整数规划中的割平面法和分枝定界法的研究

整数规划中的割平面法和分枝定界法的研究
整数规划中的割平面法和分枝定界法的研究

开题报告

整数规划_分支定界法_MATLAB程序

function [x,y]=lpint(f,G,h,lb,ub,x,n,id) % 整数线性规划分枝定界法,可求解线性全整数或线性混合整数规划% 此程序基于Matlab优化工具箱的lp函数写成 % 此程序为GreenSim团队原创作品,转载请注明 % 欢迎访问GreenSim团队的主页https://www.360docs.net/doc/8c975534.html,/greensim % y = min f'x subject to: Gx <= h x为整 % x % 用法 % [x,y]=lpint(f,G,h) % [x,y]=lpint(f,G,h,lb,ub) % [x,y]=lpint(f,G,h,lb,ub,x) % [x,y]=lpint(f,G,h,lb,ub,x,n) % [x,y]=lpint(f,G,h,lb,ub,x,n,id) % 参数说明 % x: 最优解列向量 % y: 目标函数最小值 % f: 目标函数系数列向量 % G: 约束条件系数矩阵 % h: 约束条件右端列向量 % lb: 解的的下界列向量(Default: -inf) % ub: 解的的上界列向量(Default: inf) % x: 迭代初值列向量 % n: 等式约束数(Default: 0) % id: 整数变量指标列向量。1-整数,0-实数(Default: 1) % 举例 % min Z=x1+4x2 % s.t. 2x1+x2<=8 % x1+2x2>=6 % x1, x2>=0且为整数 %先将x1+2x2>=6化为 - x1 - 2x2<= -6 %》[x,y]=lpint([1;4],[2 1;-1 -2],[8;-6],[0;0]) % Y. MA & L.J. HU 1999 global upper opt c N x0 A b ID; if nargin<8, id=ones(size(f));end if nargin<7|isempty(n), n=0;end if nargin<6, x=[];end if nargin<5|isempty(ub), ub=inf*ones(size(f));end if nargin<4|isempty(lb), lb=zeros(size(f));end

割平面法

题目:割平面法及其数值实现 院系:数理科学与工程学院应用数学系 专业:数学与应用数学 姓名学号:*** 1****** *** 1****** *** 1****** *** 1****** 指导教师:张世涛 日期:2015 年 6 月11 日

整数规划与线性规划有着密不可分的关系,它的一些基本算法的设计都是从相应的线性规划的最优解出发的。整数规划问题与我们的实际生活有着密切的联系,如合成下料问题、建厂问题、背包问题、投资决策问题、旅行商问题、生产顺序表问题等都是求解整数模型中的著名问题。所以要想掌握生活中这些解决问题的方法,研究整数规划是必然的路径。用于解决整数规划的方法主要有割平面法,分支定界法,小规模0-1规划问题的解法,指派问题和匈牙利法。本文重要对整数规划中经常用的割平面法加以介绍及使用Matlab 软件对其数值实现。 割平面法从线性规划问题着手,在利用单纯型法的时候,当约束矩阵中出现分数,给出一种"化分为整"的方法。然后在割平面方法来解决整数线性规划的理论基础上,把"化分为整"的方法进行到底,直到求解出最有整数解。 关键词:最优化;整数规划;割平面法;数值实现;最优解;Matlab软件。 Abstract The integer programming are closely related to the linear programming. Some of the basic algorithms of the former are designed from the optimal solution of the corresponding linear programming. What’s more, our daily life has a close relationship with it as well, such as synthesis problem, plant problem, knapsack problem, investment decision problem, traveling salesman problem and production sequence table problems. They are famous questions in solving integer model. So, to study the integer programming is the inevitable way to master the methods of solving these problems in life. The methods used in solving the integer programming include cutting plane method, branch and bound method, and solving the problem of small-scale 0-1 programming, assignment problem and Hungarian method. In this paper, we introduce the cutting plane method and use Matlab to get its numerical implementation in the integer programming. Cutting plane method, giving us a "integrated" method when we meet the constraint matrix scores in the use of simplex method, starts from the linear programming problem. Then, based on the theory of cutting plane method to solve the integer linear programming, we use “integrated” method until the most integer solution is solved. Keywords:Optimization; Integer programming; Cutting plane method; Numerical implementation; Optimal solution; Matlab software.

整数规划分支定界算法matlab通用源程序

整数规划分支定界算法matlab通用源程序 %整数规划分支定界算法matlab通用源程序 %各参数的意义同matlab优化工具箱的线性规划函数linprog %调用前,输入参数要化成matlab的标准形式 [x,val]=kfz-f-3(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1;

分支定界法和割平面法

分支定界法和割平面法 在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些 具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。 整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就 称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划; (3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。本文就适用于 纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。 一、分支定界法 在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。分支定界法就是其中一个。 分枝定界法可用于解纯整数或混合的整数规划问题。在二十世纪六十年代初 由Land Doig和Dakin等人提出。由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。 设有最大化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作z ;而A的任意可行解的目标函数值将是z*的一个下界z。分枝定界法就是将B的可行域分成子区域再求其最大值的方法。逐步减小z和增大z,最终求到z*。现用下例来说明:例1求解下述整数规划 Max z = 40x「90x2 9X1 7X2 -56 7X1 20X2 - 70 x1,x2 -0 且为整数 解(1)先不考虑整数限制,即解相应的线性规划B,得最优解为: 洛=4.81,x2= 1.82, z 二356 可见它不符合整数条件。这时z是问题A的最优目标函数值z*的上界,记作z。而X1=0, X2=0显然是问题A的一个整数可行解,这时z = 0,是z*的一个下界,记作z,即0w z*< 356。 (2)因为X1X2当前均为非整数,故不满足整数要求,任选一个进行分枝。设选X1进行分枝,于是对原问题增加两个约束条件: x, -〔4.81 丨-4“ 一〔4.811 1 =5 于是可将原问题分解为两个子问题B1和B2 (即两支),给每支增加一个约束条件并不影响问题

分支定界法详解

1、概念: 分支定界算法(Branch and bound,简称为BB、B&B, or BnB)始终围绕着一颗搜索树进行的,我们将原问题看作搜索树的根节点,从这里出发,分支的含义就是将大的问题分割成小的问题。大问题可以看成是搜索树的父节点,那么从大问题分割出来的小问题就是父节点的子节点了。分支的过程就是不断给树增加子节点的过程。而定界就是在分支的过程中检查子问题的上下界,如果子问题不能产生一比当前最优解还要优的解,那么砍掉这一支。直到所有子问题都不能产生一个更优的解时,算法结束。 2、例子: 用BB算法求解下面的整数规划模型 因为求解的是最大化问题,我们不妨设当前的最优解BestV为-INF,表示负无穷。 1.

首先从主问题分出两支子问题: 通过线性松弛求得两个子问题的upper bound为Z_LP1 = 12.75,Z_LP2 = 12.2。由于Z_LP1 和Z_LP2都大于BestV=-INF,说明这两支有搞头,继续往下。 2. 3.

从节点1和节点2两个子问题再次分支,得到如下结果: 子问题3已经不可行,无需再理。子问题4通过线性松弛得到最优解为10,刚好也符合原问题0的所有约束,在该支找到一个可行解,更新BestV = 10。 子问题5通过线性松弛得到upper bound为11.87>当前的BestV = 10,因此子问题5还有戏,待下一次分支。而子问题6得到upper bound为9<当前的BestV = 10,那么从该支下去找到的解也不会变得更好,所以剪掉! 4.

对节点5进行分支,得到: 子问题7不可行,无需再理。子问题8得到一个满足原问题0所有约束的解,但是目标值为4<当前的BestV=10,所以不更新BestV,同时该支下去也不能得到更好的解了。 6.

整数规划_分支定界法_MATLAB程序

整数规划分支定界法MATLAB程序 1.这种方法绝对能都解出答案,而且答案正确 function [x,val]=fzdj(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1; lb1(d)=fix(x1(d))+1;

分支定界算法的MATLAB程序

Linprogdis子程序: function [x,fval,exitflag,output,lambda]=... linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options) %Title: % 分支定届法求解混合整数线性规划模型 % %初步完成:2002年12月 %最新修订: 2004-03-06 %最新注释:2004-11-20 %数据处理 [t1,t2] = size(b); if t2~=1, b=b';%将b转置为列向量 end %调用线性规划求解 [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options); if exitflag<=0,%如果线性规划失败,则本求解也失败 return end %得到有整数约束的决策变量的序号 v1=find(ifint==1);%整数变量的index tmp=x(v1);%【整数约束之决策变量】的当前值 if isempty(tmp), %无整数约束,则是一般的线性规划,直接返回即可 return end v2=find(checkint(tmp)==0);%寻找不是整数的index if isempty(v2), %如果整数约束决策变量确实均为整数,则调用结束 return end %第k个决策变量还不是整数解 %注意先处理第1个不满足整数约束的决策变量 k=v1(v2(1)); %分支1:左分支 tmp1=zeros(1,length(f));%线性约束之系数向量 tmp1(k)=1; low=floor(x(k)); %thisA 分支后实际调用线性规划的不等式约束的系数矩阵A %thisb 分支后实际调用线性规划的不等式约束向量b if ifrowinmat([tmp1,low],[A,b])==1 %如果分支的约束已经存在旧的A,b中,则不改变约束 thisA= A; thisb= b;

分枝定界法讲义_代码

第5 章分枝定界 任何美好的事情都有结束的时候。现在我们学习的是本书的最后一章。幸运的是,本章用到的大部分概念在前面各章中已作了介绍。类似于回溯法,分枝定界法在搜索解空间时,也经常使用树形结构来组织解空间(常用的树结构是第1 6章所介绍的子集树和排列树)。然而与回溯法不同的是,回溯算法使用深度优先方法搜索树结构,而分枝定界一般用宽度优先或最小耗费方法来搜索这些树。本章与第1 6章所考察的应用完全相同,因此,可以很容易比较回溯法与分枝定界法的异同。相对而言,分枝定界算法的解空间比回溯法大得多,因此当内存容量有限时,回溯法成功的可能性更大。 算法思想 分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。每个活节点有且仅有一次机会变成E-节点。当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。 有两种常用的方法可用来选择下一个E-节点(虽然也可能存在其他的方法): 1) 先进先出(F I F O)即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活节点表的性质与队列相同。 2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。如果查找一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个E-节点是具有最大收益的活节点。 例5-1 [迷宫老鼠] 考察图16-3a 给出的迷宫老鼠例子和图1 6 - 1的解空间结构。使用F I F O分枝定界,初始时取(1,1)作为E-节点且活动队列为空。迷宫的位置( 1 , 1)被置为1,以免再次返回到这个位置。(1,1)被扩充,它的相邻节点(1,2)和(2,1)加入到队列中(即活节点表)。为避免再次回到这两个位置,将位置(1,2)和(2,1)置为1。此时迷宫如图1 7 - 1 a所示,E-节点(1,1)被删除。 节点(1,2)从队列中移出并被扩充。检查它的三个相邻节点(见图1 6 - 1的解空间),只有(1,3)是可行的移动(剩余的两个节点是障碍节点),将其加入队列,并把相应的迷宫位置置为1,所得到的迷宫状态如图17-1b 所示。节点(1,2)被删除,而下一个E-节点(2,1)将会被取出,当此节点被展开时,节点(3,1)被加入队列中,节点(3,1)被置为1,节点(2,1)被删除,所得到的迷宫如图17-1c 所示。此时队列中包含(1,3)和(3,1)两个节点。随后节点(1,3)变成下一个E-节点,由于此节点不能到达任何新的节点,所以此节点即被删除,节点(3,1)成为新的E-节点,将队列清空。节点(3,1)展开,(3,2)被加入队列中,而(3,1)被删除。(3,2)变为新的E-节点,展开此节点后,到达节点(3,3),即迷宫的出口。 使用F I F O搜索,总能找出从迷宫入口到出口的最短路径。需要注意的是:利用回溯法找到的路径却不一定是最短路径。有趣的是,程序6 - 11已经给出了利用F I F O分枝定界搜索从迷宫的(1,1)位置到(n,n)位置的最短路径的代码。 例5-2 [0/1背包问题] 下面比较分别利用F I F O分枝定界和最大收益分枝定界方法来解决如下背包问题:n=3, w=[20,15,15], p=[40,25,25], c= 3 0。F I F O分枝定界利用一个队列来记录活节点,节点将按照F I F O顺序从队列中取出;而最大收益分枝定界使用一个最大堆,其中的E-节点按照每个活节点收益值的降序,或是按照活节点任意子树的叶节点所能获得的收益估计值的降序从队列中取出。本例所使用的背包问题与例1 6 . 2相同,并且有相同的解空间树。 使用F I F O分枝定界法搜索,初始时以根节点A作为E-节点,此时活节点队列为空。当节点 A展开时,生成了节点B和C,由于这两个节点都是可行的,因此都被加入活节点队列中,节点A被删除。下一个E-节点是B,展开它并产生了节点D和E,D是不可行的,被删除,而E被加入队列中。下一步节点C成为E-节点,它展开后生成节点F和G,两者都是可行节点,加入队列中。下一个E-节点E生成节点J和K,J不可行而被删除,K是一个可行的叶节点,并产生一个到目前为止可行的解,它的收益值为4 0。 下一个E-节点是F,它产生两个孩子L、M,L代表一个可行的解且其收益值为5 0,M代表另一个收益值为1 5的可行解。G是最后一个E-节点,它的孩子N和O都是可行的。由于活节点队列变为空,因此搜索过程终止,最佳解的收益值为5 0。 可以看到,工作在解空间树上的F I F O分枝定界方法非常象从根节点出发的宽度优先搜索。它们的主要区别是在F I F O

整数规划_分支定界法_MATLAB程序

整数规划分支定界法MATLAB 程序 1.这种方法绝对能都解出答案,而且答案正确function [x,val]=fzdj(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1; lb1(d)=fix(x1(d))+1; if (a*lb1<=b) s1=0; end; ub2(d)=fix(x1(d)); if (a*lb2<=b) s2=0; end; end; end; e1={s1,a,b,aeq,beq,lb1,ub1,[],0}; e2={s2,a,b,aeq,beq,lb2,ub2,[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e2}; end; m1=m1+1;

分支定界法和割平面法

分支定界法和割平面法 在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。 整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。本文就适用于纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。 一、分支定界法 在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。分支定界法就是其中一个。 分枝定界法可用于解纯整数或混合的整数规划问题。在二十世纪六十年代初由Land Doig 和Dakin 等人提出。由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。 设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z *的上界,记作z ;而A 的任意可行解的目标函数值将是z *的一个下界z 。分枝定界法就是将B 的可行域分成子区域再求其最大值的方法。逐步减小z 和增大z ,最终求到z *。现用下例来说明: 例1 求解下述整数规划 219040Max x x z += ??? ??≥≥+≤+且为整数0,7020756792 12121x x x x x x 解 (1)先不考虑整数限制,即解相应的线性规划B ,得最优解为: 124.81, 1.82,356 x x z === 可见它不符合整数条件。这时z 是问题A 的最优目标函数值z *的上界,记作z 。而X 1=0,X 2=0显然是问题A 的一个整数可行解,这时0=z ,是z * 的一个下界,记作z ,即0≤z *≤356 。 (2)因为X 1X 2当前均为非整数,故不满足整数要求,任选一个进行分枝。设选X 1进行分枝,于是对原问题增加两个约束条件: [][]114.814, 4.8115 x x ≤=≥+= 于是可将原问题分解为两个子问题B 1和B 2(即两支),给每支增加一个约束条件并不影响问题A 的可行域,不考虑整数条件解问题B 1和 B 2 ,称此为第一次迭代。得到最优解

分枝定界说明

分支定界(branchand bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。 利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是: 1.产生当前扩展结点的所有孩子结点; 2.在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点; 3.将其余的孩子结点加入活结点表; 4.从活结点表中选择下一个活结点作为新的扩展结点。 如此循环,直到找到问题的可行解(最优解)或活结点表为空。 从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式: 1.FIFO(First In First Out)分支定界算法: 按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。 2.最小耗费或最大收益分支定界算法: 在这种情况下,每个结点都有一个耗费或收益。如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。 又称分支定界搜索法。过程系统综合的一类方法。该法是将原始问题分解,产生一组子问题。分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。

分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。用该法寻求整数最优解的效率很高。将该法原理用于过程系统综合可大大减少需要计算的方案数日。 分支定界法的思想是: 首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。 在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。这时,我们就必须采用搜索算法来解决问题。 搜索算法按搜索的方式分有两类,一类是深度优先搜索,一类是广度优先搜索。 我们知道,深度搜索编程简单,程序简洁易懂,空间需求也比较低,但是这种方法的时间复杂度往往是指数级的,倘若不加优化,其时间效率简直无法忍受;而广度优先搜索虽然时间复杂度比前者低一些,但其庞大的空间需求量又往往让人望而却步。 所以,对程序进行优化,就成为搜索算法编程中最关键的一环。 本文所要讨论的便是搜索算法中优化程序的一种基本方法棗“剪枝”。 什么是剪枝 相信刚开始接触搜索算法的人,都做过类似迷宫这样的题目吧。我们在“走迷宫”的时候,一般回溯法思路是这样的: 1、这个方向有路可走,我没走过 2、往这个方向前进 3、是死胡同,往回走,回到上一个路口 4、重复第一步,直到找着出口

分支定界法

整数线性规划之分支定界法 摘要 最优化理论和方法是在上世纪 40 年代末发展成为一门独立的学科。1947年,Dantaig 首先提出求解一般线性规划问题的方法,即单纯形算法,随后随着工业革命、计算机技术的巨大发展,以及信息革命的不断深化,到现在的几十年时间里,它有了很快的发展。目前,求解各种最优化问题的理论研究发展迅速,例如线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等,各种新的方法也不断涌现,并且在军事、经济、科学技术等方 面应用广泛,成为一门十分活跃的学科。 整数规划(integer programming)是一类要求要求部分或全部决策变量取整数值的数学规划,实际问题中有很多决策变量是必须取整数的。本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。 关键词:整数线性规划;分支定界法;matlb程序;

1.引言 1.1优化问题发展现状 最优化理论与算法是一个重要的数学分支,它所讨论的问题是怎样在众多的方案中找到一个最优的方案.例如,在工程设计中,选择怎样的设计参数,才能使设计方案既满足要求又能降低成本;在资源分配中,资源有限时怎样分配,才能使分配方案既可以满足各方面的要求,又可以获得最多的收益;在生产计划安排中,怎样设计生产方案才能提高产值和利润;在军事指挥中,确定怎样的最佳作战方案,才能使自己的损失最小,伤敌最多,取得战争的胜利;在我们的生活中,诸如此类问题,到处可见.最优化作为数学的一个分支,为这些问题的解决提供了一些理论基础和求解方法. 最优化是个古老的课题.长期以来,人们一直对最优化问题进行着探讨和研究.在二十世纪四十年代末,Dantzig 提出了单纯形法,有效地解决了线性规划问题,从而最优化成为了一门独立的学科。目前,有关线性规划方面的理论和算法发展得相当完善,但是关于非线性规划问题的理论和算法还有待进一步的研究,实际应用中还有待进一步的完善。传统的非线性全局最优化方法只能求出问题的局部最优解,但由于许多问题的局部最优解不一定是全局最优解,使得传统的非线性最优化方法不能直接成功地应用于求解非线性全局最优化问题。另外,没有一个固定的评判标准来判断得到的局部最优解是否为全局最优解。随着科学技术的发展和计算机计算能力的提高,最优化理论在最近这几年来得到了迅速的发展,涌现出了许多新的算法, 如打洞函数法,填充函数法,lagrangian 乘子函数方法,信赖域方法,虑子方法等。 本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。 1.2整数线性规划及其数学模型 整数规划主要有以下三大类: (1)全整数规划(all integer programming):所有的决策变量都取整数值,也称为纯整数规划(pure integer programming); (2)混合整数规划(mixed integer programming):仅要求一部分决策变量取整数值; (3)0-1规划(zero-one integer programming):该类问题的决策变量只能取0或1. 本文主要讨论的整数线性规划问题模型为:

简单介绍分支界定法与割平面法

缺点: 某些变量要求整数 不能运用到对数,指数函数中 分支界定法: 分枝定界法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。分支定界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限。 分枝定界法已经成功地应用于求解整数规划问题、生产进度表问题、货郎担问题、选址问题、背包问题以及可行解的数目为有限的许多其它问题 割平面法: 它的基本思想和分枝界定法基本上一致,首先不考虑变量的整数约束,利用单纯形法求解出线性规划的最优解,如果得到的解是整数那么这个最优解就是原来问题的最优解,如果最优解不是整数解,则就用一张平面将原来的含有最优解的非整数点但不包含整数可行解的点的那一部分可行域切割掉,也就是在原来的整数线性规划的基础上增加适当的线性约束不等式,这个约束不等式就叫切割不等式当其取等号时就是割平面了。此后,继续解这个新得到的整数线性规划,如果得到的新最优解是整数,运算就停止,如果不是整数则继续增加适当的线性约束不等式,直到求出的解满足最优整数要求为止。 通过构造一系列平面来切割掉不含有任何整数可行解的部分,最终获得一个具有整数坐标的顶点的可行域,而该顶点恰好是原整数规划的最优解。割平面法的关键在于,如何构造切割不等式,使增加该约束后能达到真正的切割而且没有切割掉任何整数可行解。 单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。

整数规划分支定界法

一、编程 利用Matlab的线性规划指令: [x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) 编写计算整数规划函数,输入与输出与上述指令相同 分枝定界法(递归实现) function [x,fval,status] = intprog(f,A,B,I,Aeq,Beq,lb,ub,e) %整数规划求解函数 intprog() % 其中 f为目标函数向量 % A和B为不等式约束 Aeq与Beq为等式约束 % I为整数约束 % lb与ub分别为变量下界与上界 % x为最优解,fval为最优值 %例子: % maximize 20 x1 + 10 x2 % S.T. % 5 x1 + 4 x2 <=24 % 2 x1 + 5 x2 <=13 % x1, x2 >=0 % x1, x2是整数 % f=[-20, -10]; % A=[ 5 4; 2 5]; % B=[24; 13]; % lb=[0 0]; % ub=[inf inf]; % I=[1,2]; % e=0.000001; % [x v s]= IP(f,A,B,I,[],[],lb,ub,,e) % x = 4 1 v = -90.0000 s = 1 % 控制输入参数 if nargin < 9, e = 0.00001; if nargin < 8, ub = []; if nargin < 7, lb = []; if nargin < 6, Beq = []; if nargin < 5, Aeq = []; if nargin < 4, I = [1:length(f)]; end, end, end, end, end, end %求解整数规划对应的线性规划,判断是否有解 options = optimset('display','off'); [x0,fval0,exitflag] = linprog(f,A,B,Aeq,Beq,lb,ub,[],options); if exitflag < 0

实验5 整数规划分支定界 的编程实现

实验5 整数规划求解的分支定界法的编程实现 专业班级数学学姓名报告日期. 实验类型:●验证性实验○综合性实验○设计性实验 实验目的:熟练整数规划求解的分支定界法。 实验内容:整数规划求解的分支定界法2个(题目自选1个混合整数规划、1个0-1整数规划) 实验原理整数规划求解的分支定界法,首先确定目标函数的一个初始上下界,然后通过逐步分支使上界减小,下界增大,直到两者相等时,就求出了最优值和最优解。 实验步骤 1 要求上机实验前先编写出程序代码 2 编辑录入程序 3 调试程序并记录调试过程中出现的问题及修改程序的过程 4 经反复调试后,运行程序并验证程序运行是否正确。 5 记录运行时的输入和输出。 预习编写程序代码: 实验报告:根据实验情况和结果撰写并递交实验报告。 实验总结: 参考程序 第一题:混合整数规划

①在lingo中写入如下代码,运行。 max=3*x1+2*x2; 2*x1+3*x2<=14; 2*x1+x2<=9; @gin(x1); @gin(x2); ②结果如下: Global optimal solution found. Objective value: 14.00000 Objective bound: 14.00000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 3 Variable Value Reduced Cost X1 4.000000 -3.000000 X2 1.000000 -2.000000 Row Slack or Surplus Dual Price 1 14.00000 1.000000 2 3.000000 0.000000 3 0.000000 0.000000 可知,最优值为14。此时,x1取4,x2取1。 第二题0-1整数规划 ①在lingo中写入如下代码,运行。 min=2*x1+5*x2+3*x3+4*x4; -4*x1+x2+x3+x4>=0; -2*x1+4*x2+2*x3+4*x4>=4; x1+x2-x3+x4>=1; @bin(x1); @bin(x2); @bin(x3); @bin(x4); ②结果如下: Global optimal solution found. Objective value: 4.000000 Objective bound: 4.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost

分支定界法

分支定界法 分支定界法,顾名思义,就是按照定好的界进行分支。这里说的分支意思是“剪枝”。剪的枝是问题解空间树的枝。所谓解空间树,即此问题所有解和中间解形成的树型结构,是有序的。常有排列树和子集树之分,举个例子,n个物品的0-1背包问题的解空间树就是子集树(每个物品都可能为0或1),而最短路径问题的解空间树是一颗排列树。 分支定界法一般有两种实现形式:1.优先队列法2.FIFO队列法。这与分支定界的思想无太多本质联系,只是前者在一般情况下能更快的求得问题解。分支定界法要对问题的解空间树进行“剪枝”操作以减少对解空间树的搜索。那么问题是,如何“剪枝”?这就要回答如何定界的问题。在分支定界法中,“界”的作用就是用来阻止对不可行分支的搜索的。当解空间树很深时(叶子节点为解),如果能在前面几层就预先的知道了“此路不通”或者“此路不是最优”而停止此路的继续,这样能大幅度的提高算法效率。如何定界要放入具体问题中考虑,一般可以以“理论最大最小”这个概念来求界。以0-1背包问题为例,设所有物品预先已经按照单位价值量递减排列。在解空间树的第i层(此时正在考虑第i个物品是否应该被放入的时刻),设左子树为放入i物品,右子树为不放i物品。那么在确定左子树的上界的时候有:界=当前价值+i

的价值+MaxValue(背包剩余重量-i物品重量);其中的MaxValue为放i后剩余背包容量能获得的最大价值,应该注意的是此最大价值为理论意义上的最大价值,比如在继续放入p个后(按单位价值量递减),放不下第p+1个,此时应该按(Value[p+1]/Weight[p+1])*(WeightLeft)来计p+1物品的价值,(实际中不可能放入零点几个某物品。。。);右子树的情形类似。 知道了如何定界,那么在实际流程中就要根据当前目标节点的界来剪枝了(是用上界还是下界,具体问题具体分析)。今天准备举个稍微有点挑战的例子---NPC问题中的TSP问题。 在TSP问题中,由于是环路,每个节点都要进出各一次,我们可以将每个节点最小的入度和最小的出度的和累加作为一个下界,这个下界几乎不可能达到!(全部最小出度的和即为下面提到的rcost的初值) 初始时我们创建一个最小堆,表示活节点队列。堆中按照每个节点的下界来划分优先级,下界越小的优先级越高。由于有是要求回路最小值,所以可以先判断此图是否有回路,没有直接返回,有再继续往下做。然后开始解空间树的搜索,广度优先遍历当前点的连通点,用curcost 来存当前的耗费总和,rcost表示当前点到叶子节点最小出度之和,那么一个节点的下界计算为:curcost+rcost-MinOut(当前点);如果此下界小于当前最优值,则将这个连

整数规划

第五章整数规划 一、填空题 1.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()。 2.在分枝定界法中,若选Xr=4/3进行分支,则构造的约束条件应为()。 3.已知整数规划问题P0,其相应的松驰问题记为P0’,若问题P0’无可行解,则问题P。()。 4.在0 - 1整数规划中变量的取值可能是()或()。 5.对于一个有n项任务需要有n个人去完成的分配问题,其解中取值为1的变量数为()个。 6.分枝定界法和割平面法的基础都是用()求解整数规划。 7.若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X。所在行得X1+1/7x3+2/7x5=13/7,则以X1行为源行的割平面方程为()。 8.在用割平面法求解整数规划问题时,要求全部变量必须都为()。 9.用()求解整数规划问题时,若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数,将全部系数化为整数。 10.求解纯整数规划的方法是割平面法。求解混合整数规划的方法是()。 11.求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是()。 12.在应用匈牙利法求解分配问题时,最终求得的分配元应是()。 13.分枝定界法一般每次分枝数量为()个. 二、单选题 1.整数规划问题中,变量的取值可能是()。 A.整数B.0或1C.大于零的非整数D.以上三种都可能 2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A()。 A.纯整数规划B.混合整数规划C.0—1规划D.线性规划 3.下列方法中用于求解分配问题的是()。 A.单纯形表B.分枝定界法C.表上作业法D.匈牙利法 三、多项选择

相关文档
最新文档