可靠性与系统工程

可靠性工程每章基本概念及复习要点知识讲解

复习要点: ?可靠性 ?广义可靠性 ?失效率 ?MTTF(平均寿命) ?MTBF(平均事故间隔) ?维修性 ?有效性 ?修复度 ?最小路集及求解 ?最小割集及求解 ?可靠寿命 ?中位寿命 ?特征寿命 ?研究可靠性的意义 ?可靠性定义中各要素的实际含义 ?浴盆曲线 ?可靠性中常见的分布 ?简述串联系统特性 ?简述并联系统特性 ?简述旁联系统特性 ?简述r/n系统的优势 ?并-串联系统与串-并联系统的可靠性关系 ?马尔可夫过程 ?可靠性设计的重要性 ?建立可靠性模型的一般步骤 ?降额设计的基本原理 ?冗余(余度)设计的基本原理 ?故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

可靠性系统工程设计应用练习题

可靠性工程设计与应用练习题目录 1 可靠性工程设计与验证 2 系统可靠性评价 3 可靠性分配预计验证检查内容和方法 4 可靠性试验 5 FMEA 6 维修性设计与验证 7 软件可靠性 8 元器件选择与应用 9 元器件失效分析

1可靠性工程设计验证练习题 一、填空题(每空1分,共15分) 1 2 习惯称平均无故障工作时间,用Mean Time Between Failures )的缩写。 3,设有一个由按n 个单元组成的系统,其中任意r 个(r ≤n )正常工作系统就能正常工作,称为 4 5,GJB 使用阶段可靠性及其工作项目的确定、可靠性管理、可靠性设计与分析、可靠性试验与评价、使用可靠性评价与改进等5系列31项工作项目的通用要求 。 6 7,一批产品有100200小时后,有80个能正常工作,则这批产品在200小时时其可靠度的观测值是 8,设系统下属组件的可靠度分别为r1、r2……rn ,若这n 个系统组成串联系统,则系统的 可靠度为rn= 9,用、MIL-HDBK-217F 和MIL-HDBK-217E 进行预计时,假定元器件的失效 10,在下图的储备系统中,若单元的可靠性度为0.3,则两种( a&b (填有效或无效)。若单元的可靠性度为0.7,则a 、b a b 11会导致系统失效或操作失误。 二、判断题(每题1.5分,共 15分) (判断下列叙述是否正确,正确打“√”,错误打“×”) 1 ,在电子系统中,电位器必须谨慎使用。一般应尽量少用或不用。因其失效率大都是固定电阻器的10至100倍。 2 3,为了使气流畅通,流道应当骤然扩张或收缩。 4 5,在冷却流道设计中应使转变半径最大。 6,电子管灯丝电压和继电器线包吸合电流是不能减额的。 7距太近。 8 9,不是专门为负载转换设计的继电器不应当用来作负载转换。

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

北航考博辅导班:2019北京航空航天大学可靠性与系统工程学院考博难度解析及经验分享

北航考博辅导班:2019北京航空航天大学可靠性与系统工程学院考 博难度解析及经验分享 北京航空航天大学可靠性与系统工程学院2019 年博士研究生招生实行“申请―审核”制,符合《北京航空航天大学2019年博士研究生招生简章》中报考条件的申请人提交相关材料,依据考生申请材料的综合评价结果确定差额综合考核名单,经综合考核后择优推荐拟录取。强军计划、少数民族骨干计划、论文博士等采取相同的办法同时进行。 下面是启道考博辅导班整理的关于北京航空航天大学可靠性与系统工程学院考博相关内容。 一、院系简介 1985年,我国国防科技界、教育界的著名专家,我国可靠性系统工程事业的奠基人和开拓者杨为民教授顺应国家战略重大需求,组建了北航工程系统工程系和可靠性工程研究所。历经30年发展沉淀,学院形成了“献身国防,无私奉献的崇高境界;高屋建瓴,开拓创新的学术风范;淡泊名利,廉洁自律的高尚情怀;以人为本,集体发展的团队精神”的为民精神,秉承“开拓创新、敢为人先,需求牵引、专业推动,学科龙头、科教统筹,团队优势、集体发展”的工作理念,走过了一条“面向工程服务、开辟科研领域、创建培养体系”的特色创新之路,已成为国内可靠性工程专业技术领域的领军单位。 目前,研究所挂靠有多个以管理咨询和技术服务为职能的国家级中心和专家组,建成有可靠性领域唯一的国防科技重点实验室,以及多个国内实验设备与综合试验研究能力一流的部委级重点实验室和评价机构。这些高水平的技术与管理平台为院、所的可持续发展提供了坚实的基础与保证。 在科研领域,院、所现拥有专业齐全的研究方向、结构合理的教学科研队伍和配套先进的试验设备。多年来,紧密围绕国防科技工业发展对可靠性工程的专业需求,开展管理支持、人才培养、科学研究和工程服务。“九五”以来,先后承担完成了500余项科研项目,获得了包括国家科技进步特等奖在内的各类科技成果奖100余项,取得显著的经济效益和社会效益。 在人才培养领域,可靠性与系统工程学院开创了国内高校第一个“质量与可靠性工程”专业,建立了从本科到硕士(工程硕士)、博士、博士后在内完整的人才培养体系,将理论研究、工程应用与人才培养紧密结合,培养了大批可靠性与系统工程专业人才。同时,为上

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

浅谈软件可靠性工程的应用(一)

浅谈软件可靠性工程的应用(一) 摘要:本文就武器装备软件开发的现状和中存在的问题,介绍了软件可靠性工程的发展及其研究的内容,对软件可靠性工程如何在软件开发中应用进行了重点说明,并提供了成功应用软件可靠性工程的典型案例,指出软件可靠性工程研究的必要性。 关键词:软件可靠性工程随着科学技术的不断进步,计算机技术被越来越多地应用到武器系统中。计算机软件的复杂程度随着功能的增强,因而系统的可靠性也越来越与软件直接相关。例如AFTI/F-16飞机首航因软件问题推迟一年,事先设计的先进程序无法使用;海湾战争中F/A–18飞机飞行控制系统计算机500次故障中,软件故障次数超过硬件。软件可靠性成为我们关注的一个问题,本文仅就软件可靠性工程在软件开发过程中的应用谈谈自己的认识。 1、软件可靠性工程的基本概念及发展 1.1什么是软件可靠性工程 软件可靠性工程简单地说就是对基于软件产品的可靠性进行预测、建模、估计、度量及管理,软件可靠性工程贯穿于软件开发的整个过程。 1.2软件可靠性工程的发展历程 软件可靠性问题获得重视是二十世纪60年代末期,那时软件危机被广泛讨论,软件不可靠是造成软件危机的重要原因之一。1972年正式提出Jelinski—Moranda模型,标志着软件可靠性系统研究的开始。在70年代.软件可靠性的理论研究获得很大发展,一方面提出了数十种软件可靠性模型,另一方面是软件容错的研究。在80年代,软件可靠性从研究阶段逐渐迈向工程化。进入90年代后,软件可靠性逐渐成为软件开发考虑的主要因素之一,软件可靠性工程在软件工程领域逐渐取得相对独立的地位,成为一个生机勃勃的分支。 1.3软件可靠性工程研究的基本问题 软件可靠性工程的主要目标是保证和提高软件可靠性。为达到这一目标,首先要弄清软件为什么会出现故障或失效。只有这样,才有可能在软件开发过程中减少导致软件故障或失效的隐患,且一旦出现软件故障或失效,有可能采取有效措施加以清除。但是软件是开发出来的,满足可靠性要求的软件也是开发出来的,因此,软件可靠性工程的核心问题是如何开发可靠的软件。而有了软件,又该如何检验其是否满足可靠性要求?这是软件可靠性工程的又一个问题。 2、软件可靠性工程在软件开发中的应用 2.1项目开发计划及需求分析阶段 在项目开发计划阶段需根据产品具体要求作出软件项目开发计划,明确项目的目的、条件、运行环境、软件产品要求、人员分工和职责及进度,并估计产品的可靠性。需求分析阶段要根据项目开发计划阶段确定软件开发的主要任务、次要任务和其它任务,并设计软件程序的基本流程、软件结构、模块的定义和输入输出数据、接口和数据结构等同时应对项目开发计划阶段作出的可靠性预计进一步细化形成可靠性需求,建立具体的可靠性指标。这个阶段的可靠性工作一般应如下安排: ⑴确定功能概图 所谓功能概图就是产品的各种功能及其在不同环境条件下使用的概率。为确立功能概图必须定义产品的功能,功能定义不但包括要完成的任务,还包括影响处理的环境因素。 ⑵对失效进行定义和分类 这里应从用户的角度来定义产品失效,将软件和硬件失效及操作程序上的失效区分开,并将其按严重程度进行分类。 ⑶确定用户的可靠性要求 在这个阶段应由系统设计师、软件设计师、可靠性师、测试人员及用户方代表可靠性评估小组共同根据用户提出的系统可靠性来确定软件的可靠性。

质量及可靠性工程----答案北科大

质量及可靠性工程2010-2011学年第一学期 1、 什么是故障树分析法?在那些工作中可以应用故障树分析法?故障树分析法的程序是什么?(10分) 答:①故障树分析法简称FTA ,是系统可靠性和安全性分析的重要工具之一。FTA 是以系统所不希望发生的一个事件(顶事件)作为分析目标,通过逐层向下推溯所有可能的原因,每层推溯其直接原因,从而找出系统内可能存在的元件失效、环境影响、人为失误以及程序处理等硬件和软件因素(各种底事件)与系统失效之间的逻辑关系,并用倒树状图形表示出来。 ③故障树分析法不仅可用于解决工程技术中的可靠性问题,而且也可用于经济管理的系统工程问题,也可用于作为管理人员及维修人员的一个形象的管理、维修指南。用来培训长期使用大型复杂系统的人员也很合适。 2、 某一系统的可靠性逻辑框图如图所示,若各单元相互独立,且单元可靠度分别 为10.99R =,20.98R =,30.97R =,40.96R =,50.98R =,求该系统的可靠度。(20 分) 对于串联: 1 ()n i i R t =∏ 对于并联:n 1 ()1[1()]s i i R t R t ==--∏ 3、 设系统由A 、B 、C 三个子系统串联组成。已知各子系统可靠度 0.9A R =,0.8B R =,0.85C R =。要求系统可靠度*0.7S R =。试对3个子系统进行可靠度再分配。(20分) 4、 例5.6 一个系统由3个子系统串联组成,通过预计得到它们的可靠度分别为0.7, 0.8, 0.9,则系统可靠度R s =0.504,而规定的系统的可靠度R s *=0.65,试对3个子系统进行可靠度再分配。 解: (1)已知 R s *=0.65,n =3 (2)把原子系统的可靠度由小到大排列为 R 1=0.7, R 2=0.8, R 3=0.9 (3)确定K O ,令R 3+1=1.0,由式(3.9)计算 j=1,r 1=[R s */R 2?R 3?R 4]1/1=0.903> R 1 j=2,r 2=[R s */R 3?R 4]1/2 =0.85> R 2 j=3,r 1=[R s */ R 4]1/3=0.866< R 3 因此,K O =2 (4)计算R 0,由式(3.10)计算 R 0=[R s */ R 3?R 4]1/2=0.85 (5)得到R 1=R 2=R 0=0.85,R 3=0.9

可靠性试验分析及设计

ji 第四章(44) 可靠性试验与设计 四、最小二乘法 用图估法在概率纸上描出[],()i i t F t 点后,凭目视作分布检验判别所作的回归直线往往因人而异,因此最好再通过数值计算求出精确的分布检验结论和求出数学拟合的回归直线。通常用相关系数作分布检验,用最小二乘法求回归直线。 相关系数由下式求得: ()() n i i X X Y Y γ--= ∑ 其中X,Y 是回归直线的横坐标和纵坐标,它随分布的不同而不同。下表是不同分布的 坐标转换 只有相关系数γ 大于临界值0γ时,才能判定所假设的分布成立。0γ临界系数可查相应的临界相关系数表,如给定显著水平0.05α=,n=10,可查表得00.576γ=。若计算的0γγ,则假设的分布成 立。 如果回归的线性方程为 Y mX B =- 则由最小二乘法得到系数为

1 1 111 221 1??1?1 ()n n i i i i n n n i i i i i i i n n i i i i Y m X B N X Y X Y N m X X N =======-+=-=-∑∑∑∑∑∑∑ 代入上表中的不同的分布,就可以得到相应分布的参数估计值。 五、最好线性无偏估计与简单线性无偏估计 1、无偏估计 不同子样有不同的参数估计值?q ,希望?q 在真值q 附近徘徊。若?()E q q =,则?q 为q 的无偏估计。如平均寿命的估计为?i t n q =? ,是否为无偏估计? Q 1 [] ?()[]n i i i i t E t E E n n n q q q === = =? 邋 \ ?q 为q 的无偏估计 2、最好无偏估计定义 若?k q 的方差比其它无偏估计量的方差都小,即?()min ()k k D D q q =,则?k q 为最好无偏估计。 3、线性估计定义 若估计量?q 是子样的一个线性函数,即1 ?n i i i a q ==C ? ,则称?q 为线性估计。 4、最好线性无偏估计 当子样数25n £时,通过变换具有()F m s C -形式的寿命分布函数,其,m s 的最好线性无偏估计为: 1 ?(,,)r j i D n r j X m ==? ?(,,)j C n r j X s =? 其中(,,),(,,)D n r j C n r j 分别为,m s 的无偏估计,有了,,n r j 后,可有专门表格查无偏系数(,,),(,,)D n r j C n r j 。

最新可靠性工程B卷-试题及答案

东北农业大学成人教育学院考试题签 可靠性工程(B ) 1. 一种设备的寿命服从参数为λ的指数分布,假如其平均寿命为3700小时,试求其连续工作300小时的可靠度 和要达到R *=0.9的可靠寿命是多少? 2. 如果要求系统的可靠度为99%,设每个单元的可靠度为60%.需要多少单元并联工作才能满足要求? 3. 某型号电视机有1000个焊点,工作1000小时后,检查100台电视机发现2点脱焊,试问焊点的失效率多少? 4. 一个机械电子系统包括一部雷达,一台计算机,一个辅助设备,其MTBF 分别为83小时,167小时和500小时,求系 统的MTBF 及5小时的可靠性? 5. 比较二个相同部件组成的系统在任务时间24小时的可靠性,已知部件的/.010=λ小时 ①并联系统. ②串联系统. ③ 理想开关条件下的储备系统:1=λ,储备部件失效率/.*010==λλ小时.

6. 一个系统由五个单元组成,其可靠性逻辑框图如图所示.求该系统可靠度和画出故障树. 7. 某型号电视机有1000个焊点,工作1000小时后,检查100台电视机发现2点脱焊,试问焊点的失效率多少? 解:100台电视机的总焊点有 1001000105 ?= 一个焊点相当一个产品,若取 ?t =1000 小时,按定义: 8. 一个机械电子系统包括一部雷达,一台计算机,一个辅助设备,其MTBF 分别为83小时,167小时和500小时,求系 统的MTBF 及5小时的可靠性? A C D B E 0.90.90.9 0.90.9

9.比较二个相同部件组成的系统在任务时间24小时的可靠性,已知部件的/ .01 = λ小时 ①并联系统. ②串联系统. 10.一种设备的寿命服从参数为λ的指数分布,假如其平均寿命为3700小时,试求其连续工作300小时的可靠度 和要达到R*=0.9的可靠寿命是多少? 11.抽五个产品进行定时截尾的可靠性寿命试验,截尾时间定为100小时,已知在试验期间产品试验结果如下: t 1 50 =小时,和t 2 70 =小时产品失效,t 3 30 =小时有一产品停止试验,计算该产品的点平均寿命值?. 12.试计算指数分布时,工作时间为平均寿命的1/5、1/10、1/20以及平均寿命时的可靠度, 13.喷气式飞机有三台发动机,至少需二台发动机正常才能安全飞行和起落,假定飞机单台发动机平均寿命为 10000小时,且事故由发动机引起,求飞机飞行10小时和100小时的可靠性?

北航考研复试班-北京航空航天大学可靠性与系统工程学院安全科学与工程考研复试经验分享

北航考研复试班-北京航空航天大学可靠性与系统工程学院安全科学 与工程考研复试经验分享 北京航空航天大学(Beihang University)简称北航,是中华人民共和国工业和信息化部直属、中央直管副部级建制的全国重点大学,世界一流大学建设高校,211工程、985工程重点建设高校,入选珠峰计划、2011计划、111计划、卓越工程师教育培养计划、中国政府奖学金来华留学生接收院校、国家建设高水平大学公派研究生项目、国家级新工科研究与实践项目、国家级大学生创新创业训练计划、国家大学生创新性实验计划、全国深化创新创业教育改革示范高校,为国际宇航联合会、中欧精英大学联盟、中国西班牙大学联盟、中俄工科大学联盟成员,是全国第一批16所重点高校之一、80年代恢复学位制度后全国第一批设立研究生院的22所高校之一,也是新中国第一所航空航天高等学府。 北京航空航天大学创建于1952年,时名北京航空学院,由当时的清华大学、北洋大学、厦门大学、四川大学等八所院校的航空系合并组建,1988年4月改名为北京航空航天大学,1989年成为国家八五期间全国14所重点建设的高校之一,首批进入“211工程”,2001年进入“985工程”,2017年入选国家“双一流”建设名单。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 安全工程专业注重培养能从事安全技术及工程、安全科学与研究、安全监察与管理、安全健康环境检测与监测、安全设计与生产、安全教育与培训等方面复合型的高级工程技术人才,是一个涉及面极广的综合交叉学科。2004年,我国开办安全工程本科专业并在教育部备案的高校有68所,其中大多数高校的安全工程专业是新开办的,近4年申办安全工程专业的高校有40所,比2000年以前的总和都多,其增长速度极快 招生人数与考试科目 ①101 思想政治理论②201 英语一③301 数学一④841 概率统计与可靠性工程基础或931 自动控制原理综合或 951 力学基础 复试时间地点 1、资格审查时间:3月19日上午8:30-9:30,地点:主M401教室。专业英语笔试时间:3月19日上午10:00-11:00,地点:主M401教室。

企业网络安全风险分析及可靠性设计与实现研究

企业网络安全风险分析及可靠性设计 与实现研究 摘 要:现今,伴随信息、通信技术的完善,网络攻击技术的革新,网络安全问题日益显现。网络安全的管控,可以从侧面反映网络的安全状态,确保企业的网络安全。网络的安全性,关系企业的长远发展问题,同时也会间接影响社会的发展,作为企业的管理者我们应确保企业网络的安全,进而提高企业的经济效益。因此,本文就从网络安全风险分析、网络可靠性设计、企业网络安全的实现几方面进行一定的探讨,期望可以为企业的正常运行提供一定的帮助。 关键词:企业;网络风险分析;可靠性设计与实现现今,伴随信息、通信技术的完善,计算机网络中信息与数据的汇聚,都给人们的生活带来了极大的便捷性。经由网络系统,不仅提高了企业信息保存、传输的速度;提高了市场的反映速度;还带动了企业业务的新发展。企业内部中的网络信息,在现实运用中都实现了资源共享[1]。但是,在资源共享的前提下,就存在企业内部机密的安全性问题,尤其是现今的网络安全问题频发,我们更应提高对于企业的网络安全问题的关注度。因此,本文就对企业网络安全进行一定的探讨,期望可以对企业的正常运行提供有效帮助。 1网络安全风险分析 1.1安全威胁的分类 网络安全威胁,具体就是指潜在的、会对企业资产形成损失的安全问题。导致安全威胁的因素诸多,具体分类为:恶意攻击;系统软件问题;自然灾害;人为因素等[2]。

1.2网络系统安全影响因素[3] 1.2.1缺乏完善的管理体系 完善的网络管理体系,不单需要投入大量的网络设备,同时也要求有技术的支持。网络安全建设,其主要因素还应建立规范的网络安全管理机制。在任何企业,为了有效的保证网络的安全性,都应注重管理与技术的结合。在企业中,应注重员工的安全教育,同时管理者应依据现实状况,不断的完善企业的管理制度。 1.2.2缺乏网络安全知识 企业中的员工,其安全防范意识欠缺,对于网络安全知识认识较少,常会因个人信息的丢失,导致公司机密文件的泄漏。企业的网络安全,关系到企业的长远发展策略,因此公司应增强员工的安全知识教育,从根本上确保公司的网络安全。首先,企业员工在获取资源时,应该警惕病毒的侵入,防患于未然。其次,企业员工应该对于网络程序的安全性,有自己的初步判断能力,同时安装防病毒软件,并定时进行更新。第三,企业员工中对于文件的管理,应该注重文件的安全问题,应由员工自己管理文件,并设置权限。 1.2.3网络拥塞 网络拥塞,具体讲就是指当用户对网络资源的需求量,超过了网络固有容量的时候,出现的一种网络过载的状况[4]。企业员工的访问时间;交换机与路由器的端口传输速率等,都是造成网络拥塞的原因。当企业中出现网络拥塞的情况,就会出现数据不能进行转发,进而影响正常的网络运转工作,因此,企业在网络管理中,应依据这一情况制定合理的规划。 1.2.4系统漏洞的问题 现今,多数企业都是应用TCP/IP

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

《系统工程》模拟题及答案

系统工程模拟测试题 、单项选择题 1. 熵函数在( B )分布下取得最大值。 A. 负指数 B. 等概率 C. 泊松 D. 正态 2. 不与外部环境发生物质、能量、 信息交换的系统是( C )。 A. 开放系统 B. 动态系统 C. 封闭系统 D. 静态系统 3. 系统的功能是指系统接受物质、能量和信息并予以转换,产生另一种形 态的物质、能量和信息的能力,或者说系统与( B )相互作用的能力。 4. 一比特信息量就是含有两个独立等概率可能状态的事物所具有的 全部消除所需要的信息。 D )分析法。 系统。 8. 系统的熵越大,说明系统( B ) A. 内部要素 B. 外部环境 C. 研究对象 D. 目前状态 A. 不可行性 B. 可行性 C. 不确定性 D. 确定性 5. 通 过对系统要素 的 数量和 质量的分 析 来研究 系统功能的 方法, 称为 A.指标 B. 标准 C. 目的 D. 要素功能 6. 黑箱就是内部无法打开并且无法了解, 只能根据其( 进行识别的 A. 功能 B. 输入 C. 输出 D. 目标 7. 系统分析是一种( C )。 A. 定性分析方法 B. 定量分析方法 C. 辅助决策技术 D. 系统评价技术 A. 越有序 B. 越无序 C. 9. 决定系统功能的必要条件是( B )。 A. 系统要素 B. 系统结构 C. 10. 霍尔三维结构方法论的核心是( A. 最优化 B. 系统化 11. 现代科学的世界观认为,世界是由( C. A. 物质、精神、信息 B. 越复杂 D. 越简单 系统环境 D. 系统规律 满意化 D. 学习和比较 )组成的。 个人、集体、 组织 C. 物质、能量、信息 D. o C 系统、信息、结构

如何开展软件可靠性工程

如何开展软件可靠性工程 随着科学高速发展,武器装备系统和自动化指挥系统等军用系统对软件的依赖程度越来越高。软件在武器装备、航空航天等要求高可靠性的系统中扮演着越来越重要的角色。 我公司主要从事航空发动机研制和生产等方面工作,随着航空发动机技术的逐代更新,燃油控制系统由以往的机械液压控制结构改成了控制精度更高的数字控制系统,而数字控制系统的核心就是软件控制,软件的质量将会直接影响发动机的性能和安全。因此,军用设备软件可靠性就成为确保军事系统质量的瓶颈和关键。软件可靠性是软件质量中最为重要的一项属性,软件可靠性设计技术是确保和提高软件质量的重要手段。 软件可靠性工程是以保证和提高软件可靠性为目标,采取系统化的技术,通过工程化方法加以实施并对其过程进行工程化管理的过程技术。软件可靠性工程是软件工程研究与实践的必然结果,是可靠性工程发展的必然选择,已经成为软件业界和可靠性工程界关注的焦点,研究的热点,实践的重点。 上世纪70年代中后期,以软件工程发展为契机,软件可靠性工程得以产生和广泛研究与实践,取得了一定成效:大量可靠性模型相继推出并不断改进;可靠性设计与测试技术得以开发并逐步应用于工程实践;可靠性分析、评估技术体系与标准得以建立并在一些重点工程项目中得到应用;可靠性工程管理技术开发倍受推崇,以过程、组织、

管理模式改进为重点的管理方法得以产生。尽管如此,软件可靠性正日益严重地制约着软件更广泛的应用,甚至造成灾难性后果,武器系统等大型复杂系统软件越来越证明是一个薄弱环节,即使是通过测试的软件也常常受到错误的困扰。与此同时,一个前所未有日益增长的需求是:软件应具有检定合格的可靠性,即使是工业和日常生活中的一般应用软件也无不对其可靠性提出了前所未有的高要求。况且,不能保证软件的可靠性水平哪怕是在一段时间的将来是足够的。 软件可靠性模型是软件可靠性工程界倍受关注、研究最早、成果最丰富、目前仍然最活跃的领域,模型验证与应用依然是软件可靠性工程的热点。软件可靠性建模是针对具体的软件特征,根据可靠性数据以统计方法给出软件可靠性的估计值或预测值,是一个在不同结构元素中不断分解其依赖关系的迭代过程,旨在评估软件所提供的服务以及软件过程之间的依赖关系,是从本质上理解软件可靠性行为的基础。 软件可靠性模型是软件开发过程、开发技术、测试技术、验证方法、设计语言、运行环境、开发人员素质等相关因素的函数。一个优秀的软件可靠性模型,应尽可能反映这些因素。但包含所有这些因素的模型可能是一个高阶多维方程,不便于工程应用。因此,可靠性建模时应作适当假设,简化模型。模型假设必须准确、合理、具有有效的数据支持和逻辑一致性。但大多数模型假设所固有的目的性制约了模型的有效性和适用范围。此外,假设质量尤其是那些未经验证或粗略的假设对模型的精确性具有显著影响。基于拟合优度检验的模型假设

可靠性设计的基本概念与方法讲解

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

可靠性工程A卷-试题及答案

注:装订线内禁止答题,装订线外禁止有姓名和其他标记。 东北农业大学成人教育学院考试题签 可靠性工程(A) 一、填空题(每空1分,总分40分) 1、软件可靠性是指在()和()软件完成()的能力。所谓规定的条件是指软件所处的()、()及其()。 2、软件可靠性定义与时间密切相关,()、()、()是最常使用的三种时间度量。 3、某软件系统由6个顺序执行的模块构成,该软件系统成功运行的条件是所有模块都成功执行,假设该软件系统失效率的目标值为0.01失效数/小时,那么,分配到6个模块的失效率指标分别为:λi=()失效数/小时。 4、一般地,软件的可靠性要求可分为()和()两类。 5、一般地,软件可靠性模型的评价体系由()、()、( )、()、()、()等要素构成。 6、软件可靠性工程研究和实践的三个基本问题分别是:()、()、()。 7、在严格遵循软件工程原理的基础上,为了保证和提高软件的可靠性,通常在软件设计过程中还采用()、()、()设计和()等软件可靠性设计方法。 8、软件可靠性设计准则是长期的软件开发实践经验和可靠性设计经验的总结,使其()、()、(),成为软件开发人员进行可靠性设计所遵循的原则和应满足的要求。 9、一般地,软件容错的基本活动包括()、()、()、()和()等内容。 10、在配合硬件系统进行软件的健壮性设计时,通常应考虑()、( )、( )、( )、( )、( )、( )等因素。 二、判断题(每题1分,总分10分) 1、软件缺陷是由于人为差错或其他客观原因,使得软件隐含导致其在运行过程中出现不希望或不可接受的偏差的软件需求定义以及设计、实现等错误。() 2、通常情况下,软件运行剖面难以直接获得,在工程上按照:确定客户剖面→定义系统模式剖面→建立用户剖面→确定功能剖面→确定运行剖面的流程来开发软件的运行剖面。() 3、一旦时间基准确定之后,软件失效就可以用累积失效函数、失效密度函数、失效平均时间函数这三种方式中的任一种来表示,且这三种度量标准是密切相关且可以相互转化。() 4、在浮点数运算过程中,10.0乘以0.1一定等于1.0。() 5、在汇编语言编程过程中,原则上禁止使用暂停(halt)、停止(stop)以及等待(wait)等指令。() 6、在系统简化设计过程中,因为软件易于实现或实现成本相对较低,因此首选采用软件简化设计或者说通过软件简化设计来代替硬件简化设计。() 7、常规软件测试是一种基于运行剖面驱动的测试,而软件可靠性测试则是一种基于需求的测试。() 8、软件可靠性预计是一个自上而下的归纳综合过程,而软件可靠性分配则是一个自下而上的演绎

可靠性设计与分析—试卷

《可靠性设计与分析》试卷 单位:成绩: 姓名: 可靠性是指产品在下和内,完成规定功能的能力。 1) 2)产品的故障按照其原因可以分为早期故障和,早期故障是 指产品在寿命的早期因的缺陷等原因发生的故障。 3)可靠性定性要求一般分为六个方面,即简单性、冗余、降额、采用 成熟技术、和。 4)可靠性的定量要求是确定产品的以及验证时机 和,以便在设计、生产、实验验证、使用过程中用量化方法评价或验证产品的可靠性水平。 5)在进行FMEA之前,应首先规定FMEA从哪个产品层次开始到哪个 产品层次结束,这种规定的FMEA层次称为,一般将最顶层的约定层次称为。 6)是指在系统所处的特定条件下出现的、没有预期到(常 常也是不希望有的)的通路,它的出现会引起功能异常或抑制正常功能的实现。 7)空间粒子辐射环境主要由四部分构成,分别是地球辐射 带、、、高空核辐射环境。 8)故障树构图的元素是和。

9)应力分析法用于阶段的故障率预计。 10)各种可靠性设计分析工作主要集中在、 和三个阶段。2.判断题(共20分,每题2分) 如果你认为正确,在括号里划“√”;如果你认为错误,在括号里划“×”。 1)()非工作储备系统的可靠性一定比工作储备系统的可靠性高。 2)()产品经过老炼筛选后可靠性一定提高。 3)()所谓虚单元就是把一些单元组合在一起,构成一个虚拟单元, 从而简化可靠性框图。 4)()系统优化权衡的核心是效能、寿命周期费用两个概念之间的 权衡。 5)()系统可靠性预计是以组成系统的各单元的预计值为基础,根 据系统可靠性模型,对系统基本可靠性和任务可靠性进行预计。 6)()相似产品可靠性预计法要求新产品的预计结果必须好于相似 的老产品。 7)()所有故障都要经历潜在故障到功能故障这一变化过程。 8)()任务可靠性是指产品在规定的任务剖面内完成规定功能的能 力。确定任务可靠性值时仅考虑在任务期间内哪些影响任务完成 的故障。 9)()可靠性定性设计要求项目中,“简化设计”和“余度设计” 是相互矛盾的,因此对同一产品只能取其一项。

相关文档
最新文档