第四章 不定积分总结

第四章 不定积分总结
第四章 不定积分总结

第四章 不定积分 总结

一、不定积分的概念

1.原函数的定义: .

2.不定积分的定义: .

3.不定积分的几何意义: .

二、不定积分的性质

性质1: . 性质2: . 性质3: . 性质4: .

三、不定积分的基本积分公式

(1)d k x =? ; (2)d x x μ=? ;(1)μ≠-

(3)1d x

x =? ; (4)x = ; (5)d x a x =? ; (6)e d x x =? ;

(7)sin d x x =? ; (8)cos d x x =? ;

(9)2sec d x x =? ; (10)2csc d x x =? ;

(11)sec tan d x x x =? ; (12)csc cot d x x x =? ;

(13)

x = ; (14)2

1d 1x x =+? ; (15)tan d x x =? ; (16)cot d x x =? .

四、不定积分的计算方法

1.直接积分法(常用技巧: 利用分解因式、三角函数关系式、配方法等,直接利用基本积分公式求积分),典型例题如: .

2.第一类换元积分公式(凑微分公式): . 常用凑微分格式:例如

(1)1d d x a =

( ); (2)1d d 2x x =( ); (3)1d d x x =( ); (4d x

=( ); (5)e d d x x =( ); (6)sin d d x x =( ); (7)cos d d x x =( ); (8)e d d x x =( ); (9)2

sec d d x x =( ); (10)2csc d d x x =( ); (11)

21d d 1x x =+( ); (12d x =( ). 3.第二类换元积公式: .

(1)三角代换:其目的是化掉根式.当被积函数中含有 ①22x a -,可令=x ; ②22x a +,可令=x ; ③22a x -,可令=x .

(2)根式代换:

① 当被积函数含根式m b ax +时,可作代换: . ② 当被积函数含有两种或两种以上的根式l k x x ,, 时,可作代换: .

(3)其他代换,如:当分母的阶较高时, 可采用变换: .

4.分部积分公式: . 选取v u ,的一般规则:

(1) ;(2) .

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

高等数学第四章 不定积分教案

第四章 不定积分 知识结构图: ???????? ???????????????????????分部积分法第二换元积分法 第一换元积分法直接积分法求不定积分基本公式性质 几何意义定义不定积分原函数 教学目的要求: 1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不 定积分的几何意义与基本性质。 2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一 类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。 3.了解不定积分在经济问题中的应用。 教学重点: 1.原函数与不定积分的概念 2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点: 1.不定积分的几何意义 2.凑微分法、分部积分法求不定积分 第一节 不定积分的概念与基本公式 【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。直接积分法求函数的不定积分。 【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。 【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。 【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。 【教学时数】2学时 【教学进程】

一、原函数与不定积分的概念 (一)原函数的概念 前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题, 如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。 ②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义 定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有 )()(x f x F ='或dx x f x dF )()(= 则称函数)(x F 是函数)(x f 的一个原函数。 例1 指出下列函数的原函数: ①x x f cos )(= ②23)(x x f = ③x a x f =)( ④x x f 1)(= 教师将举例分析:如(cos )sin x x '-=,则cos x -是sin x 在R 上的一个原函数。 2()2x x '=,则 2x 是2x 的一个原函数。 教师再问:(1)是否所有的函数都有原函数?什么样的函数才有原函数存在呢?在此, 我们不作讨论.我们只给出一个重要的结论. 结论:如果函数()f x 在某区间上连续,则其原函数一定存在 (2)25x +是不是2 x 在R 上的一个原函数呢?学生回答:是 (3)提出一个函数若存在原函数,则有几个呢?引入 2.原函数个数 定理4.1 如果函数()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数,且()f x 的所有原函数都具有()F x C +的形式(C 为任意常数). (二)不定积分的概念 教师指出:在以上的分析中我们看到一个函数()f x 有原函数存在,则有无数多个,它们都可以表示为()F x C +的形式,我们把它叫做()f x 的不定积分。 1.不定积分定义 定义4.2 如果函数()F x 是()f x 的一个原函数,则称()f x 的全体原函数()F x C +(C 为任意常数)为()f x 的不定积分,记作 C x F dx x f +=?)()(

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

高等数学第四章不定积分课后习题详解

高等数学第四章不定 积分课后习题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)

思路: 被积函数52 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C ---=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到22222 1111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8)23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 = 11172488x x ++==,直接积分。 解 :715888.15x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --?

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

不定积分的常用求法(定稿)[1]

郑州大学毕业论文 题目:不定积分的常用求法 指导老师:任国彪职称:讲师 学生姓名:王嘉朋学号:20082100428 专业:数学与应用数学(金融数学方向) 院系:数学系 完成时间:2012年5月25日 2012年5月25日

摘要 微积分是微分学与积分学的简称,微积分的创立是数学史上最重要的事情之一。不定积分的相关知识是微积分中重要的知识,掌握不定积分的求法是学好微积分的前提。另外,不定积分的求法和定积分的求法有一定的相关性,在求面积以及质量中也有一定的应用。但是不定积分的计算是数学分析中的难点之一。求不定积分的方法灵活多样,本文介绍了微分学的来源,创立以及发展历史。并且基于自己对不定积分的理解,通过实例对不定积分的求法进行了总结。 关键字:微积分,微分学,积分学,不定积分,求解方法。 Abstract: Calculus is short for differential calculus and integral calculus and its foundation is one of the most important events in math history. Relevant knowledge in indefinite integral is very significant in calculus learning. Grasping solutions to indefinite integral is the premise of leaning calculus well. Besides, there is correlation between solutions to indefinite integral and definite integral. Indefinite integral can be applied in obtaining area and mass. However,calculating indefinite integral is one of the most hardest parts in math analysis. A variety of methods can be used in seeking indefinite integral. This paper introduced the origin of calculus, founding and developing history. Besides, through some examples based on understanding of indefinite integral,this paper also summarized solutions to indefinite integral. Keywords: calculus; differential calculus; integral calculus; solutions

§4不定积分习题与答案

第四章 不定积分 (A) 1、求下列不定积分 1)?2 x dx 2)?x x dx 2 3)dx x ?-2 )2( 4)dx x x ?+2 2 1 5)??-?dx x x x 32532 6)dx x x x ?22sin cos 2cos 7)dx x e x )32(? + 8)dx x x x )1 1(2?- 2、求下列不定积分(第一换元法) 1)dx x ?-3)23( 2) ? -3 32x dx 3)dt t t ? sin 4)? ) ln(ln ln x x x dx

5)?x x dx sin cos 6)?-+x x e e dx 7)dx x x )cos(2 ? 8)dx x x ?-4 3 13 9)dx x x ?3cos sin 10)dx x x ?--2491 11)?-122x dx 12)dx x ?3cos 13)?xdx x 3cos 2sin 14)? xdx x sec tan 3 15) dx x x ?+2 39 16)dx x x ?+22sin 4cos 31 17) dx x x ? -2 arccos 2110 18)dx x x x ? +) 1(arctan

3、求下列不定积分(第二换元法) 1)dx x x ?+2 11 2)dx x ?sin 3)dx x x ? -42 4)?>-)0(,222 a dx x a x 5)? +3 2 ) 1(x dx 6) ?+ x dx 21 7) ?-+ 2 1x x dx 8) ?-+ 2 11x dx 4、求下列不定积分(分部积分法) 1)inxdx xs ? 2)? xdx arcsin 3)? xdx x ln 2 4)dx x e x ? -2 sin 2

高等数学 第四章不定积分课后习题详解

第4章不定积分 内容概要 课后习题全解 习题41 1、求下列不定积分: 知识点:直接积分法得练习——求不定积分得基本方法。 思路分析:利用不定积分得运算性质与基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 ,由积分表中得公式(2)可解。 解: ★(2)

思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★(4) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★★(5) 思路:观察到后,根据不定积分得线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6) 思路:注意到,根据不定积分得线性性质,将被积函数分项,分别积分。 解: 注:容易瞧出(5)(6)两题得解题思路就是一致得。一般地,如果被积函数为一个有理得假分式,通常先将其分解 为一个整式加上或减去一个真分式得形式,再分项积分。 ★(7) 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(- +-)2 ★(8) 思路:分项积分。 解: 2231( 323arctan 2arcsin .11dx dx x x C x x -=-=-+++? ? ★★(9) 思路:?瞧到,直接积分。

不定积分知识点总结

三一文库(https://www.360docs.net/doc/8c4872845.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

第4章不定积分(自测题答案)

《高等数学》单元自测题答案 第四章 不定积分 一、填空题: 1、2ln 2 22 x x ; 2、2 2 ; 3、C x +-2 2 )1(21 ; 4、C x ++1tan 2; 5、C x x ++3 3 1ln 31. 二、选择题: 1、C ; 2 、C ; 3、B . 三、计算下列不定积分: 1、解 ?? ??+- = +-+= += +x x x x x x x x x x de e de e e de e e dx e e )111(111112 C e e e d e de x x x x x ++-=++- = ??)1ln()1(11 。 2、解 ? ?? +- += +-dx x x dx x x dx x x x 2 2 2 1arctan 11arctan C x x x xd x x d +- += - ++= ??2 2 2 2 )(arctan 2 1)1ln(2 1arctan arctan 1)1(2 1。 3、解 令t x sin =,则tdt dx cos =,且 ??? ? -+-= +=-+= -+dt t t t t dt t t t tdt x dx )cos 1)(cos 1() cos 1(cos cos 1cos sin 11cos 112 2 ? ? ? ?? -- = - = -= dt t t t t d dt t t dt t t dt t t t 2 2 2 2 2 2 2 2 sin sin 1sin sin sin cos sin cos sin cos cos C x x x x C t t t ++-+ - =+++-=arcsin 11cot sin 12。 4、解 令12-= x t ,则)1(2 12 += t x ,tdt dx =,且 ?? ?? +- = +-+= += +-dt t dt t t dt t t dx x )1 11(1 111 1 121 C x x C t t +-+--=++-=)121ln(12|1|ln 。 5、解 ????? - =- ==dx x e x e x d e x e de x dx x e x x x x x x 2 1 2cos 2 sin 2 sin 2 sin 2 sin 2 sin )2 c o s 2c o s (212s i n 2c o s 21 2 s i n ??- -=- =x d e x e x e de x x e x x x x x ?-- =dx x e x e x e x x x 2sin 4 12 cos 212 sin 所以,C x e x e dx x e x x x +- = ?)2 cos 2 12 sin (542 sin 。

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

相关文档
最新文档