转速﹑电流双闭环直流调速系统

转速﹑电流双闭环直流调速系统
转速﹑电流双闭环直流调速系统

双闭环控制的直流调速系统简介

1.1V—M系统简介

晶闸管—电动机调速系统(简称V—M系统),其简单原理图如图1。图中VT是晶闸管的可控整流器,它可以是单相、三相或更多相数,半波、全波、半控、全控等类型。

优点:通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变整流电压从而实现平滑调速。

缺点:

1.由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

2.元件对过电压、过电流以及过高的du/dt和di/dt都十分敏感,其中任一指标超过允许值都可能在很短时间内损坏元件。

因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应有足够的余量。

图1 V—M系统

1.2转速控制的要求和调速指标

任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。归纳起来,对于调速系统的转速控制要求有以下三个方面:

1)调速——在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速;

2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量;

3)加、减速——频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起﹑制动尽量平稳。

1.3 直流调速系统的性能指标

根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在 某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响[1,6]。 一、静态性能指标

1).调速范围

生产机械要求电动机在额定负载运行时,提供的最高转速m ax

n 与最低转速m in

n 之比,称为调速范围,用符号D 表示

m in

m ax

n n D =

(2—2)

2).静差率

静差率是用来表示负载转矩变化时,转速变化的程度,用系数s 来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落

ed

n ?与理想空载转速

n 之比,用百分数表示为

%100%1000

00?-=??=

n n n n n s ed

ed (2—3)

显然,机械特性硬度越大,机械特性硬度越大,ed

n ?越小,静差率就越小,转速

的稳定度就越高。

然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图2—1中的线1和线2,它们有相同的转速降落1ed n ?=2

ed n ?,

但由于

01

02n n <,因此12s s >。这表明平行机械特性低速时静差率较大,转速的相对

稳定性就越差。在1000r/min 时降落10r/min ,只占1%;在100r/min 时也降落10r/min ,就占10%;如果

n 只有10r/min ,再降落10r/min 时,电动机就停止转动,转速全都

降落完了。

由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s ,那么,其它转速的静差率也必然都能满足。

图2—1

事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。

1.4 动态性能指标

生产工艺对控制系统动态性能的要求经折算和量化后可以表达为动态性能指标。自动控制系统的动态性能指标包括对给定信号的跟随性能指标和对扰动输入信号的抗扰性能指标。

一、跟随性能指标

在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况可用跟随性能指标来描述。当给定信号表示方式不同时,输出响应也不一样。通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的动

态响应又称为阶跃响应。一般希望在阶跃响应中输出量c(t)与其稳态值∞c的偏差越小

越好,达到∞c的时间越快越好。常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:

1)上升时间r t

在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值∞c所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。

图2—2

2)超调量%σ

在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:

%100%max ?-=

c c c σ (2—4)

超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。

3)调节时间s t

调节时间又称过渡过程时间,它衡量系统整个调节过程的快慢。原则上它应该是从给定量阶跃变化起到输出量完全稳定下来为止的时间。对于线性控制系统来说,理论上要到∞=t 才真正稳定,但是实际系统由于存在非线性等因素并不是这样。因此,一般在阶跃响应曲线的稳态值附近,取()%2%5±±或的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图2—2。 二、抗扰性能指标

一般是以系统稳定运行中,突加负载的阶跃扰动后的动态过程作为典型的抗扰过程,并由此定义抗扰动态性能指标,可见图2—3。常用的抗扰性能指标为动态降落和恢复时间:

1)动态降落

%

max c ?

系统稳定运行时,突加一定数值的扰动(如额定负载扰动)后引起转速的最大降落值

%

max c ?叫做动态降落,用输出量原稳态值1∞c 的百分数来表示。输出量在动态

降落后逐渐恢复,达到新的稳态值()212,∞∞∞-c c c 是系统在该扰动作用下的稳态降落。动态降落一般都大于稳态降落(即静差)。调速系统突加额定负载扰动时的动态降落称作动态降落

%

max n ?。 2)恢复时间

f

t

从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值2∞c之差进入某

基准量b c的

()%2

%

±或范围之内所需的时间,定义为恢复时间f t,其中b c称为抗

扰指标中输出量的基准值。

实际系统中对于各种动态指标的要求各有不同,要根据生产机械的具体要求而定。一般来说,调速系统的动态指标以抗扰性能为主。

图2—3

1.5 转速﹑电流双闭环直流调速系统的组成及其静特性

1.5.1转速﹑电流双闭环直流调速系统的组成

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图2-2所示。图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。

图2-2 转速﹑电流双闭环直流调速系统

ASR—转速调节器ACR—电流调节器TG—测速发电机

TA —电流互感器 UPE —电力电子变换器

*n U —转速给定电压 n U —转速反馈电压

*i U —电流给定电压 i U —电流反馈电压

1.5.2 转速﹑电流双闭环直流调速系统的稳态结构框图和静特性

为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构框图,如图2-4所示。它可以很方便地根据原理图(见图2-3)画出来,只要注意用带限幅的输出特性表示PI 调节器就可以了。分析静特性的关键是掌握这样的PI 调节器的稳态特征,一般存在两种状况:饱和—输出达到限幅值,不饱和—输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI 的作用使输入偏差电压U ?在稳态时总为零。

图2-4 双闭环直流调速系统的稳态结构框图

α—转速反馈系数; β —电流反馈系数

实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。 1.转速调节器不饱和

这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此

0*

n n U U n n αα===

d i i I U U β==*

由第一个关系式可得

0*

n U n n

==

α

(2-1)

K s α

1/C e U

*

n

U c I d

E n

U

d0 U n

+

+ -

ASR + U *i

- R

β

ACR -

U i

UPE

从而得到图2-5所示静特性的CA 段。与此同时,由于ASR 不饱和,*

im i U U <,从上

述第二个关系式可知dm d I I <。这就是说,CA 段特性从理想空载状态的0=d I 一直延续到dm d I I =,而dm I 一般都是大于额定电流dN I 的。这就是静特性的运行段,它是一条水平的特性。 2.转速调节器饱和

这时,ASR 输出达到限幅值*

im U ,转速外环呈开环状态,转速的变化对系统不再

产生影响。双闭环系统变成一个电流无静差的单电流闭环调节系统。稳态时

dm im d I U I ==β

* (2-2)

其中,最大电流dm I 是由设计者选定的,取决于电动机的容许过载能力和拖动系统允许的最大加速度。式(2-2)所描述的静特性对应于图2-5中的AB 段,它是一条垂

直的特性。这样的下垂特性只适合于0n n <的情况,因为如果0n n >,则*

n n U U >,

ASR 将退出饱和状态。

双闭环调速系统的静特性在负载电流小于dm I 时表现为转速无静差,这时,转速

负反馈起主要调节作用。当负载电流达到dm I 时,对应于转速调节器的饱和输出*im U ,

这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI 调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。

图2-5 双闭环直流调速系统的静特性

1.6限流保护——电流截止负反馈

起动的冲击电流——直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可

能立即建立起来,反馈电压仍为零,相当于偏差电压*

n n U U =?,差不多是其稳态工

作值的(1+K )倍。这时,由于放大器和变换器的惯性都很小,电枢电压d U 一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。

堵转电流——有些生产机械的电动机可能会遇到堵转的情况。例如,由于故障使机械轴被卡住,或挖土机运行时碰到坚硬的石块等等。由于闭环系统的静特性很硬,若无限流环节,硬干下去,电流将远远超过允许值。如果只依靠过流继电器或熔断器保护,一过载就跳闸,也会给正常工作带来不便。

为了解决反馈闭环调速系统的起动和堵转时电流过大的问题,系统中必须有自动限制电枢电流的环节。根据反馈控制原理,要维持哪一个物理量基本不变,就应该引入那个物理量的负反馈。那么,引入电流负反馈,应该能够保持电流基本不变,使它不超过允许值。

以上就是关于转速负反馈闭环直流调速系统的一些内容,为了实现更好的控制效果,我们需要让电流负反馈和转速负反馈分别起作用,这就是我要设计的转速﹑电流双闭环直流调速系统。

2.1 双闭环直流调速系统的数学模型和动态性能分析 (1) 额定励磁下的直流电动机模型

假设电机补偿良好,忽略电枢反应、涡流效应和磁滞的影响,并设励磁电流恒定,得直流电机数学模型和运动方程分别为

2

375d

d d

e l di U Ri L

E dt

GD dn

T T dt

=++-=

额定励磁下的感应电动势和电磁转矩分别为:

式中, T L: 包括电机空载转矩在内的负载转矩(N·m);

GD 2 :电力拖动系统折算到电机轴上的飞轮惯量(N·m2) C m :电机额定励磁下的转矩系数(N·m/A)

在零初始条件下,取等式两侧的拉氏变换,得电压与电流间的传递函数:

电流与电动势间的传递函数

在额定励磁下e m d T C I =,其中m C 为电动机的转矩系数(N.m/A )

额定励磁下直流电动机的动态结构图如下:

11)()()(0d d +=-s T R s E s U s I l s

T R

s I s I s E m dL d )()()(=-n C E e =d m e I C T =

晶闸管触发和整流装置模型

晶闸管触发和整流装置的传递函数

构成系统的主要环节是晶闸管触发和整流装置和直流电动机。不同晶闸管触发和整流装置的传递函数,它们的表达式都是相同的

晶闸管触发与整流装置动态结构

比例放大器和测速发电机模型

直流闭环调速系统中的其他环节还有比例放大器和测速反馈环节,它们的响应都可以认为是瞬时的,因此它们的传递函数就是它们的放大系数,即

放大器 测速反馈

运算放大器用作比例放大器(也称比例调节器、P 调节器),如图4,ex U U in 和为

放大器的输入和输出电压,bal R 为同相输入端的平衡电阻,用以降低放大器失调电流的影响

1)(s s s +≈

s T K s W p n

c a )

()

()(K s U s U s W =?=α==

)

()

()(n fn s n s U s W

放大系数为 0

1

R R U U K in ex p ==

图4 P 调节器原理图 图5 P 调节器输出特性

直流测速发电机模型

测速发电机(tachogenerator)是一种检测机械转速的电磁装置。它能把机械转速变换成电压信号,其输出电压与输入的转速成正比关系,如图3-1 所示。在自动控制系统和计算装置中通常作为测速元件、校正元件、解算元件和角加速度信号元件等。自动控制系统对测速发电机的要求,主要是精确度高、灵敏度高、可靠性好等

对于不同的负载电阻L R ,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4 中实线所示。

第四章 双闭环直流调速系统的整体设计

4.1 双闭环直流调速系统的动态结构框图

3.1.1 双闭环直流调速系统的动态数学模型

由双闭环控制的结构(见图2-4),即可绘制出双闭环直流调速系统的动态结构框图,如图3-1所示。图中)(s W ASR 和)(s W ACR 分别表示转速调节器和电流调节器的传递

函数。为了引出电流反馈,在电动机的动态结构框图中必须把电枢电流d I 显露出来。

图3-1 双闭环直流调速系统的动态结构框图

系统开环传递函数为:

系统的动态校正----PI调节器设计

转速、电流双闭环调速系统的动态结构图如图2-1所示:

图2-1 双闭环直流调速系统动态结构图

由于电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需加低

T按需要通滤波。这样的滤波传递函数可用一阶惯性环节来表示,其滤波时间常数

oi

选定,以滤平电流检测信号为准。然而,在抑制交流分量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个等时间常数的惯性环节,称作给定滤波环节。由测速发电机得到的转速反馈电压含有换向纹波,因

T表示,根据和电流环一样的道理,在转速给定通此也需要滤波,滤波时间常数用

on

T的给定滤波环节。

道上也加入时间常数为

on

系统设计的一般原则是:先内环后外环。在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

4.1.1电流调节器的设计

1.电流环结构框图的化简

在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即 E≈0。这时,电流环如图2-2所示。

图2-2电流环的动态结构框图及其化简(忽略反电动势的动态影响)

忽略反电动势对电流环作用的近似条件是

13

c m l

T T ω≥ω

式中ωc-------电流环开环频率特性的截止频率。

如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U*i(s ) /β ,则电流环便等效成单位负反馈系统。

+-

ACR

U c (s )

K s /R (T s s+1)(T l s+1)

I d (s )

U *i (s )

β

β

T 0i s+1

图2-3电流环的动态结构框图及其化简(等效成单位负反馈系统)

最后,由于T s 和 T oi 一般都比Tl 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为

T ∑i = T s + T oi 简化的近似条件为

113ci s oi

T T ω≤

电流环结构图最终简化成图2-4。

-11U K U d0(s )+

U i (s )

ACR

/R

T l s+*i (s )

U c (s )

s T s s+1I d (s )

β

T 0i s+1

1T 0i s+1

R

K K K i s i I τβ=

+

-

ACR

U c (s )

βK s /R

(T l s+1)(T ∑i s+1)

I d (s )

U *i (s )

β

图2-23c

图2-4电流环的动态结构框图及其化简(小惯性环节的近似处理)

2.电流调节器结构的选择

首先考虑应把电流环校正成哪一类典型系统。从稳态要求上看,希望电流无静差,再从动态要求看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,即应选用典型Ⅰ型系统。电流环的控制对象是双惯性型的,要校正成典型I 型系统,显然应采用PI 型的电流调节器。其传递函数可以写成

s

s K S W i i i ACR ττ)

1()(+=

(4-1)

式中 K i ——电流调节器的比例系数;

i τ——电流调节器的超前时间常数。

为了让调节器零点与控制对象的大时间常数极点对消,选择

l i T =τ (4-2) 则电流环的动态结构框图便成为图4-3所示的典型形式。 (3-3)

图4-3 校正成典型Ⅰ性系统的电流环动态结构框图

图4-4绘出了校正后电流环的开环对数幅频特性。上述结果是在一系列假定条件下得到的。

2电流调节器结构的选择

根据设计要求:稳态无静差,超调量5%i σ≤,可按典型I 型系统设计电路调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器其传递函数为:

(1)

()i i ACR i K s W s s

ττ+=

式中 K i — 电流调节器的比例系数; τi — 电流调节器的超前时间常数。

为了让调节器零点与控制对象的大时间常数极点对消,选择τi =T l

则电流环的动态结构图便成为图2-5所示的典型形式,其中

i s I i K K K R

βτ=

K I

s (T ∑i s+1)

I d (s )

+

-

U *i (s )

β

1

L /dB

ωci

-20dB/dec

ω/s -1

-40dB/dec

T ∑i

a) b)

图2-5 校正成典型I 型系统的电流环

a) 动态结构图 b) 开环对数幅频特性

2.2转速调节器的设计

1.电流环的等效闭环传递函数

电流环经简化后可视作转速环中的一个环节,为此,须求出它的闭环传递函数。由图2-5a 可知

211

111

1I

i d cli *I i i i I I

()()()()/()K s T s I s W s K T U s s s s T s K K β∑∑∑+===

+

+++

忽略高次项,上式可降阶近似为

11

1cli I

()W s s K ≈

+

近似条件可由式

113c min(

,)c b a

ω≤求出 13I cn i

K T ω∑≤

式中 ωcn ----- 转速环开环频率特性的截止频率。

接入转速环内,电流环等效环节的输入量应为U *i (s ),因此电流环在转速环中应等效为

1

11d cli *

i I

()()()I s W s U s s K β

β=≈+

2.转速调节器结构的选择 电流环的等效闭环传递函数为

1

11d cli *

i I

()()()I s W s U s s K β

β=≈+

用电流环的等效环节代电流环后,整个转速控制系统的动态结构图便如图2-7所示。

R U 1U 1n (s )

-+

U n (s )

ASR

C e T m s

*n (s )

I d (s )

α

T 0n s+1

T 0n s+1

*n (s )

11

+s K I

β+

-

I dL (s )

图2-26 转速环的动态结构图及其简化

电流环

图2-7转速换的动态结构框图及其化简(用等效环节代替电流环)

和电流环中一样,把转速给定滤波和反馈滤波环节移到环内,同时将给定信号改成 U *n (s )/α,再把时间常数为1/K I 和 T 0n 的两个小惯性环节合并起来,近似成一个时间常数为的惯性环节。

则转速环结构框图可简化为图2-8

R U n (s )

+

-

ASR

C e T m s

U *n (s )

α

I d (s )

α/β

T ∑n s+1

*n (s )

+

-

I dL (s )

图2-8转速换的动态结构框图及其化简 (等效成单位负反馈系统和小惯性的近似处理)

按照设计要求,选用PI 调节器,其传递函数为

1n n ASR n ()()K s W s s

ττ+=

式中 K n ---- 转速调节器的比例系数; τ n ---- 转速调节器的超前时间常数。 这样,调速系统的开环传递函数为

n n n n n 2

n e m n n e m n (1)(1)

()(1)(1)

R K s K R s W s s C T s T s C T s T s ατατβ

ττβ∑∑++=

?=++ 令转速环开环增益为

n N n e m

K R K C T ατβ=

2

11N n n n ()()()

K s W s s T s τ∑+=+

不考虑负载绕动时,校正后的调速系统动态结构框图如图2-9

n (s )

+

-

U *n (s )

α

K )

1()1(2++∑s T s s n n N τ

图2-9转速换的动态结构框图及其化简

(校正后成为典型Ⅱ型系统)

4.2 转速环与电流环的关系

外环的响应比内环慢,这是按上述工程设计方法设计多环控制系统的特点。这样

做,虽然不利于快速性,但每个控制环本身都是稳定的,对系统的组成和调试工作非常有利。本章就是对转速﹑电流双闭环直流调速系统的设计过程。

2、双闭环调速系统的稳定性分析

第六章 参数整定以及仿真

6.1 双闭环直流调速系统仿真的相关数据

直流电机的主要参数如下: 额定电压:220=e U V 额定电流:7.8=e I A 额定转速:1500=e n r∕min 电势系数:132.0=e C V .min∕r

允许过载倍数6.1=λ,晶闸管放大倍数60=s K 电流反馈系数:5747.0=βV∕A 转速反馈系数:00333.0=αV 电磁时间常数:021.0=L T s 机电时间常数:16.0=m T s 电枢回路总电阻:Ω=26.5R 转速滤波时间常数:005.0=on T s 电流滤波时间常数:005.0=oi T s 中频宽:h=5,超调量:%5≤i σ

6.1.1 PI 控制算法的参数整定

一.电流环的计算 1.确定时间常数

① 整流装置滞后时间常数Ts ,

三相桥式电路的平均失控时间:Ts=0.00167s ≈0.0017s ② 电流滤波时间常数oi T :s T oi 005.0=

③ 电流环小时间常数之和i T ∑,按小时间常数近似处理,取

s s s T T T oi S i 0067.0005.00017.0=+=+=∑

2.选择电流调节器结构

根据设计要求电流超调量%5

求,决定把电流环校正成哪一类系统。从稳态上看,希望电流环做到无静差;从动态上看,希望在启动过程中电流不要超过允许值,也不要有超调量,或者超调量越小越好。从这两点出发,则应该把电流环校正成典型I 型系统。因此按典型I 型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数见式

s

s k s W i i i ACR ττ)

1()(+=

式中 i k ——电流调节器的比例系数;

i τ——电流调节器的超前时间常数。 检查对电源电压的抗扰性能

13.30067

.0021.0==∑i T T L 3.计算电流调节器参数

① 电流调节器超前时间常数:s T L i 021.0==τ

② 电流环开环增益:要求σi ≤5%,按附表1,应取I K i T ∑=0.5,因此

163.740067.05

.05.0-∑===

s s

T K i I 于是,ACR 的比例系数为

24.05747

.06026

.5021.063.74=???==

βτS i I i K R K K ③ 代入数据得到电流调节器的传递函数为

s s s W ACR 021.0)

1021.0(24.0)(+=

4.校验近似条件

电流环截止频率:163.74-==s K I ci ω ① 晶闸管整流装置传递函数的近似条件

ci S s T ω>=?=-11.1960017

.03131 满足近似条件。

② 忽略反电动势变化对电流环动态影响的条件

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

转速电流双闭环直流调速系统 课程设计

课程设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:U N=220V,I N=205A,=575r/min , R a=0.1,电枢电路总电阻R=0.2,电枢电路总电感L=7.59mH,电流允许过载倍数,折算到电动机轴的飞轮惯量。 晶闸管整流装置放大倍数,滞后时间常数 电流反馈系数( 转速反馈系数() 滤波时间常数取,。 ;调节器输入电阻R0=40。 设计要求: 稳态指标:无静差; 动态指标:电流超调量;空载起动到额定转速时的转速超调量。

目录 课程设计任务书 (1) 第一章直流双闭环调速系统原理 (3) 1.1系统的组成 (3) 1.2 系统的原理图 (4) 第二章转速、电流双闭环直流调速器的设计 (6) 2.1 电流调节器的设计 (6) 2.2 转速调节器的设计 (13) 第三章系统仿真 (21) 心得体会 (26) 参考文献 (27)

第一章直流双闭环调速系统原理 1.1系统的组成 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PI调节的单个转速闭环调速系统可以在保证系统稳定的前提下实现转速无静差。但是对系统的动态性能要求较高的系统,单闭环系统就难以满足需要了。 为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。所以,我们希望达到的控制:启动过程只有电流负反馈,没有转速负反馈;达到稳态转速后只有转速负反馈,不让电流负反馈发挥作用。故而采用转速和电流两个调节器来组成系统。 为了实现转速和电流两种负反馈分别起作用,可以在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-1所示。把转速调节器的输出当作电流调节器的输入,再把电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

电流转速双闭环直流调速系统matlab仿真实验

仿真设计报告

转速、电流双闭环直流调速系统的Simulink仿真设计 一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时以最大电流给定值使电流调节器输出移相信号直流电压迅速上升,电流也随即增大直到最大给定值,电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化校正和补偿电动机的转速偏差。另外电流调节器的小时间常数,还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

直流电动机转速电流双闭环调速系统设计

直流电动机调速系统课程设计 班级:电气0802 姓名:刘志勇 学号: 08140218

目录 第一章:设计内容 (2) 1.1设计内容: (2) 第二章:设计要求 (2) 2.1设计要求 (2) 2.2设计参数: (2) 第三章:双闭环直流调速系统设计 (3) 3.1转速、电流双闭环直流调速系统的成 (3) 3.2系统电路结构 (4) 3.3调节器的设计 (7) 第四章单闭环直流调速系统设计 (14) 4.1闭环系统调速的组成及其静特性 (14) 4.2 稳态参数计算 (16) 第五章相关原理图设计波形图 (19) 5.1.主电路图 (19) 5.2.控制电路图 (20) 第六章设计总结及参考文献 (23) 6.1设计总结 (23) 6.2 参考资料 (23) 1

第一章:设计内容 1.1设计内容: (1)根据给定参数设计转速电流双闭环直流调速系统 (2)根据给定参数设计转速单闭环直流调速系统,使用模拟电路元件实现转速单闭环直流调速系统 第二章:设计要求 2.1设计要求 2.1.1根据设计要求完成双闭环系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结构图 2.1.2直流调速系统的调节器,选择调节器结构、利用伯德图完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘系统动态结构图 2.1.3设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电路及主电路电路图 2.1.4测试单闭环调速系统的PWM驱动信号波形、电压电流波形、转速反馈波形和直流电动机转速及控制电路各单元的相关波形。 2.2设计参数: =1.8Ω 2.2.1电枢电阻R a 电枢电感L =9.76mH、GD2=16.68N·cm2、Tm=35ms a 2

双闭环(电流环、转速环)调速系统

摘要 此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

目录 1设计意义 (3) 2主电路设计 (4) 2.1设计任务 (4) 2.2电路设计及分析 (4) 2.2.1电流调节器 (5) 2.2.2转速调节器 (6) 2.3电路设计及分析 (7) 2.4电流调节器设计 (7) 2.4.1电流环简化 (8) 2.4.2电流调节器设计 (8) 2.4.3电流调节器参数计算 (9) 2.4.4电流调节器的实现 (10) 2.5转速调节器设计 (11) 2.5.1电流环等效传递函数 (11) 2.5.2转速调节器结构选择 (12) 2.5.3转速调节器参数计算 (13) 2.5.4转速调节器的实现 (14) 3系统参数计算和电气图 (15) 3.1电流调节器参数计算 (15) 3.2转速调节器参数计算 (15) 3.3电气原理图 (16) 4系统仿真 (18) 5小结体会 (20) 参考文献 (21)

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真 摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。 关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。 课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

转速电流双闭环直流调速系统

课程设计说明书 课程名称:电力拖动自动控制系统 设计题目:转速电流双闭环直流调速系统 院系: 学生姓名: 学号: 专业班级: 指导教师:

2010年12 月30 日

转速电流双闭环直流调速控制系统 摘要:此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 关键词:双闭环,晶闸管,转速调节器,电流调节器

目录 第一章.直流拖动控制系统总体设计 (1) 一、直流调速系统拖动方案的对比 (1) 二、直流调速系统控制方案的确定 (2) 三、直流电动机的调速方式 (2) 第二章.主电路参数计算和保护环节设计 (3) 一、整流变压器额定参数的计算 (3) 二、主电路器件的计算与选择 (3) 三、主电路保护环节的设计与计算 (3) 四、电抗器参数计算与选择 (4) 第三章.调速系统控制单元的确定和调整 (4) 一、检测环节 (4) 二、调节器的选择与调整 (5) 三、系统的给定电源 (11) 第四章.触发电路的设计 (12) 第五章.调速系统动态参数的工程计 (12) 心得体会 (12) 参考文献 (13) 附件.课程设计要求 (13)

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

转速、电流双闭环直流调速系统设计

运动控制课程设计 专业:自动化 班级: 姓名: 学号: 指导教师: 2015年07月 16 日

转速、电流双闭环直流调速系统设计 1.设计目的 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。故采用转速、电流双闭环控制系统。 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路;基本数据如下: (1)直流电动机:220V、160A、1460r/min、Ce=0.129Vmin/r,允许过载倍数λ=1.5; (2)晶闸管装置放大系数:K s=40; (3)电枢回路总电阻:R=0.5Ω; (4)时间常数:T l=0.03s,T m=0.19s; (5)电流反馈系数:β=0.042V/A; (6)转速反馈系数:α=0.0068Vmin/r; 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 3.设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统: (1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; (2)分析电流环不同参数下的仿真曲线; (3)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线 (5)进行Simulink仿真,验证设计的有效性。 4.设计内容 4.1双闭环直流调速系统的组成

转速电流双闭环直流调速系统设计

《电力拖动自动控制系统》课程设计 设计报告 题目:转速电流双闭环直流调速系统设计 学院信息科学与工程学院 专业自动化 班级0603 学号 2 学生姓名杨明 指导老师潘炼 日期2009/7/2

转速电流双闭环直流调速系统设计 1. 设计题目 转速、电流双闭环直流调速系统设计 2. 设计任务 已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 1)直流电动机:160V、120A、1000r/min、C e=0.136Vmin/r,允许过载倍数λ=1.4 2)晶闸管装置放大系数:K s=30 3)电枢回路总电阻:R=0.4Ω 4)时间常数:T l=0.023s,T m=0.2s,转速滤波环节时间常数T on取0.01s 5)电压调节器和电流调节器的给定电压均为10V 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 系统要求: 1)稳态指标:无静差 2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10% 3. 设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下: 1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; 2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; 3)进行Simulink仿真,验证设计的有效性。 4.设计内容 1)设计思路: 带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。 当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速。 对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负

电力拖动自动控制系统第二章习题答案 (2)

第二章双闭环直流调速系统 2-1在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数行不行?改变电力电子变换器的放大倍数行不行?改变转速反馈系数行不行?若要改变电动机的堵转电流,应调节系统中的什么参数? 答:改变电机的转速需要调节转速给定信号Un※;改变转速调节器的放大倍数不行,改变电力电子变换器的放大倍数不行。若要改变电机的堵转电流需要改变ASR的限幅值。 2-2 (1 (2 (1 (2 (3 (4 2-3是多少? 答:=βId=Ui,Uc=U d0 2-4如果转速、电流双闭环调速系统的转速调节器不是PI调节器,而是比例调节器,对系统的静、动态性能会有什么影响? 答:若采用比例调节器可利用提高放大系数的办法使稳态误差减小即提高稳态精度,但还是有静差的系统,但放大倍数太大很有可能使系统不稳定。 2-5在转速、电流双闭环系统中,采用PI调节器,当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压△Ui是否为0,为什么?

答:反馈线未断之前,Id=In,令n=n1,当转速反馈断线,ASR迅速进入饱和,Un※=Un※max,Uc↑,Id↑至Idm,Te>T l,n↑,Id↓,△Ui出现,Id↑至Idm,n↑,Id↓,此过程重复进行直到ACR饱和,n↑,Id↓,当Id=In,系统重新进入稳态,此时的速度n2>n1,电流给定为Un※max=Idmaxβ>电流反馈信号Un=Inβ,偏差△Ui不为0。 2-6在转速、电流双闭环系统中,转速给定信号Un※未改变,若增大转速反馈系数α,系统稳定后转速反馈电压Un是增加还是减少还是不变?为什么? 答:Un不变,因为PI调节器在稳态时无静差,即:Un※=Un,Un※未改变,则,Un也不变。 2-7 Unm*试求:(1 (2 解:(1 α=Unm* (2 2-8Uim=8V (1)Ui (2)Uc 解:(1 电流为 电流为 (2)Uc增加。 2-9在双闭环直流调速系统中,电动机拖动恒转矩负载在额定工作点正常运行,现因某种原因电动机励磁下降一半,系统工作情况将会如何变化?(λ=1.5) 答:设突发状况之前的磁通为?1,令此时的磁通为?2,之前的电磁力矩为Te1,此刻的电磁力矩为Te2,负载转矩恒为T l,电机励磁下降一半,则?2=0.5?1,Te2=Cm(?2)Id=0.5Te1<T l,n↓,Id↑甚至到Idm,Te2=Cm(?2)Idm=0.75Te1<T l,n会一直下降到0。

转速电流双闭环直流调速系统的设计说明

《电力拖动与运动控制系统》课程设计------ 转速电流双闭环直流调速 系统的设计 学院: 年级: 班级: 姓名: 座号: 学号: 指导老师:

目录 一设计任务 (3) 二设计要求 (3) 三.设计的基本思路: (3) 四.设计过程 (4) 1确定转速、电流反馈系数 (4) 2.电流环的设计 (5) 3.转速环的设计 (6) 五.硬件电路图设计 (9) 1 系统主电路图绘制 (9) 2 系统触发电路图 (9) 3 电流环电路 (12) 4.转速环电路: (13) 4.控制电路总体电路图 (14) 六.心得体会: (15) 七参考资料 (15)

一 设计任务 设计一转速、电流双闭环直流调速系统,采用他励直流电动机、晶闸管三相全控桥式整流电路,其数据如下: 直流电动机:PN=60KW ,UN=220V ,IN=305A ,Nn=1000r/min ; 晶闸管整流触发装置的放大系数 Ks=30 电磁时间常数:T1=0.012S; 机电时间常数:Tm=0.12s; 反馈滤波时间常数:Toi=0.0025s,Ton=0.014s; 额定转速时的给定电压:Unm=10V; 调节器饱和输出电压:10V ; 系统调速围:D=20; 系统的静、动态性能指标:无静差,电流超调量5%i δ≤,启动到额定转速时的超调量10%δ≤ 二 设计要求 1.确定转速、电流反馈系数; 2.设计电流调节器; 3.用min r M 准则设计转速环,确定转速调节器的结构和参数; 4.计算最低速启动时的转速超调量; 5.绘制系统线路图(主电路、触发电路、控制电路)。 三.设计的基本思路: 转速,电流双闭环调速系统属于多环控制系统。对电流双闭环调速系统而言,先从环(即电流环)出发,根据电流控制要求,确定把电流环校正为那种典型系统。按照调节对象选择调节器及其参数。设计完电流环环节之后,把它等效成一个小

转速电流双闭环调速系统

双闭环控制的直流调速系统简介 1.1V—M系统简介 晶闸管—电动机调速系统(简称V—M系统),其简单原理图如图1。图中VT是晶闸管的可控整流器,它可以是单相、三相或更多相数,半波、全波、半控、全控等类型。 优点:通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变整流电压从而实现平滑调速。 缺点: 1.由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。 2.元件对过电压、过电流以及过高的du/dt和di/dt都十分敏感,其中任一指标超过允许值都可能在很短时间内损坏元件。 因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应有足够的余量。 图1 V—M系统 1.2转速控制的要求和调速指标 任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。归纳起来,对于调速系统的转速控制要求有以下三个方面: 1)调速——在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速; 2)稳速——以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量; 3)加、减速——频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起﹑制动尽量平稳。

1.3 直流调速系统的性能指标 根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在 某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响[1,6]。 一、静态性能指标 1).调速范围 生产机械要求电动机在额定负载运行时,提供的最高转速m ax n 与最低转速m in n 之比,称为调速范围,用符号D 表示 m in m ax n n D = (2—2) 2).静差率 静差率是用来表示负载转矩变化时,转速变化的程度,用系数s 来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落 ed n ?与理想空载转速 n 之比,用百分数表示为 %100%1000 00?-=??= n n n n n s ed ed (2—3) 显然,机械特性硬度越大,机械特性硬度越大,ed n ?越小,静差率就越小,转速 的稳定度就越高。 然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图2—1中的线1和线2,它们有相同的转速降落1ed n ?=2 ed n ?, 但由于 01 02n n <,因此12s s >。这表明平行机械特性低速时静差率较大,转速的相对 稳定性就越差。在1000r/min 时降落10r/min ,只占1%;在100r/min 时也降落10r/min ,就占10%;如果 n 只有10r/min ,再降落10r/min 时,电动机就停止转动,转速全都 降落完了。 由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s ,那么,其它转速的静差率也必然都能满足。

直流电机的转速电流双闭环控制

直流电机的转速电流双闭 环控制 The final edition was revised on December 14th, 2020.

直流电机的转速电流双闭环控制 摘要:本设计主要采用模拟电路实现直流电机控制的整流电源,转速调PI调节器,电流PI调节器的设计。来实现对电机转速的控制,包括快速起动、恒速运行、堵转截止三大目标。该设计的主要电路均采用模拟电路实现,电流环的PI 调节器用于保证快速起动,即保证电机起动时以最大负载电流起动,也即实现以最大加速度实现。而转速调节器则用于在运行时实现转速恒定,保证带负载的能力。两个PI调节器都采用集成运放实现。其主要优点是克服传统意义上单环控制只能满足一方面的要求的缺陷。 关键词:电流环;转速环;PI调节器 The Rotate Speed and Current Double Closed Loop Feedback Control for DC Motor Abstract: The major tasks of this design is utilizing simulating circuits to produce the rectifiering power source ,current PI regulator and rotate speed PI regulator for the DC major object of this desigen is making the DC motor started rapidly,rotating making the DC motor started rapidly with the largest load is the same to starting rapidly with the largest ,The rotate speed PI regulator make the DC mortor retated stably to any the change of the load .Both of the PI regulators use the integrated amplifier operator to accomplish the priority of this design are overcoming the defect of traditional single feedback loop. Key word: current feedback loop; rotate speed feedback loop;PI regulator

电流转速双闭环直流调速系统的工作原理

******************************************************************** *********** 电流转速双闭环直流调速系统的工作原理 论文 姓名:范洪峰 班级:电气111 学号:11055103 2014年9月18日 ******************************************************************** ***********

******************************************************************** *********** 电流转速双闭环直流调速系统的工作原理 范洪峰 (山东工商学院信息与电子工程学院,山东烟台,264005) 摘要:转速闭环调速系统可以在保证系统稳定的前提下实现转速的无静差,但是对动态性能要求较高的系统,转速闭环系统很难对电流(转矩)进行控制。电机经常工作在启动、制动、反转等过渡过程中,启动和制动过程的时间在很大程度上决定了电机的效率。如何缩短这一部分时间,以充分发挥电机的效率,是转速控制系统首先要解决的问题。直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。控制系统中设置两个调节器,分别调节转速和电流,二者之间实行嵌套联接。 关键词:双闭环;转速调节器;电流调节器 Current Speed Working Principle of Doubleclosed-loop dc speed Regulating System Fan Hongfeng (Shandong province industrial and commercial college of information and electronic engineering institute, Yantai, Shandong province, 264005) Abstract: the speed closed-loop speed control system can guarantee the stability of the system under the premise of implementation speed astatic, but system ofhigh dynamic performance requirements, it is difficult to the current (torque) of theclosed-loop control. Motor often work in the process of starting, braking and reverse transition, in the process of starting and braking time to a great exten t, determines the efficiency of the motor. How to shorten this part time, in order to give full play to the efficiency of ******************************************************************** ***********

相关文档
最新文档