仪器分析课件第12章分子发光分析

第五章分子发光分析法习题答案

第五章分子发光分析法 2、简述影响荧光效率的主要因素 答:荧光效率(Ψ?)=发荧光的分子数/激发态分子总数。荧光效率越高,辐射跃迁概率越大,物质发射的荧光也就越强,则Ψ?=K?/( K?+∑Ki), 一般来说,K?主要取决于物质的化学结构,而∑Ki则主要取决于化学环 境,同时也与化学结构有关,其影响因素有: ①分子结构:发荧光的物质分子中必须含有共轭双键这样的强吸收基 团,且共轭体系越大,л电子的离域性越强,越易被激发而产生荧光。 随着共轭芳环增大,荧光效率提高,荧光峰向长波方向移动。 ②a其次,分子的刚性平面结构有利于荧光的产生,有些有机配位剂与金属离子 形成螯合物后荧光大大增强;b给电子取代基如-OH、-NH 2、-NR 2 和-OR等可 使共轭体系增大,导致荧光增强;吸电子基如-COOH、-NO和-NO 2 等使荧光减弱,c随着卤素取代基中卤素原子序数的增加,物质的荧光减弱,而磷光增强。 ③环境a溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大;b对于大多数荧光物质,升高温度会使非辐射跃迁概率增大,荧光效率降低;c大多数含酸性或碱性取代基团的芳香族化合物的荧光性质受溶液PH的影响很大;d溶液中表面活性剂的存在减小非辐射跃迁的概率,提高荧光效率;e溶液中溶解氧的存在,使激发态单重态分子向三重态的体系间窜跃速率加大,会使荧光效率减低。 3、试从原理和仪器两方面比较吸光光度法和荧光分析法的异同,并说明为什么 荧光法的检出能力优于吸光光度法 答:原理:紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,而荧光分析法是由于处于第一激发单重态最低能级的分子以辐射跃迁的形成返回基态各振动能级时产生的荧光的分析方法,两者的区别在于前者研究的是吸收光谱,且电子跃迁为激发态的振动能级到基态的振动能级间的跃迁。 仪器:荧光分析仪器与分光光度计的主要差别有:a 荧光分析仪器采用垂直测量方式,即在与激发光相垂直的方向测量荧光,以消除透射光的影响;b 荧光分析器有两个单色器,分别用于获得单色器较好的激发光和用于分出某一波长的荧光,消除其它杂散光干扰。 因为荧光分析法的灵敏度高,其检出限通常比分光光度法低2~4个数量级,选择性也比分光光度法好,这是由于:a 荧光分析仪器在与激发光相垂直的方向测量荧光,与分光光度在一直线上测量相比,消除了透射光的影响,测量更为准确,灵敏度高;b 吸光光度法只采用一个单色器,而荧光分析仪器有两个单色器,

四川大学仪器分析第八章 分子发光分析法答案说课材料

四川大学仪器分析第八章分子发光分析法 答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光? 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失 活、系间窜跃、荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。

仪器分析各章习题与答案

第一章绪论 问答题 1. 简述仪器分析法的特点。 第二章色谱分析法 1.塔板理论的要点与不足是什么? 2.速率理论的要点是什么? 3.利用保留值定性的依据是什么? 4.利用相对保留值定性有什么优点? 5.色谱图上的色谱流出曲线可说明什么问题? 6.什么叫死时间?用什么样的样品测定? . 7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么? 8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。 9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗?简要说明理由。 10.色谱分析中常用的定量分析方法有哪几种?当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法? 11.气相色谱仪一般由哪几部分组成?各部件的主要作用是什么? 12.气相色谱仪的气路结构分为几种?双柱双气路有何作用? 13.为什么载气需要净化?如何净化? 14.简述热导检测器的基本原理。 15.简述氢火焰离子化检测器的基本结构和工作原理。 16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的? 17.为什么常用气固色谱分离永久性气体? 18.对气相色谱的载体有哪些要求? 19.试比较红色载体和白色载体的特点。 20.对气相色谱的固定液有哪些要求? 21.固定液按极性大小如何分类?

22.如何选择固定液? 23.什么叫聚合物固定相?有何优点? 24.柱温对分离有何影响?柱温的选择原则是什么? 25.根据样品的沸点如何选择柱温、固定液用量和载体的种类? 26.毛细管色谱柱与填充柱相比有何特点? 27.为什么毛细管色谱系统要采用分流进样和尾吹装置? 28.在下列情况下色谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。 29.二氯甲烷、三氯甲烷和四氯甲烷的沸点分别为40℃,62℃,77℃,试推测它们的混合物在阿皮松L柱上和在邻苯二甲酸二壬酯柱上的出峰顺序。 30.流动相为什么要预先脱气?常用的脱气方法有哪些? 31.高压输液泵应具备什么性能? 32.在HPLC中,对流动相的要求是什么? 33.何谓梯度洗脱?适用于哪些样品的分析?与程序升温有什么不同? 33.什么是化学键合固定相?化学键合相的特点有哪些? 34.反相键合相色谱法具有哪些优点? 35.为何高效液相色谱法一般采用全多孔微粒型固定相? 36.指出下列物质在正相色谱和在反相色谱中的洗脱顺序: 37.在硅胶柱上,用甲苯为流动相时,某物质的保留时间为28 min,若改用CCl4或CHCl3。为流动相,指出哪一种溶剂能减少该物质的保留时间? 第三章光学分析法导论 一、选择题 1.在光学分析法中, 采用钨灯作光源的是 ( ) (1)原子光谱 (2)分子光谱 (3)可见分子光谱 (4)红外光谱 2.可见光的能量应为 ( ) (1) 1.24×104~ 1.24×106eV (2) 1.43×102~ 71 eV (3) 6.2 ~ 3.1 eV (4) 3.1 ~ 1.65 eV 3.已知:h=6.63×10-34 J×s则波长为0.01nm的光子能量为 ( ) (1) 12.4 eV (2) 124 eV (3) 12.4×105eV (4) 0.124 eV 4..频率可用下列哪种方式表示(c------光速,λ---波长,б---波数() (1). б/c (2). cб(3).1/λ(4)、c/б5.光量子的能量正比于辐射的() (1). 频率(2).波长(3).波数(4).传播速度 6. 下列四个电磁波谱区中,请指出能量最小(),频率最小(),波数最大者(),波长最短者()

第9章分子发光分析

第九章分子发光分析 一、选择题 1、下列说法哪一个是正确的?( ) A、化学发光是通过化学反应产生光致发光物质所发射的光 B、化学发光是吸收化学反应的化学能使分子激发所发射的光 C、化学发光是吸收光能引起化学反应产生发光物质所发射的光 D、化学发光是吸收外界能引起化学反应产生发光物质所发射的光 2、下列哪种去激发过程是分子荧光发射过程?() A、分子从第一激发单重态的各振动能级跃迁回基态 B、分子从第一激发单重态的最低振动能级跃迁回基态 C、分子从第一激发三重态的各振动能级跃迁回基态 D、分子从第一激发三重态的最低振动能级跃迁回基态 3、所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射出比入射光() A、波长长的光线 B、波长短的光线 C、能量大的光线 D、频率高的光线 4、共掁线是具有的谱线() A、激发电位 B、最低激发电位 C、最高激发电位 D、最高激发能量 5、荧光分析法的灵敏度通常比吸收光度法的灵敏度() A、高 B、低 C、相当 D、不能确定 6、下列说法中,正确的是哪一个?( ) A、能发荧光的物质一般具有杂环化合物的刚性结构; B、能发荧光的物质一般具有大环化合物的刚性结构; C、能发荧光的物质一般具有对称性质的环状结构; D、能发荧光的物质一般具有共轭体系π-π的刚性结构; 7、在下列的四种说法中,哪一种是不正确的?() A、分子荧光发射光谱通常与吸收光谱互为镜像关系 B、分子荧光发射光谱与激发波长没有关系 C、分子荧光发射光谱岁激发波长不同而变化 D、分子荧光发射的强度与激发光的强度成正比的关系 8、分子荧光的发射波长大或者小?为什么?() A、小;应为去激发过程中存在各种形式的无辐射跃迁,损失一部分能量; B、大;因为激发过程中,分子吸收一部分外界能量; C、相同;因为激发和发射在同样的能级上跃迁,只是过程相反; D、不一定;因为其波长的大小受到测量条件的影响。

分子发光分析法总结

第12章分子发光分析法 12.1.0发射光谱 物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或基态时产生发射光谱,多余能量以光的形式发射出来:M*→M+hν 通过测量物质的发射光谱的波长和强度来进行定性和定量分析的方法叫做发射光谱分析法。分子荧光和磷光分析法属于发射光谱法。 12.1.1分子荧光和磷光分析法 1.荧光和磷光的产生 1)Jablonski能级图 2)多重度:M=2s+1(s为电子自旋量子数的代数和,其值为0或1) 单重态(S):分子中全部轨道里的电子自旋配对,即s=0,M=1 三重态(T):电子在跃迁过程中自旋方向改变,分子中出现两个自旋不配对的电子,即s=1,M=3 三重态能级比相应单重态能级略低。

3)去活化:处在激发态的不稳定分子返回基态的过程。 振动弛豫:分子吸收光辐射后从基态的最低振动能级跃迁到激发态的较高振动能级,然后失活到该电子能级的最低振动能级上。 内转换:相同多重度等能态间的无辐射跃迁。 外转换(猝灭):激发分子通过与溶剂或其他溶质间的相互作用导致能量转换而使荧光或磷光强度减弱或消失。 系间跨越:不同多重度等能态间的无辐射跃迁。 荧光发射:单重激发态最低振动能级至基态各振动能级的跃迁。 磷光发射:三重激发态最低振动能级至基态各振动能级的跃迁。 2.激发光谱和发射光谱及其特征 激发光谱:以激发波长为横坐标,荧光强度为纵坐标作图。 发射光谱:以发射波长为横坐标,荧光强度为纵坐标作图。 荧光发射光谱的特点: 1)Stokes位移:在溶液中,分子荧光的发射峰相比吸收峰位移到较长的波长。 2)荧光发射光谱与激发波长的选择无关。 3)镜像规则:荧光发射光谱和激发光谱镜像对称。 12.1.2荧光量子产率和分子结构的关系 荧光量子产率(荧光效率/量子效率):表示物质发射荧光的能力,

仪器分析总结习题 1

第一章气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t'R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度 Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3) )150sA的保留时间(4,死时间为30s,求组分3、某色谱条件下,组分A的分配比为4、下列哪些参数改变会引起相对保留值变化? A、柱长 B、相比 C、柱温 D、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A、改变载气流速 B、改变固定液化学性质 C、增加柱温 D、增加柱长 E、增加固定液的量 例1 已知某组分峰Y=40s,tR=400s。计算理论塔板数n。 t40022R n?16()?16()?1600例2 已知一根1米长的色谱柱,neff=1600块,组份A在柱上的调整保留时间为100s,理40Y'Lt Heff峰的半峰宽和。试求A2R?n)H?5.54(有效有效nY21/有效要达到完全分离,100秒,在一定条件下,例3 两个组分的调整保留时间分别为85秒和,

柱长是多少?R= 即。计算需要多少块有效塔板。若填充柱的塔板高度为 cm2,1= 100 / 85 = γ解: 2,1 -1) ]2 2,1 / (γγ n有效 = 16R2 [ = 16×× / ) 2 (块) = 1547 = 155 cm × = 1547有效H有效· = n有效 L. 即柱长为米时,两组分可以得到完全分离。为记录得到如图的色谱图。图中横坐标l1和2 例2 有一根1m长的柱子,分离组 分 度,的分离笔走纸距离。若欲得到 R= 有效塔板数应为多少?色谱 柱要加到多长?1 的相对保留值r2,解:先求出组分2对组分 1tR2=17min, Y2=1min, (1)从图中可以看出, n = 16(tR2/Y2)2 =4624 所以; tM = 17-1 = 16min R2=tR2 –) t'R1= tR1- tM =14-1=13min t'(2R1=16/13 'α = t'R2/t (3)相对保留值neff=16(t'R2/Y)2=4096 Heff=L/neff=3/4096 ×(3/4096)[(16/13)/(16/13-1)]2 式据公:L=16R2 Heff

仪器分析作业01参考答案(第一章)

1. 仪器信号由哪几部分组成?它们各具有什么特点? 答:仪器的响应信号由三部分组成:S=S 待测组分+S 空白+S 本底 S 待测组分:指待测组分的响应信号,在一定浓度范围内,该值与待测组分浓度呈一定函数关系(定量分析的基础); S 空白:指除待测组分外,试液中其他成分(溶剂+相关试剂+基体)的响应信号,具有恒定性,可用空白溶液校正(可消除); S 本底:指仪器自身随机噪音产生的响应信号,具有随机性,不能消除,但可通过仪器的改善或适当的数据处理而减小,是影响测量精密度的原因,也是决定检出限的主要因素之一。 2. 某仪器方法测定含0.03 mg ?L -1 Mn 的近空白溶液所得信号数据如下:0.0028、0.0029、0.0028、0.0029、0.0023、0.0027、0.0024、0.0029、0.0031、0.0031、0.0029(共11次),(1)试计算该方法测定Mn 的检出限和定量下限;(2)相同条件下,某试样的响应信号为0.0015,该试样中锰的含量是多少? 解:(1)0028.0S =;00025.0s =;k=0.0028/0.03=0.093 L ?mg -1 1D L L mg 008.0093.0/00025.03k /s 3c -?=?== 1L mg 03.014.0/00025.010k /s 10LOQ -?=?== (2)3s<0.0015<10s ,结果应表示为:检出但无法定量 3. 用某仪器方法测定试样中微量Cu 的含量:称取试样0.740 g ,溶解后定容到100 mL 容量瓶中作为试样溶液,测定时溶液的配制及对应的仪器信号S 如下表所示,计算试样中Cu 的质量分数(%)。(已知存在以下关系:S=k ?c Cu ) (本题为单次标准加入法,标准溶液加入前后,S 与c Cu 的线性关系不变,且k 为常数;1号为空白溶液,2、3的信号中应将此部分扣除) 解:依题可知空白信号=0.010 ?试样信号=0.175-0.010=0.165;试样加标后信号=0.365-0.010=0.355 设试样处理为溶液时Cu 的含量为ρCu ,则存在以下关系式:

四川大学仪器分析第八章分子发光分析法答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、 荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。 3.溶液中,溶剂的极性、pH值及温度是如何影响荧光强度的。 答:溶剂的影响:随着溶剂极性增加,荧光物质的n—π*跃迁能量增大,π—π*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。溶剂若能和荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。含重原子的溶剂(碘乙烷、四

分子发光分析试卷概述

分子发光分析 中国·武汉 二O 一五 年 六 月

华中农业大学本科课程考试试卷 考试课程与试卷类型:分子发光分析姓名: 学年学期:2014-2015-2 学号: 考试时间:班级: 一、选择题(选出一个正确答案,将序号填写在【】里。每小题1分,共12分。) 1.下列哪一项不是n→π*跃迁的最低激发单重态的性质【】A.是自旋禁阻的跃迁 B.摩尔吸光系数小 C.激发态寿命长 D.S1到T1系间窜越的几率小 2.下列哪一种分子的去激发过程是磷光过程? 【】A.分子从第一激发三重态的最低振动能级返回到基态 B.分子从第二激发单重态的某个低振动能级过渡到第一激发单重态 C.分子从第一激发单重态非辐射跃迁至三重态 D. 分子从第一激发单重态的最低振动能级返回到基态 3.荧光属于下列哪一种放光形式【】A.化学发光 B.光致发光 C.生物发光 D.场致发光 4.下列关于强荧光物质应具有的特征错误的是【】A.具有大的共轭π键结构 B.具有刚性的平面结构 C.取代基团为吸电子基团 D.具有最低的单线电子激发态S1为π,π1*型 5.喹啉在下列哪种介质中荧光强度最高【】A.乙醇 B.甲醇 C.水

D.苯 6.下列化合物磷光最强的是【】A. B. C. D. 7.下列关于室温磷光法的说法错误的是【】A.固体基质室温磷光法所用的载体可以将分析物束缚在表面或基质中而增加其刚性B.胶束增稳的溶液室温磷光法利用了胶束对磷光团的约束力而减少了内转化和碰撞能量损失 C.室温磷光法中分析物的磷光量子产率通常比低温磷光法中的高 D.敏化溶液室温磷光法的分析物质本身并不发射磷光,而是引发受体发磷光 8.分子荧光分析法比紫外-可见分光光度法的灵敏度高2~4个数量级的原因 【】A.荧光物质的摩尔吸光系数大;提高激发光的强度可以提高荧光的强度 B.荧光信号是在暗背景下测量的;提高激发光的强度可以提高荧光的强度 C.荧光发射的量子产率高;荧光物质的摩尔吸光系数大 D.荧光发射的量子产率高; 9.在分子荧光分析法中,下面说法正确的是【】A.荧光发射光谱不随激发波长的变化而改变 B.荧光发射光谱要随激发波长的变化而改变 C.荧光激发光谱与它的紫外-可见吸收光谱互为镜像对称关系 D.荧光发射光谱与它的紫外-可见吸收光谱形状相似且波长位置也一样 10.在分子荧光测量中,要使荧光强度正比于荧光物质的浓度,必要的条件是什么? 【】A.用高灵敏度的检测器 B.在稀溶液中测量

仪器分析课件

“仪器分析”讲课提纲 (I n s t r u m e n t a l a n a l y s i s) 华中农业大学食品科技学院吴谋成 第一章绪言(C h a p t e r o n e i n t r o d u c t i o n) 一、分析化学与仪器分析(a n a l y t i c a l c h e m i s t r y a n d i n s t r u m e n t a l a n a l y s i s) 分析:是指对物质和事进行研究,取得信息,以确定物质的组成、结构或事物的变化特征和规律。 两类分析:物质分析(s u b s t a n c e a n a l y s i s)和事物分析(m a t t e r a n a l y s i s)事物分析研究方法:调查研究-归纳-思考-特征和变化规律。 物质分析的研究方法:分析化学(a n a l y t i c a l c h e m i s t r y)分析化学:化学分析(chemical analysis)和物理物化分析(仪器分析,instrumental analysis)化学分析:以物质的化学反应为基础的分析方法。物理物化分析:以物质的物理和物理化学性质为基础的分析方法。这类分析方法一般要依靠仪器来完成,故习惯上称为仪器分析。 二、仪器分析的分类(T h e c l a s s o f i n s t r u m e n t a l a n a l y s i s) 光谱分析(s p e c t r o s c o p i c a n a l y s i s):以物质的光学性质为基础的仪器分析方法。 光学性质:吸收,发射,散射,衍射等。电分析(e l e c t r i c a l a n a l y s i s): 电流分析,电位分析,电导分析,电重量分析,库仑法,伏安法。分离分析(s e p a r a t e a n a l y s i s): 色谱法,电泳法,质谱法。 其它(o t h e r a n a l y s i s): 电子显微镜,超速离心机,放射性技术等。 三、仪器分析的性质和过程(T h e c h a r a c t e r i z a t i o n a n d p r o c e s s o f i n s t r u m e n t a l a n a l y s i s) 物质→取得物质的物理或物理化学性质的信息→进行数学处理→得到物质的组成和结构(s u b s t a n c e){分析仪器(硬件)}{计算机(软件)} (a n a l y t i c a l i n s t r u m e n t)(c o m p u t e r) 四、分析仪器(A n a l y t i c a l i n s t r u m e n t)l、分析仪器基本结构 计算机 ∣∣∣∣ 分析信号发生器→信号检测器→信号处理器→结果显示器2、分析仪器测定结果的可靠性:与仪器特性好坏、灵敏度、重复性、准确度有关。 与仪器使用是否得当有关。五、学习仪器分析应注意的几个问题 (T h e p o i n t s f o r a t t e n t i o n o f s t u d y i n g i n s t r u m e n t a l a n a l y s i s) A、基本理论、分析仪器基本结构 B、实验操作技巧 C、文献资料的查阅与分析 六、参考书(R e p r e s e n t a t i v e b o o k s) 教材:仪器分析吴谋成主编科学出版社 参考教材: 1、现代仪器分析中国农业大学出版社 2、仪器分析朱世盛编复旦大学出版社 3、仪器分析朱明华编高等教育出版社 4、现代仪器分析清华大学出版社 5、有机仪器分析陈贻文编湖南大学出版社 6、仪器分析原理斯科格等编(美)上海科技出版社 7、农业仪器分析法严国光等编农业出版社 8、仪器分析原理及其在农业中的应用严国光等编科学出版社 1

完整word版,仪器分析第五版习题及答案

第一章绪论 1-2 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。 2、共同点:都是进行组分测量的手段,是分析化学的组成部分。 1-5 分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。仪器分析与分析仪器的发展相互促进。1-7 因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。第二章光谱分析法导论

2-1 光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。各部件的主要作用为: 光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用; 检测器:将光信号转化为可量化输出的信号。信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。2-2: 单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;出射狭缝:采集色散后具有特定波长的光入射样品或检测器 2-3 棱镜的分光原理是光的折射。由于不同波长的光在相同介质中有不同的折射率,据此能把不同波长的光分开。光栅的分光原理是光的衍射与干涉的总效果。不同波长的光通过光栅衍射后有不同的衍射角,据此把不同波长的光分开。

仪器分析Ⅱ 1-3章作业 参考答案

《仪器分析Ⅱ》作业及参考答案 第一章绪论第二章光谱分析导论第三章紫外可见分子吸收光谱法 P24-25 3. 按能量和波长递增的顺序,分别排列下列电磁辐射区:红外、无线电波、可见光、紫外光、X射线、微波。 4. 换算下列单位 (1)0.15nm的X射线的波数(cm-1);(2)589.30nm钠线的频率(Hz);(3)2730 cm-1的波长(nm);(4)588.99nm的Na线响应的能量(eV)。5.简述偏离朗伯-比尔定律的原因。 8. 有两份不同浓度的某一有色配合物溶液,当液层厚度均为1cm时,对某一波长的投射率分别为(a)65.0%和(b)41.8%;求(1)两份溶液的吸光度分别是多少?(2)若溶液(a)的浓度为6.5×10-4mol L-1,求溶液(b)的浓度;(3)计算在该波长下有色配合物的摩尔吸光系数。 9. 某浓度为5.0×10-4mol L-1的a组分的溶液在1cm的比色皿中,在波长为285nm 和365nm处的吸光度分别为0.053和0.43,另一浓度为1.0×10-3mol L-1的b组分的溶液在1cm的比色皿中,在波长为285nm和365nm处的吸光度分别为0.65和0.05。现有含a和b两种组分的混合溶液,在波长285nm和365nm处的吸光度分别为0.64和0.37,试计算混合溶液中a组分和b组分的浓度。 3. 解: 按波长增加排序如下:X射线、紫外光、可见光、红外、微波、无线电波。 按能量增加排序如下:与上述排序方向相反。 4. (1)6.67×107cm-1,(2) 5.09×1014Hz,(3)3663nm,(4)2.10 eV 提示:根据公式:E=h?ν=h?c/λ=h?c?σ 5. 略(课本或课件上自己查找)。

仪器分析课后习题答案1

课后习题答案 第一章:绪论 1.解释下列名词: (1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。 答:(1)仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。(2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。 (3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。 第三章光学分析法导论 1.解释下列名词: (1)原子光谱和分子光谱;(2)原子发射光谱和原子吸收光谱; (3)统计权重和简并度;(4)分子振动光谱和分子转动光谱; (5)禁戒跃迁和亚稳态;(6)光谱项和光谱支项; (7)分子荧光、磷光和化学发光;(8)拉曼光谱。 答:(1)由原子的外层电子能级跃迁产生的光谱称为原子光谱;由分子的各能级跃迁产生的光谱称为分子光谱。 (2)当原子受到外界能量(如热能、电能等)的作用时,激发到较高能级上处于激发态。但激发态的原子很不稳定,一般约在10-8s内返回到基态或较低能态而发射出的特征谱线形成的光谱称为原子发射光谱;当基态原子蒸气选择性地吸收一定频率的光辐射后跃迁到较高能态,这种选择性地吸收产生的原子特征的光谱称为原子吸收光谱。 (3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为能级的简并度。 (4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。 (5)不符合光谱选择定则的跃迁叫禁戒跃迁;若两光谱项之间为禁戒跃迁,处于较高能级的原子具有较长的寿命,原子的这种状态称为亚稳态。 (6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n 2S + 1 L;把J值不同的光谱项称为光谱支项,表示为n 2 S + 1 L J。 (7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。荧光是由单重激发态向基态跃迁产生的光辐射,而磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁而产生的光辐射。化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。 (8)入射光子与溶液中试样分子间的非弹性碰撞引起能量交换而产生的与入射光频率不同的散射光形成的光谱称为拉曼光谱。 4.解:光谱项分别为:基态31S;第一电子激发态31P和33P。

仪器分析第一章

Chapter 1 Introduction Analytical chemistry deals with methods for determining the chemical composition of samples of matter. A qualitative method yields information about the identity of atomic or molecular species or the functional groups in the sample; a quantitative method. in contrast, provides numerical information as to the relative amount of one or more of these components. 1.1 CLASSIFICATION OF ANALYTICAL METHODS Analytical methods are often classified as being either classical or instrumental. This classification is largely historical with classical methods, sometimes called wet chemical methods, preceding instrumental methods by a century or more. 1.1.1 Classical Methods In the early years of chemistry, most analyses were carried out by separating the components of interest (the analytes) in a sample by precipitation, extraction, or distillation. For qualitative analyses, the separated components were then treated with reagents that yielded products that could be recognized by their colors, their boiling or melting points, their solubilities in a series of solvents, their odors, their optical activities, or their refractive indexes. For quantitative analyses, the amount of analyte was determined by gravimetric or by titrimetric measurements. In gravimetric measurements, the mass of the analyte or some compound produced from the analyte was determined. In titrimetric procedures, the volume or mass of a standard reagent required to react completely with the analyte was measured. These classical methods for separating and determining analytes still find use in many laboratories. The extent of their general application is, however, decreasing with the passage of time and with the advent of instrumental methods to supplant them. 1.1.2 Instrumental Method Early in the twentieth century, chemists began to exploit phenomena other than those used for classical methods for solving analytical problems. Thus, measurements of physical properties of analytes--such as conductivity, electrode potential, light absorption or emission, mass to-charge ratio, and fluorescence--began to be used for quantitative analysis of a variety of inorganic, organic, and biochemical analytes. Furthermore, highly efficient chromatographic and electrophoretic techniques began to replace distillation, extraction, and precipitation for the separation of components of complex mixtures prior to their qualitative or quantitative determination. These newer methods for separating and determining chemical species are known collectively as instrumental methods of analysis. Many of the phenomena that instrumental methods are based on have been known for a century or more. Their application by most chemists, however, was delayed by lack of reliable and simple instrumentation. In fact, the growth of modem instrumental methods of analysis has paralleled the development of the electronics and computer industries. 1.2 TYPES OF INSTRUMENTAL METHODS For this discussion, it is useful to consider chemical and physical characteristics that are useful for qualitative or quantitative analysis. Table 1-1 lists most of the characteristic properties that are currently used for instrumental analysis. Most of the characteristics listed in the table require a source of energy to stimulate a measurable response from the analyte. For example, in atomic emission an increase in the temperature of the analyte is required to first produce gaseous analyte atoms and then to excite the atoms to higher energy states. The excited state atoms then emit characteristic electromagnetic radiation, which is the quantity measured by the instrument.

第一章 色谱分析法 仪器分析教案

第二章色谱分析法 第一节色谱分析法及其分类 1.1 什么是色谱法 借助于在两相间分配原理而使混合物中各组分分离的技术,称为色谱分离技术或色谱法。又称色层法、层析法。 固定相:在色谱分离中固定不动,对样品产生保留的一相。 流动相:带动样品向前移动的另一相,与固定相处于平衡状态。 实质:分离 目的:定性分析或定量分析 1.2、色谱法是如何起源的? 1906年由俄国植物学家米哈伊尔·茨维特创立。 植物色素分离,见图示。 1.3、色谱法的发展 现在:一种重要的分离、分析技术 分离混合物中的各组分并加以分析 固定相——除了固体,还可以是液体 流动相——液体或气体 色谱柱——各种材质和尺寸 被分离组分——不再仅局限于有色物质 1.4、色谱法分类 1.4.1根据流动相的状态将色谱法分成四大类。:

?

基本类型色谱法的分离机制----结论 ?四种色谱的分离机制各不相同,分别形成:吸附平衡、分配平衡、离子交换平衡和渗透平衡。 ?K分别为吸附系数,狭义分配系数,选择性系数和渗透系数。 ?除了凝胶色谱法中的K仅与待测分子大小尺寸、凝胶孔径大小有关外,其他三种K值都受组分的性质、流动相的性质、固定相的性质以及柱温的影响。 第二节色谱图及相关术语 2.1.1定义: 检测色谱分离后组分的响应信号对时间作 图得到的曲线称为色谱图。 2.1.2 色谱图的作用(或色谱图信息的内容): 1、根据色谱峰的位置(保留值)可以进行定性检测; 2、根据色谱峰的面积或峰高可以进行定量检测; 3、根据色谱峰的位置及其宽度,可以对色谱柱分离 情况进行评价。 2.2 相关术语 1、基线: ⑴基线:当色谱柱中没有组分进入检测器时,在实 验操作条件下,反映检测器系统噪声随时间变化的 线称为基线。 稳定的基线是一条直线。 ⑵基线漂移:指基线随时间定向的缓慢变化。 ⑶基线噪声:指由各种因素所引起的基线起伏。 基线噪音是指空白时检测数据上下波动的大小,噪音太大会影响检测精度。 基线噪音又分为空池和带流动相时的噪音。一些进口仪器用空池噪音数值,这是只能代表仪器的电子噪音,不能代表检测噪音,因为做分析时是离不开流动相的。 并不是基线噪声小就说明仪器好,而是要看仪器的信噪比,信噪比大的仪器才是好的仪器. 在做定量时是可以通过数据处理里面的功能来算信噪比的。这时的噪声选择一般选在目标峰的前面,这只是一般原则。 2、保留值 保留值表示试样中各组分在色谱柱中的滞留时间的数值。 通常用时间或将组分带出色谱柱所需载气体积来表示。 被分离组分在色谱柱中的滞留时间,主要取决于它在两相间的分配过程,故保留值是由色谱过程中的热力学因素所控制的,在一定的固定相和操作条件下,任一物质都有一确定的保留值,这样就可用作定性参数。 (1) 保留时间(tR):指被测组分从进样开始到柱后出现浓度最大值时所需要的时间。如色谱图中O’B所示。 (2)死时间(tM):指不被固定相吸附或溶解的气体(如:空气、甲烷)从进样开始到柱后出现浓度最大值时所需要的时间。如色谱图中O’A’所示。死时间正比于色谱柱的空隙体积。 (3)调整保留时间(tR′):指扣除死时间后的保留时间,即: tR′= tR—tM如色谱图中A’B所示。此参数可理解为,某组分由于溶解或吸附于固定相,比不溶解或不被吸附的组分在色谱柱中多滞留的时间。 (4)相对保留值(α或r21):指某组分2的调整保留值与另一组分1的调整保留值之比。 这是一个在实际应用中非常重要的参数,因有如下优点: 只要柱温、固定相性质不变,即使柱径、柱长、填充情况及流动相流速有所变化, r21值仍保持不变,因此它是色谱定性分析的重要参数。 r21亦可用来表示固定相(色谱柱)的选择性。r21数值越大,相邻两组分的tR′相差越大,分离的越好,此数值等于1时,两组分不能被分离。 关于体积参数自学 3、区域宽度: 色谱峰区域宽度是色谱流出曲线中一个重要参数。 从色谱分离角度着眼,希望区域宽度越窄越好。 通常度量色谱峰区域宽度有两种方法: ⑴半峰宽度(Yh/2或Wh/2):又称半宽度或区域宽度,即峰高一半处的宽度,如图中GH所示,由于它

相关文档
最新文档