反函数练习附答案

反函数练习附答案
反函数练习附答案

1 / 6

2 / 6

3 / 6

4 / 6

5 / 6

教案审核:6 / 6

反函数与零点习题含答案

反函数-习题 1.函数f (x )=1-x +2 (x ≥1)的反函数是( ) A .y =(x -2)2+1 (x ∈R) B .x =(y -2)2+1 (x ∈R) C .y =(x -2)2+1 (x ≥2) D .y =(x -2)2+1 (x ≥1) 2.已知函数x x f a log )(=)1,0(≠>a a 且的图象过点(2,-1),函数()y g x =是函数 ()y f x =的反函数,则函数()y g x =的解析式为( ) A.()2x g x = B.1()()2 x g x = C.12 ()log g x x = D.2()log g x x = 3. 若函数)1(-=x f y 的图像与函数1ln +=x y 的图像关于x y =对称,则)(x f =( ) A. 1 2-x e B. x e 2 C. 1 2+x e D. 2 2+x e 4. 函数? ??≥<+=0,0,1x e x x y x 的反函数是______________. 5. 函数)2(,2-≥+-=x x y 的反函数是_______________. 6. 若函数)1,0(≠>=a a a y x 的反函数的图象过点(2,-1),则a =_________. 7. 函数)0)(24(log 2>++=x x y 的反函数是_______________. 8. 已知函数()f x 的反函数为)0(,lg 21)(>+=x x x g ,则(1)(1)f +g =_____________. 9. 函数1ln(1) (1)2 x y x +-= >的反函数是_______________. 10.若函数()y f x =的反函数... 图象过点(15),,则函数()y f x =的图象必过点__________. 11. 将x y 2=的图像先向______(填左、右、上、或下)平移_______个单位,再作关于直线 x y =对称的图象可得到函数)1(log 2+=x y 的图像. 12. 已知函数b a y x +=的图象过点(1,4)其反函数图象过点(2,0),则___.___==b a . 13. 已知函数x x x f 3 131)(+-=,则)5 4 (1 -f =____________.

幂函数指数函数和对数函数·反函数

幂函数、指数函数和对数函数·反函数 教学目标 1.使学生正确理解反函数的概念,初步掌握求反函数的方法. 2.培养学生分析问题、解决问题的能力及抽象概括的能力. 3.使学生思维的深刻性进一步完善. 教学重点与难点 教学重点是求反函数的技能训练. 教学难点是反函数概念的理解. 教学过程设计 一、揭示课题 师:今天我们将学习函数中一个重要的概念——反函数. (板书:反函数 1.反函数的概念) 二、讲解新课 师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢? 生:可以构成一个函数. 师:为什么是个函数呢? 一的x与之相对应. 师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?

师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x 表示自变量,用字母y表示因变量,故这个函数的解析式又可以 是不是同一函数呢? 生:是. 师:能具体解释一下吗? 和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数. 生:有.就是y=2x+1. 那么,是不是所有函数都会有反函数呢? 生:不是所有函数都有反函数. 师:能举个例子说明吗? 生:如函数y=x2,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数. 师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

反函数典型例题精析.doc

学习必备 欢迎下载 2. 4 反函數·例題解析 【例 1】求下列函數的反函數: (1)y = 3x 5 (x ≠- 1 ) . 2x 1 2 (2)y = x 2 - 2x + 3, x ∈ ( -∞, 0] . 1 (3)y = x 2 1 (x ≤ 0) . x +1 ( -1≤x ≤ 0) (4)y = - x (0<x ≤1) 解 (1) ∵ y = 3x 5 (x ≠- 1 ),∴ y ≠ 3 , 2x 1 2 2 由 y = 3x 5 得 (2y - 3)x =- y - 5, 2x 1 ∴ x = y 5 所求反函数为 y = y 5 (x ≠ 3 ). 3 2y 3 2y 2 解 (2)∵ y =(x -1) 2 + 2, x ∈ (-∞, 0]其值域為 y ∈ [2,+∞ ), 由 y = (x - 1) 2 + 2(x ≤ 0) ,得 x -1=- y 2,即 x = 1- y 2 ∴反函数为 f 1 (x) = 1- x 2, (x ≥ 2) . 解 (3)∵y = 1 ,它的值域为 0<y ≤1, x 2 (x ≤ 0) 1 由 y = 2 1 得 x =- 1 y , x 1 y ∴反函数为 f 1 (x) =- 1 x (0 <x ≤1) . x 解 (4)由y = x 1(-1≤ x ≤ 0), 得值域 0≤y ≤1,反函数 f 1 (x) = x 2 -1(0≤x ≤1). 由 y =- x (0<x ≤1), 得值域- 1≤ y < 0,反函数 f 1 (x) =x 2 ( -1≤x < 0), x 2 -1 (0≤ x ≤ 1) 故所求反函数为 y = 2 ( - ≤ < . x 1 x 0)

幂函数 反函数 反比例

〖2.3〗幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (图象关. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若 p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数 ,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.

反函数 反函数的基本知识点 一.定义:设式子)(x f y = 表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x ,得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象在点图象上)在(点几何语言: )(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的定义 域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论

反函数专题复习(2013版)

反函数专题复习 知识点: 1、反函数定义:若函数y =f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把 x 表示出来,得到x =?(y ).如果对于y 在C 中的任何一个值,通过x =?(y ),x 在A 中 都有唯一的值和它对应,那么,x =?(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x =?(y )(y ∈C )叫做函数y =f (x )(x ∈A )的反函数,记作x =f -1 (y ). 在函数x =f -1 (y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量, y 表示函数,因此我们常常对调函数x =f -1(y )中的字母x 、y ,把它改写成y =f -1(x ). 2、互为反函数的两个函数y =f (x )与y =f -1 (x )在同一直角坐标系中的图象关于直线y =x 对称. 3、若y =f (x )是[a ,b ]上的单调函数,则y =f (x )一定有反函数,且反函数的单调性与 y =f (x )一致. 4、若y =f (x ),x ∈[a ,b ](a <b )是偶函数,则y =f (x )无反函数。 5、求反函数的步骤: (1)解关于x 的方程y =f (x ),得到x =f -1 (y ). (2)把第一步得到的式子中的x 、y 对换位置,得到y =f -1 (x ). (3)求出并说明反函数的定义域〔即函数y =f (x )的值域〕. 双基练习: 1、函数y =- 11 +x (x ≠-1)的反函数是( A ) A.y =-x 1-1(x ≠0) B.y =-x 1 +1(x ≠0) C.y =-x +1(x ∈R ) D.y =-x -1(x ∈R ) 2、函数y =log 2(x +1)+1(x >0)的反函数为( A ) A.y =2x - 1-1(x >1) B.y =2x - 1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0) 3、函数f (x )=-12+x (x ≥- 2 1 )的反函数( D ) A.在[-21,+∞)上为增函数 B.在[-2 1 ,+∞)上为减函数 C.在(-∞,0]上为增函数 D.在(-∞,0]上为减函数 4、函数f (x )=-x 2(x ∈(-∞,-2])的反函数f - 1(x )=______________. 答案:-x -(x ≤-4)

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

导数与反函数练习题.doc

1. 2. (2011-重庆)曲线尸?X 3+3X 2在点(I, 2) A. y=3x - 1 B. y=-3x+5 (201b 山东)曲线 y=x 3+l 1 在点 P (1, 12) 处的切线方程为( ) C. y=3x+5 D. y=2x 处的切线与y 轴交点的纵坐标是( 15 3. A. [- 1,-岑] B ?[?1, 0] C. [0, II D.[兰,1] 乙 那么导函数y=f (x )的图象可能是( 函数q : g (x ) =x 2 - 4x+3m 不存在零点则 p 是 D.既不充分也不必要条件 导数与反函数练习题 选择题 (2011 ?杭州)如图是导函数尸f (x )的图象,则下列命题错误的是( ) A .导函数y=f (x )在x=xi 处有极小值 B .导函数y=F (x )在x=x?处有极大值 C.函数y=f (x )在x=X3 处有极小值 D.函 数y=f (x )在x=X4处有极小值 4. (2011 ?福建)若a>0, b>0,且函数f (x ) =4x 3 - ax 2 - 2bx+2在x=l 处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 9 5. (2010*江西)若 f (x ) =ax 4+bx 2+c 满足 f (I ) =2,则 f ( - 1)=( ) A. -4 B. - 2 C. 2 D. 4 6. (2009?江西)若存在过点(1, 0)的直线与曲线尸x3和y=ax 2+^X- 9都相切,则a 等于( ) 方 91 7 9R 7 A. - 1 或一竺 B. - 1 C. 一」或一竺 D. 一 ■或 7 64 4 4 64 4 ° TT 7. (2008?辽宁)设P 为曲线C : y=x~+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,—],则点P 横 4 坐标的取值范围是( ) A.充分不必要条件 B.必要不充分条件 C. 充分必要条件8.(2008?福建)如果函数y=f (x )的图象如图, q 的( )

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

第一册反函数

第一册反函数 教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况) 师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y); (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y 是函数值;后者y是自变量,x是函数值。) 在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y 是后者中的x。) 由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢? 生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的’值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为: (1)由y=f(x)解出x=f–1(y),即把x用y表示出; (2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1 (II)课堂练习课本P68练习1、2、3、4。 (III)课时小结 本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。 (IV)课后作业 一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

高考数学函数专题、反函数

函数专题(一)、反函数 1.原函数存在反函数的条件:原函数从定义域到值域上要满足一对一的对应关系,而不能有多对一的的对应关系。因此单调函数一定有反函数,存在反函数的原函数不一定是单调函数。偶函数一定没有反函数。 2.)1(+=x f y 的反函数不是)1(1-+=x f y 而是1)(1--=x f y , 理由如下:1)(1)()(1)1(1-1-1--=?-=?=+?+=x f y y f x y f x x f y . 同理,)1(1-+=x f y 的反函数不是)1(+=x f y ,而是1)(-=x f y , 理由如下:1)(1)()(1)1(1--=?-=?=+?+=x f y y f x y f x x f y . 3.原函数和反函数在相同定义域内的单调性相同。 4.原函数与反函数的交点不一定都在直线y =x 上,它们还可以位于直线y =x 的两侧,且以(a ,b )、(b ,a )的形式成对出现,如x x f )(161)(=与其反函数x x f 16 11-log )(=的交点有),(4121和),(2 141,这两个交点就不在直线y =x 上。 例1.(2010长宁区二模)如果函数||12|lg |)(-=x x f 在定义域的某个子区间)1,1(+-k k 上 例2.设)(1x f -是函数f (x )=2x -(13 )x +x 的反函数,则)(1x f ->1成立的x 的取值范围是________ 例3.已知1 32)(-+=x x x f ,函数)(x h y =的图像与)1(1-=-x f y 的图像关于直线x y =对称,则)8(h =__________ 变式训练: 1.已知函数()221f x x tx =-+,[] 2,5x ∈有反函数,且函数()f x 的最大值为8,则实数t 的值为_________

反函数的存在性及求法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1反函数的定义及其性质 (1) 1.1反函数的定义 (1) 1.2反函数的性质 (2) 1.2.1反函数的简单性质 (2) 1.2.2关于反函数图像的性质 (3) 1.2.3反函数的连续性与可微性 (5) 2反函数存在性的判定 (6) 2.1反函数存在性判定(一) (6) 2.1反函数存在性判定(二) (6) 3反函数的求法 (8) 3.1反函数的一般求法 (8) 3.2几类特殊函数的反函数的求解 (9) 3.2.1周期函数的反函数 (9) 3.2.2分段函数的反函数 (11) 3.2.3复合函数的反函数 (12) 参考文献 (14) 致谢 (14)

函数的反函数的存在性及其求法 数学与应用数学专业薛云 指导老师武秀美 摘要反函数是数学中的一个重要概念,文章分三部分阐述了反函数的概念、存在条件及其求法.首先,文章从不同角度给出了反函数的定义;其次,文章详细阐述了反函数的存在条件,从图像、定义及单调性等多方面加以论述;最后,文章给出了反函数的求法一般的步骤,并在此基础上介绍了一些特殊函数的反函数的求法. 关键词反函数周期函数反函数存在性定理 The Existence and Solution of Inverse Function of Functions Student majoring in Mathematics and applied mathematics Xue Yun Tutor Wu Xiumei Abstract The inverse function is an important concept in mathematics. This article has three parts about the concept of inverse function, the condition of existence of inverse function and the solution of inverse function. First, it gives the definition of inverse function, secondly, it gives the conditions of existence of inverse function and descries this aspects from image, definition and monotonicity. Finally, it gives the method of solution of inverse function and introduces the solution of the inverse function of some special functions. Key words Inverse function Periodic function Existence theorem of inverse function 引言函数是数学中的一个基本概念,对函数的性质、图像及其相关问题的研究自然地引发了对函数的反函数的探讨;同时在生活中,函数的反函数也占有较为重要的地位,但是反函数的定义很抽象,难于理解,中学数学中有一些基本的反函数的知识,在现有的数学分析和高等数学教科书中,也都有对反函数的简要介绍,但都不做重点讲述,这使对反函数的系统理解和应用更加不利.这篇文章在总结前例的基础上,对反函数的定义、性质、图像、存在性、求法等进行了详细地讨论. 1 反函数的定义及其性质 1.1 反函数的定义 定义]1[1一般地,式子) y=表示y是自变量x的函数,设它的定义域为A,值 (x f 域为C.从式子) (x =.如果对于y在C中的任何 (y x? f y=中解出x,得到式子) 一个值,通过式子) =,x在A中都有唯一确定的值和它对应,那么式子 x? (y

指数对数幂函数知识点总结

指数对数幂函数知识点总 结

篇一:指数、对数、幂函数知识点 指数、对数、幂函数知识归纳 知识要点梳理 知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果 ; 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0.式子 叫做根式,叫做根指数,叫做被开方数. ; ,那么叫做的次方根,其中 2.n次方根的性质:(1)当为奇数时, ; (2)当为偶数时, 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3) 知点二:指数函数及其性质1.指数函数概念:一般地,函数变量,函数的定义域为 . 叫做指数函数,其中是自 1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) A.ex+1 B.ex-1 C.e-x+1 D.e-x-1 2.(2013·上海高考文科·T8)方程 3.(2013·湖南高考理科·T16)设函数 f(x)?ax?bx?cx,其中c?a?0,c?b?0. 9x

的实数解为. ?1?3x 3?1 且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长, 则(a,b,c)?M所对应的f(x)的零点的取值集合为____. (2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号) ①?x????,1?,f?x??0; ②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0. 知识点三:对数与对数运算1.对数的定义(1)若叫做底数, 叫做真数. ,则叫做以为底 的对数,记作 , (2)负数和零没有对数. (3)对数式与指数式的互化:2.几个重要的对数恒等式: , , . . 3.常用对数与自然对数: 常用对数: ,即 ;自然对数: ,即 (其中 …). 4.对数的运算性质如果 ①加法:

高中数学反函数的性质及应用 专题辅导

高中数学反函数的性质及应用 李伟 函数是高中数学中的重要内容,反函数又是函数的重要组成部分,也是同学们学习函数的难点之一。反函数在历年高考中也占有一定的比例。为了帮助同学们更好地掌握反函数相关的内容,对反函数的性质作如下归纳。 性质1 原函数的定义域、值域分别是反函数的值域、定义域 在求原函数的反函数及反函数的定义域、值域的有关问题时,如能充分利用这条性质,将对解题有很大帮助。 例1. 函数()()???<-≥=0x x , 0x x 2y 2的反函数是( )。 A. ()()?????<-≥=0x x ,0x 2x y B. ()() ?????<-≥=0x x ,0x x 2y C. ()()?????<--≥=0x x ,0x 2x y D. ()()?????<--≥=0x x ,0x x 2y 解析:这是一个分段函数,对分段函数求反函数要注意分段求解。由函数解析式可知当0x ≥时,0y ≥;0x <时0y <。由性质1,可知原函数的反函数在0x <时,0y <,则根式前面要有负号,故可排除A 、B 两项,再比较C 、D ,易得答案为C 。 例2. 若函数()x f 1-为函数()()1x g 1x f +=的反函数,则()x f 1-的值域为__________。 解析:常规方法是先求出()x f 的反函数()110x f x 1-=-,再求得()x f 1-的值域为()∞+-,1。 如利用性质1,()x f 1-的值域即()x f 的定义域,可得()x f 1-的值域为()∞+-,1。 性质2 若()x f y 1-=是函数()x f y =的反函数,则有()()a b f b a f 1=?=-。 从整个函数图象来考虑,是指()x f y =与其反函数()x f y 1-=的图象关于直线x y =对称;从图象上的点来说,是指若原函数过点()b ,a ,则其反函数必过点()a ,b 。反函数中的这条性质,别看貌不惊人,在解题中却有着广泛的应用。 例3. 函数()x f y =的反函数()x f y 1-=的图象与y 轴交于点P (0,2),如下图所示,则方程()0x f =在[1,4]上的根是=x ( ) A. 4 B. 3 C. 2 D. 1 解析:利用互为反函数的图象关于直线x y =对称,()x f y 1-=的图象与y 轴交于点P (0,2),可得原函数()x f y =的图象与x 轴交于点(2,0),即()02f =,所以()0x f =的根为2x =,应选C 。

高考反函数问题常见类型解析

高考反函数问题常见类型解析 反函数是高中数学中的重要概念之一,也是学生学习的难点之一。在历年高考中占有一定的比例。为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。 一. 条件存在型 例1.函数f x x ax ()=--223在区间[] 12,上存在反函数的充要条件是( ) A. (]a ∈-∞,1 B. [)a ∈+∞2, C. (][ )a ∈-∞+∞,,12 D. [] a ∈12, 解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的 子区间(]-∞,a 或[ )a ,+∞上是单调函数。而已知函数f x ()在区间[1,2]上存在反函 数,所以[](]12,,?-∞a 或者[][)12,,?+∞a ,即a ≤1或a ≥2。故选(C ) 点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。 二. 式子求解型 例2.函数y x x =-≤2 3 10()的反函数是( ) A. y x x =+≥-()()113 B. y x x =-+≥-()()113 C. y x x = +≥()()103 D. y x x =-+≥()()103 解析:由x ≤0可得x 2 3 0≥,故y ≥-1,从y x = -23 1解得x y =±+()13 因x ≤0,所以x y =-+()13 即其反函数是y x x =-+≥-()()113 故选(B )。 点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。 三.求定义域值域型 例3.若f x -1 ()为函数f x x ()lg()=+1的反函数,则f -1 (x )的值域为_________。 解析:通法是先求出f (x )的反函数f x x -=-1 101(),可求得f -1 (x )的值域为 ()-+∞1,,而利用反函数的值域就是原函数的定义域这条性质,立即得f -1 (x )的值域 为()-+∞1,。 点评:这种类型题目可直接利用原函数的定义域、值域分别是反函数的值域和定义域这一性质求解。

反函数例题讲解

反函数例题讲解 例1.下列函数中,没有反函数的是 ( ) (A) y = x 2-1(x <21-) (B) y = x 3+1(x ∈R ) (C) 1 -=x x y (x ∈R ,x ≠1) (D) ???<-≥-=).1(4)2(22x x x x y , 分析:一个函数是否具有反函数,完全由这个函数的性质决定. 判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数. 本题应选(D ). 因为若y = 4,则由 ? ??≥=-2422x x , 得 x = 3. 由 ? ??<=-144x x , 得 x = -1. ∴ (D )中函数没有反函数. 如果作出 ? ??<-≥-=).1(4)2(22x x x x y ,的图像(如图),依图更易判断它没有反函数. 例2.求函数 211x y --=(-1≤x ≤0)的反函数. 解:由 211x y --=,得:y x -=-112 . ∴ 1-x 2 = (1-y )2, x 2 = 1-(1-y )2 = 2y -y 2 . ∵ -1≤x ≤0,故 22y y x --=. 又 当 -1≤x ≤0 时, 0≤1-x 2≤1, ∴ 0≤21x -≤1,0≤1-21x -≤1, 即 0≤y ≤1 . ∴ 所求的反函数为 22x x y --=(0≤x ≤1).

由此可见,对于用解析式表示的函数,求其反函数的主要步骤是: ① 把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ). ② 求给出函数的值域,并作为所得函数的定义域; ③ 依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y )为y = φ ( x ). 例3.已知函数 f ( x ) = x 2 + 2x + 2(x <-1),那么 f -1 (2 )的值为__________________. 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略). 依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1 (2 )的值会简捷些. 令 x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 . ∴ x = 0 或 x =-2 . 又x <-1,于是舍去x = 0,得x =-2,即 f -1 (2 ) = -2 . 例4.已知函数 241)(x x f +=(x ≤0),那么 f ( x )的反函数f -1 ( x )的图像是 ( ) (A ((B (C

相关文档
最新文档