过随着电子式流量计如(电磁、涡街等)流量计的兴起,我们有些新的行业朋友,还真不一定熟悉这种流量计,今天这一期,给大家好好讲解这个差压式流量计。 差压式流量计在化工生产中得到最广泛的应用,也是操作人员最为熟悉的一种流量计,它的节流装置(1)安装在生产工艺管道(2)上,并由引压管(3)和差压变送器(4)三个部分组成流量测量系统(如图3—1所示)。下面对差压式流量计,差压变送器及差压式流量计的安装分别予以介绍。 图3-1 差压式流量计的组成 差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体经节流装置时产生的压力差而实现流量测量的。差压式流量计一般是由能将流体的流量变换成差压信号的节流量(孔扳、喷嘴)和用来测量压差值的差压计或差压变送器及显示仪表组成。 这种流量计,目前在化工、炼油及其它工业中应用很广,应用的历史也较长久,因此已经积累了丰富的实践经验和完整的实验资料。对于常用的孔板、喷嘴等节流装置,国内外已把它们标准化了,并称为“标准节流装置”。因此,这种流量计所用的标准节流装置可以根据计算结果直接投入制造和使用,不必用实验方法进行单独标定。但对于非标准化的特殊节流装置, 在使用时,均应进行个别标定。 一.节流装置的流量测量原理 节流现象及其原理: 流体在有节流装置的管道中流动时,在节流装置前后的管璧处,流体的静压产生差异的现象称为节流现象,如图3—2所示 图3—2 流体流经节流装置时的节流现象

现在,我们对流体流经节流装置前后的变化情况作进一步分析。 连续流动着的流体,在遇到安插在管道内的节流装置时,由于节流装置的截面积比管道的截面积小,形成流体流通面积的突然缩小,在压力作用下,流体的流速增大,挤过节流孔,形成流速的扩大而降低。与此同时,在节流装置前后的管壁处的流体静压力就产生了差异,形成静压力差△p(△p=P1- P2),如图3-3所示。并且p1>p2, 图3—3 孔扳附近流束及压力分布情况 此即为节流现象,从图中可以看出,节流装置的作用在于造成流束的局部收缩从而产生的压差.并且,流过的流量愈大在节流装置前后所产生的压差也愈大,因此可以通过测量压差来衡量流体流量的大小。由于节流装置造成流束的收缩,同时流体又是保持连续流动的状态,因此在流束截面积最小处的流速达到最大,在流速截面积最小处,流体的静压力最低。 同理,在孔板出口端面处,由于流速已比原来增大,因此静压力仍旧比原来的为低(即图中P2

差压式流量计正确的安装方法

差压式流量计正确的安装方法 一:应用差压式流量计在安装导压管时的要求如下。 (1)引压导管应按最短距离敷设,一般情况下它的总长度应大于50m,以免阻力过大,反应滞后;但不小于3m。因为对流量变化太快的场合指示波动频繁,对于高温介质可能造成差压计的温度过高。管线的弯曲处应该是均匀的圆角。 (2)应设法排除引压导管管路中可能积存有气体、水分、液体或固体微粒等影响压差精确而可靠地传送的其他成分。为此引压导管的装设应保持垂直或水平面之间成不小于1∶10的倾斜度,并加装气体、冷凝液、微粒的收集器和沉降器,定期进行排放。 (3)引压导管应不受外界热源的影响,为防止冻结的可能,应有伴热装置。 (4)对于粘性和有腐蚀性的介质,为了防堵防腐,应加装充有隔离液的隔离罐。 (5)全部引压管路应保证密封而无渗漏现象。 (6)引压管路中应装有必要的切断、冲洗、灌封液、排污等所需要的阀门。江阴塔南二:差压式流量计常见故障、原因及排除方法。 1、指示零或移动很小。其原因为:(1)平衡阀未全部关闭或泄漏;(2)节流装置根部高低压阀未打开;(3)节流装置至差压计间阀门、管路堵塞;(4)蒸气导压管未完全冷凝;(5)节流装置和工艺管道间衬垫不严密;(6)差压计内部故障。 其对应处理方法为:(1)关闭平衡阀,修理或换新;(2)打开;(3)冲洗管路,修复或换阀;(4)待完全冷凝后开表;(5)拧紧螺栓或换垫;(6)检查、修复。 2、指示在零下。其原因为:(1)高低压管路反接;(2)信号线路反接;(3)高压侧管路严重泄漏或破裂。 其对应处理方法为:(1)检查并正确连接好;(2)检查并正确连接好;(3)换件或换管道。 3、指示偏低。其原因为:(1)高压侧管路不严密;(2)平衡阀不严或未关紧;(3)高压侧管路中空气未排净;(4)差压计或二次仪表零位失调或变位;(5)节流装置和差压计不配套,不符合设计规定。

常用测量仪表的检定周期和检定规程

附件2 常用测量仪表的检定周期和检定规程 计量检定规程测量 仪表名称规程编号 计量检定规程适用范围 或有关检定周期适用范围的说明 最长检 定周期 弹簧管式精密压力表JJG49 弹簧管式精密压力表和真空表1年弹簧管式一般压力表JJG52 弹簧管式一般压力表、压力表真空表和真空表半年工作用玻璃液体温度计JJG 130 (工业和实验)普通温度计和精密温度计1年 速度式流量计JJG198 0.1,0.2,0.5级流量计和分流旋翼式流量计1年低于0.5级涡轮、涡街、旋进旋涡和电磁流量计2年低于0.5级超声波和激光多普勒流量计3年 双金属温度计JJG226 1年工业铀、铜热电阻JJG229 优于0.5级的1年工作用廉金属热电偶JJG351 K、N、E和J型热电偶半年氧化锆氧分析器(试行) JJG535 结合氧化错探头性能自定检定周期未规定压力控制器JJG544 压力控制器(开关)和真空控制器(开关) 1年数字温度指示调节仪JJG617 也适用于直流模拟电信号输入的数字指示调节仪1年 差压式流量计JJG640 用几何检验法和系数法检定节流装置或传感器2年用几何检验法检定测量单相清洁流体的标准喷嘴4年差压式流量计中的差压计或差压变送器1年 液体容积式流量计JJG667 用于贸易结算的腰轮、齿轮、刮扳等流量计半年使用条件恶劣且优于0.5级的流量计半年 其他流量计1年 可燃气体检测报警器JJG693 1年电动温度变送器JJG829 也适用于直流模拟电信号输入的其他电动变送器1年压力变送器JJG882 正、负压力,差压和绝对压力变送器1年液位计JJG971 浮力式、压力式、电容式、反射式和射线式液位计1年 浮子式钢带液位计 维护检修规程 Q/SHGD0044-2000 浮子式钢带液位计维护检修1年轴流式气动调节阀运行 调校及维护保养规程 Q/SHGD0080-2003 轴流式气动调节阀运行调校及维护保养1年FISHER泄压阀调校 及维护规程 Q/SHGD0079-2003 FISHER泄压阀调校及维护1年气动球型调节阀调校 及维护规程 Q/SHGD0071-2003 气动球型调节阀调校及维护1年电液联动调节阀操作 维护保养与检修规程 Q/SHGD0057-2001 电液联动调节阀操作维护保养与检修1年 压力变送器校准与维护规程Q/SHGD0009-2005 压力变送器校准与维护,进出站压力、涉及联锁 的压变压力变送器校准与维护,其它压变 1年 双金属温度计使用 与维护规程 Q/SHGD0034-2003 双金属温度计使用与维护1年

节流式差压流量计的使用和安装

节流式差压流量计的使用和安装 差压式流量计三阀组的作用是什么?节流装置与差压变送器之间采用正负压导管和阀门相连接,如图13 所示。在差压引出口正负压管线上各有一个 阀门,称为一次阀,可以使仪表开启和停止。另外在靠近仪表的正压导管上安装正压阀、负压导管上安装负压阀、在正负压阀门下游端安装一个称为平衡阀的连通阀,三个阀连接在一起组成三阀组。三阀组安装示意图 利用差压式流量计三阀组可以在管道无流量时平衡变送器正负压室的压力,由此可检查变送器的零点是否有漂移;正确使用三阀组可防止变送器测量室单向受压;三阀组还可以配合其它阀门进行流量计的排凝和放空。52 差压式流量计启动时检查哪些内容?如上题图13 所示,需要检查的内容有:(1)检查所有阀门、导压管、接头等是否完好,连接是否牢固;(2)检查三阀组和排污阀是否关闭,平衡阀是否打开;(3)慢慢打开一次阀(不要开得太大),待有液体流入后,检查导压管、接头、焊口、阀门及盘根是否有渗漏,无渗漏时再正常启动变送器;(4)分别打开排污阀,排污后关闭;(5)拧开变送器测量室的丝堵,排掉无用的气体;(6)当导压管内充满被测介质(若测量蒸汽,待导压管充满凝结液)后,方可启动差压变送器。53 仪表三阀组如何操作?操作时需要注意什么问题?(1)启动顺序:打开正压阀、关闭平衡阀、打开负压阀;停运顺序与启动顺序相反,即:关闭负压阀、打开平衡阀、关闭正压阀。(2)操作时需要注意:导压管中的介质不能流失、差压测量室不能单向受压、在测量高温介质时,操作三阀组动作要缓慢,避免损坏测量膜盒。54 充灌隔离液的差压流量计,在启动和停运时应注意哪些问题?对于充灌隔离液的差压流量计,启动前(在打开孔板取压阀之前),必须先将平衡阀关闭,以防止隔离液冲走;停运时,必须首先关闭孔板取压阀和三阀组的正负压阀,

孔板流量计理论流量计算公式

孔板流量计理论流量计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29|分类: |标签: |字号大中小订阅 引用 的 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1)

孔板流量计计算公式

0 引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获

得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1 孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。

差压式流量计型式评价大纲1范围

差压式流量计型式评价大纲 1 范围 本大纲适用于分类编码为的差压式流量计的型式评价,适用于DN50~DN1000口径的孔板、均速管、楔形流量计、弯管流量计、矩形流量计、V锥流量计、文丘里管、文丘里喷嘴、喷嘴等差压式流量计。 2 引用文件 JJG 640 差压式流量计 GB/T 2624.1-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求 GB/T 2624.2-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第2部分:孔板 GB/T 2624.3-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第3部分:喷嘴和文丘里喷嘴 GB/T 2624.4-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第4部分:文丘里管 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3 术语 3.1 压力测量 3.1.1管壁取压口(wall pressure tapping) 管壁上钻出的环状缝隙或圆孔,其边缘与管道内表面平齐。 3.1.2静压(p)(static pressure) 由连接到管壁取压口的压力测量装置测得的压力。 3.1.3差压(Δp)(differential pressure) 当已考虑上下游取压口之间任何高度差时,在两个管壁取压口处获得的静压差。管壁取压口一个位于一次装置的上游侧,另一个位于一次装置的下游侧。

差压式孔板流量计容易出现的问题及解决方法

差压式孔板流量计容易出现的问题及解决方法 摘要:本文主要针对差压式(孔板) 流量计的“空跳”现象以及采用 差压式流量仪表计量时的一些不 正常现象监管方法及防止对策。关 键词:差压式流量计空跳现象监管 方法防止对策 差压式(孔板)流量计因其设计规范,简单牢固,一致性好,不 需实流标定诸多优点被广泛应用 于贸易结算,但在实际使用过程中, 经常会出现一此问题,比如“空 跳”、多计、少计及导压管高度修 正等问题,使供、用双方蒙受不必 要的损失,下面就对产生这些问题 的原因进行实例分析并提出解决 办法。 一、差压式流量计是以伯努利方 程和流动连续性方程为依据,当流 体流经节流件(或传感器)时,在 其两侧产生差压,而这一差压与流

量的平方成正比。将差压变送器与流量显示仪表配合起来检查零位输出,如果零位存在偏差,则可能的原因如下。 (一)差压变送器静压误差。 根据JJG640-1994差压式流量计检定规程规定:单向静压试验:在正压室加入公称压力,保持5min后撤压,待10min后,测量基本误差和回程误差,然后用同样方法对负压进行同样试验;双向静压试验:在正、负压室同时加25%的公称压力,待稳定后测量输出下限值的变化量,然后将压力上升到公称压力作同样的试验。在实际工作中,经常采用加工作静压,这种方法在产品经常推荐采用。具体操作方法是:在检定完毕后,先开平衡阀,再开正压阀,送正负压室工作压力,通过调整零点克服静压影响。 例:某蒸汽用户,现场安装条件

符合要求,但是其总阀门在节流装置以前。在差压变送器检定完毕后,先开平衡阀,再开正压阀,送正负压室0.65MPa工作压力,此时差压变送器零点为 3.915mA,调差压变送器零点上移至检定时数值为3.960mA,完毕后,将差压变送器投入运行。当用户停汽一段时间后,流量积算仪走字。 其解决方法有以下几种: 1.条件具备者尽可能采用规程上规定的静压值进行静压试验。 2.不方便时加工作静压也未尝不可,加工作压力调整静压螺钉来克服静压影响。在静压螺钉调过后,用内六角扳手将差压变送器容腔内膜盒连接C型簧片与引出轴松开,使膜盒处于自然放松状态,然后再拧紧,重新检定一遍。 3.这一实例还有另一个原因:即总阀门在节流装置以前安装。当停汽后管道内因蒸汽逐渐冷凝成水

差压流量计计算公式

差压流量计计算公式 SANY GROUP system office room 【SANYUA16H-

已知工艺管道的直径,管道内介质的密度,怎么算出差压变送器的压力.差压变送器是配合弯管流量计一起安装的.尽量说详细点,谢谢 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Qv=CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP节流装置输出的差压,Pa; β直径比 ρ1被测流体在I-I处的密度,kg/m3; Qv体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下:Q=0.004714187*d^2*ε*@sqr(ΔP/ρ)Nm3/h0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ=P*T50/(P50*T)*ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.煤气计算书(省略) 三.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。 差压流量计的通用计算公式如下图所示,由式1推导可得到式2。式中Q代表流量,△P 代表差压,ρ代表流体密度,K是仪表系数,由流量计出厂标定时得到。 流量与差压的平方根成正比。差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成

孔板流量计理论流量计算公式

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你 的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29| 分类:技术资料| 标签:|字号大中小订阅 引用 蝈蝈的孔板流量计理论流量计算公式 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是

差压流量计计算公式

已知工艺管道的直径,管道内介质的密度,怎么算出差压变送器的压力.差压变送器是配合弯管流量计一起安装的.尽量说详细点,谢谢 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v=CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0.004714187 *d^2*ε*@sqr(ΔP/ρ)Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ=P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二. 煤气计算书(省略) 三.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。 差压流量计的通用计算公式如下图所示,由式1推导可得到式2。式中Q代表流量,△P代表差压,ρ代表流体密度,K是仪表系数,由流量计出厂标定时得到。??

相关文档
最新文档