碰撞知识点复习与习题

碰撞知识点复习与习题
碰撞知识点复习与习题

一.动量守恒定律

1. 守恒条件

(1) 系统不受外力或所受外力的合力为零,则系统动量守恒.

(2) 系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.

(3) 当系统在某个方向上所受合力为零时,系统在该方向上动量守恒.

2. 几种常见表述及表达式

(1) p=p′( 系统相互作用前的总动量p 等于相互作用后的总动量p′) .

(2) Δp=0(系统总动量不变) .

(3) Δp1=-Δp2( 相互作用的两物体组成的系统,两物体动量的增量大小相

等、方向相反) .

其中(1) 的形式最常用,具体到实际应用时又有以下三种常见形式:

①m1v1 +m2v2=m1v1′+m2v2′( 适用于作用前后都运动的两个物体组成的系统) .

②0=m1v1+m2v2( 适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,

两者速率与各自质量成反比) .

③m1v1+m2v2=( m1+m2) v( 适用于两物体作用后结合为一体或具有相同速度的

情况,如完全非弹性碰撞) .

3. 理解动量守恒定律: 矢量性?瞬时性?相对性?普适性.

4. 应用动量守恒定律解题的步骤:

(1) 明确研究对象,确定系统的组成( 系统包括哪几个物体及研究的过程) ;

(2) 进行受力分析,判断系统动量是否守恒( 或某一方向上动量是否守恒) ;

(3) 规定正方向,确定初、末状态动量;

(4) 由动量守恒定律列出方程;

(5) 代入数据,求出结果,必要时讨论说明.

二.碰撞现象

1.碰撞的种类及特点

分类标

种类特点准

机械能弹性碰撞动量守恒,机械能守恒是否守

非弹性碰撞动量守恒,机械能有损失恒

完全非弹性碰撞动量守恒,机械能损失最大碰撞前

对心碰撞( 正碰) 碰撞前后速度共线

后动量

是否共

非对心碰撞( 斜碰) 碰撞前后速度不共线

线

2. 弹性碰撞的规律

两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.

在光滑的水

平面上,

有质量m 1、m 2 的钢球沿一条直线同向运动, m 1、 m 2 的速度分别是 v 1、v 2,(v 1、> v 2)m 1 与 m 2

发生弹性正碰

。则由动量

守恒

定律和动能守恒可以下方程 利用( 3)式和( 4)式,可讨论以下两种特殊情况: A .如果两物体质量相等,即 m 1=m 2,则可得 B .如

果一个

物体是静

止的,例如m 2 的物体在碰撞前是静止的,

v 2=0,则可得 这里又可有以下几种情况: a . b . 质量较大的物体向前运动。 c . d . 以原速

率反弹回来,而质量很大的物体几乎不动。例如橡皮球与墙壁的碰撞。 e .

速度几乎不

变,而质量很小的物体获得的速度是原来运动物体速度的 2 倍,这是原来静止的

物体通过

撞可以获得的最大速度,例如铅3.一般碰撞现象满律 (1) 动量守恒定律 : 系统(2) 能量守恒 : 系统的(3) 速度要合理: ①若碰前两物体同向运动,则有 v 后

>v 前

,碰后原来在前的物体速度一定增大, 若碰后两物体同向运动后

′. ②碰前两物体相向运

三.如何快速判定碰撞的可能性

1.满足实际情况.分以下四种情况:

(1)同向运动物体的碰撞:在光滑水平面上同向运动的两物体A、B,要发生碰撞,则碰撞前必有vA>vB(vB可以为零).由于碰撞过程中,相互作用力对

前方物体向前,对后方物体向后,所以碰撞后前方物体的动量增加,从而vB'>vB;后方物体动量减小,vA'<vA(否则将违背动能不增加原理).(2)相向运动物体的碰撞:碰撞后,两物体可以沿同一方向运动,也可以

沿各自反方向运动,还可以是原动量大的一个静止而另一个反弹,但不可能两个

物体都仍沿各自原方向运动.

(3)若碰撞后两物体沿同一方向运动,则一定有前方物体的速度大于或等

于后方物体的速度.

(4)在碰撞过程中,由于时间很短,所以只有直接相碰的物体动量才有明

显变化,其他物体的动量通常认为不变.

2 .满足动量守恒:由于碰撞时间很短,此时内力远大于外力,所以不管合

外力是否为零,一般都按动量守恒处理.从而两个物体相碰时,两个物体的动量

变化量大小相等方向相反.

3 .满足动能不增加原理:由于碰撞过程中可能有机械能损失,所以碰撞后

两个物体的总动能不会大于碰撞前两个物体的总动能.

以上方法一般首先判断实际情况,再判断动量守恒,最后判断动能不增加,

这样既可减少运算量提高做题速度,同时还可减少一些平常由于疏忽而造成的错

误,如一般按照动量守恒和动能不增加直接判出答案,那么有些就不满足实际情

况从而造成错解.

四.例题

5. 在质量为M的小车中挂有一单摆.摆球的质量为m0,小车

和单摆以速度v 沿光滑水平面运动,与正对面的静止木块m发生碰撞,碰撞时间很短,在碰撞过程中下列哪些情况可能发生()A.小车、木块和摆球的速度

都发生变化,分别变为v1、v2、v3,且有(M+m0)v=Mv1+mv2+m0v3 B.摆球的速度不变,小车和木块的速度都变为v1,且有Mv=(M+m) v1

C.摆球的速度不变,小车和木块的速度变为v1、v2 ,且有Mv=Mv1+mv2 D.小车和小球的速度都变为v1,木块的速度变为v2,且有(M+m0)v=(M+

m0)v1+mv2

6. A 、B两球在水平光滑轨道上同向运动,已知它们的动量分别是Pa=5kg·m/s,Pb=7kg·m/s,A球追上B球并发生碰撞,碰后B球的动量变为10kg·m/s,则两球的质量mA与mB的关系可能是()

A.mB=mA B.mB=2mA C.mB=4mA D.mB=6mA

7.一质量为M 的小球以速度V 运动,与另一质量为m 的静止小球发生正碰之后,一起向着

相同方向运动,且两小球动量相等。则两小球质量比M/m 可以是:

A.2

B.3

C.4

D.5

8.质量为M 的木块在光滑水平面上以速度v1向右运动,质量为m 的子弹以速度v2 向左射入木块并停留在木块中,要使木块停下来,发射子弹的数目是:

(M m)v

2

A. ;

B.

mv

1

Mv

1 (M m)v

2

;

C. mv

1

Mv

2

; D.

Mv

1

mv

2

;

9.如图所示,物体 A 静止在光滑水平面上, A 的左边固定有轻质弹簧,与 A 质量相等的物体 B 以速度v 向A 运动并与弹簧发生碰撞,A,B 始终在一直线上运动,则A,B 组成的

系统动能损失最大的时刻是:

A. A 开始运动时;

B. A 的速度等于v 时;

C. B 的速度等于零时;

D. A,B 速度相等时;

10.如图,木块A,B 的质量均为2kg,置于光滑水平面上, B 与一轻弹簧一端相连,弹簧的另一端固定在竖直挡板上,当 A 以4m/s 的速度向 B 撞击时,由于有橡皮泥而粘在一起

运动,那么弹簧被压缩到最短时,具有的弹性势能大小为:

A. 4J;

B. 8J;

C. 16J;

D. 32J;

v

11.小车AB 静置于光滑的水平面上, A 端固定一个轻质弹簧, B 端粘有橡皮泥,AB 车质量为M ,长为L,质量为m 的木块 C 放在小车上,用细绳连结于小车的 A 端并使弹簧压缩,

开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体 C 离开弹簧向 B 端冲去,并跟 B 端橡皮泥粘在一起,以下说法中正确的是()

A .如果A

B 车内表面光滑,整个系统任何时刻机械能都守恒

B.整个系统任何时刻动量都守恒

C.当木块对地运动速度为v 时,小车对地运动速度为mv/M

D.AB 车向左运动最大位移小于L

12.质量为 1 kg 的小球以 4 m/s 的速度与质量为 2 kg 的静止小球碰, 关于碰后的速度v1′和v2′, 下面可能的是( )

A.v 1′=v2′=4

3

m/s B.v 1′=-1 m/s,v 2′=2.5 m/s

C.v 1′=1 m/s,v 2′=3 m/s

D.v 1′=-4 m/s,v 2′=4 m/s

13.如图所示,小球A 系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h.物块

B 质量是小球的 5 倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数

为μ.再拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为

h

16

.小球与物块均视为质点,不计空气

阻力,重力加速度为g,求物块在水平面上滑行的时间t.

14.如图所示,A、B 两物体的质量分别是m1=5kg,m2=3kg. 它们在光滑水平面上沿同一直线

向右运动,速度分别为v1=5m/s,v 2=1m/s.当 A 追上 B 后,与 B 上固定的质量不计的弹簧发

生相互作用。弹簧被压缩后再伸长,把A 、B 两物体弹开,已知 A 、B 两物体作用前后均沿同一直线运动,弹簧压缩时未超过弹簧的弹性限度。求:(1)AB 相互作用后的最终速度各是多少?

(2)碰撞中弹簧具有的最大弹性势能是多少?

A B

15.如图所示,光滑水平面上质量为m1=2kg 的物块以v0=2m/s 的初速冲向质量为m2=6kg 静止的光滑圆弧面斜劈体。求:

(1)物块m1 滑到最高点位置时,二者的速度;

(2)物块m1 从圆弧面滑下后,二者速度;

(3)若m1= m2 物块m1 从圆弧面滑下后,二者速度;

m

1 v

0 m 2

12.一质量为m 钢球静止在质量为M 铁箱的光滑底面上(不知道m与M 的大小情况), 如图示。CD长L,铁箱与地面间无摩擦。铁箱被加速至v时开始做匀速直线运动。后来箱壁

与钢球发生弹性碰撞。问碰后再经过多长时间钢球与BD壁相碰。

答案:1.BC 2.C 3.AB 4.D 5.D 6.B 7.BCD 8.AB

16.解析: 设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1, 取小球运动到最低点重力势能为零, 根据机械能守恒定律, 有

1

2 mgh=

2

mv

1 得v1=

2gh

设碰撞后小球反弹的速度大小为v′1, 同理有

h 1

2

mg mv′

1 得v′1=

16 2 gh 8

设碰后物块的速度大小为v2, 取水平向右为正方向, 根据动量守恒定律, 有

gh

mv1=- mv′1+5mv2 得v2 =

8 物块在水平面上滑行所受摩擦力的大小F=5

μmg

设物块在水平面上滑行的时间为t, 根据动量定理, 有-Ft=0-5 mv 2

得t 2gh 4 g

.

答案:

2gh 4 g

17.(1)2m/s; 6m/s;

(2)15J;

18.(1) 0.5m/s;(2)-1m/s; 1m/s; (3) 0; 2m/s;

19.t=L/Vo

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

物理选修3-5(碰撞与动量守恒)知识点与习题

碰撞与动量守恒 一、动量和冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少 二.动量定理 1.求动量及动量变化的方法。 图1【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量 变化是多少 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向和大小为(D) A.向下,m(v2 - v1)B.向下,m(v2 + v1)C.向上,m(v2 - v1)D.向上,m(v2 + v1) 2.质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2.用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2).求解平均力问题 【例4】质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为,安全带伸直后长5m,求安全带所受的平均冲量.(g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

动量守恒弹性碰撞知识点

动量守恒弹性碰撞知识点 一、不同类型的碰撞 (1)非弹性碰撞:碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失.(2)完全非弹性碰撞:碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞:碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 二、弹性碰撞的实验研究和规律 质量m1的小球以速度v1与质量m2的静止小球发生弹性碰撞.根据动量守恒和动能守恒, 得m1v1=m1v1′+m2v2′,1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 碰后两球的速度分别为:v′1=m1-m2v1 m1+m2, v′2= 2m1v1 m1+m2 ①若m1>m2,v1′和v2′都是正值,表示v1′和v2′都与v1方向相同.(若m1?m2,v1′=v1,v2′=2v1,表示m1的速度不变,m2以2v1的速度被撞出去) ②若m1

4.对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞,碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后动能损失最大. 四、碰撞过程的分析 1.判断依据 在所给条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条:(1)系统动量守恒,即p1+p2=p′1+p′2. (2)系统动能不增加,即E kl+E k2≥E′kl+E′k2或p21 2m1+ p22 2m2 ≥ p′21 2m1 + p′22 2m2 . (3)符合实际情况,如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸与碰撞的异同 (1)共同点:相互作用的力为变力,作用力很大,作用时间极短,均可认为系统满足动量守恒. (2)不同点:爆炸有其他形式的能转化为动能,所以动能增加;弹性碰撞时动能不变,而非弹性碰撞时通常动能要损失,动能转化为内能,动能减小.

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

物理选修35碰撞与动量守恒知识点与习题

碰撞与动量守恒 一、动量与冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各就是多大? 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各就是多少? 二、动量定理 1、求动量及动量变化的方法。 图1 【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变 化就是多少? 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向与大小为(D) A.向下,m(v2-v1) B.向下,m(v2+v1)C、向上,m(v2-v1)D.向上,m(v2+v1) 2、质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2、用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2)、求解平均力问题 【例4】质量就是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中、已知弹性安全带缓冲时间为1、2s,安全带伸直后长5m,求安全带所受的平均冲量、( g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球、忽略空气阻力的作用,g取10m/s2、求抛出后第2s末小球速度的大小、

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

最新选修3-5动量守恒定律知识点

选修3-5 动量守恒定律知识点 动量守恒定律、碰撞、 反冲现象知识点归纳总结 一.知识总结归纳 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。 2. 动量守恒定律的条件: (1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。 (2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。 (3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。 3. 动量守恒定律应用中需注意: (1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。 (2)系统性:即动量守恒是某系统内各物体的总动量保持不变。 (3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。 (4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物). 4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。 (1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。例如:钢球、玻璃球、微观粒子间的碰撞。 (2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。 (3)完全非弹性碰撞——碰撞结束后,形变完全保留,通常表现为碰后两物体合二为一,以同一速度运动,碰撞前后系统的总动量相等,动能损失最多。上述三种情况均不含其它形式的能转化为机械能的情况。 一维弹性碰撞的普适性结论: 在一光滑水平面上有两个质量分别为、的刚性小球A和B,以初速度、运动,若它们能发生碰撞(为一维弹性碰撞),碰撞后它们的速度分别为和。我们的任务是得出用、、、表达和的公式。 、、、是以地面为参考系的,将A和B看作系统。 由碰撞过程中系统动量守恒,有……① 有弹性碰撞中没有机械能损失,有……② 由①得 由②得 将上两式左右相比,可得 即或……③ 碰撞前B相对于A的速度为,碰撞后B相对于A的速度为,同理碰撞前A相对于B的速度为,碰撞后A相对于B的速度为,故③式为或, 其物理意义是: 碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等,方向相反; 碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等,方向相反; 故有:

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理知识点总结:动量守恒定律知识讲解

一. 教学内容: 第十六章动量守恒定律 1. 实验:探究碰撞中的不变量 2. 动量守恒定律(一) 3. 动量守恒定律(二) 二. 知识要点: 1. 理解碰撞过程中动量守恒的探究过程。 2. 理解动量守恒定律的理论推导过程,理解动量守恒的意义,记住动量守恒定律的三种表达式,会应用动量守恒解相关问题。 三. 重难点解析: 1. 碰撞中守恒量的探究 实验的基本思路 我们只研究最简单的情况?D?D两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 与物体运动有关的物理量可能有哪些呢?在一维碰撞的情况下只有物体的质量和物体的速度。设两个物体的质量分别为m2,碰撞前的速度分别为v1、v v。如果速度与我们设定的方向一致,取正值,否则取负值。 现在的问题是,碰撞前后哪个物理量可能是不变的?质量是不变的,但质量并不描述物体的运动状态,不是我们追寻的“不变量”。速度在碰撞前后是变化的,但一个物体的质量与它的速度的乘积是不是不变量?如果不是,那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?也就是说,关系式v1 v2=v m2 是否成立? 或者,各自的质量与自己的速度的二次方的乘积之和是不变量?也就是说,关系式v m2 =v m2 是否成立?

也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?也就是说,关系式 =是否成立? 也许…… 碰撞可能有很多情形。例如,两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞……两个物体的质地不同,碰撞的情形也不一样。例如两个物体碰撞时可能碰后分开,也可能粘在一起不再分开…我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。 需要考虑的问题 实验中首要的问题是如何保证碰撞是一维的,即如何保证两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。此外,还要考虑怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度。 质量可以用天平测量,本实验要解决的主要问题是怎样保证物体沿同一直线运动和怎样测量物体的速度。 关于实验数据的处理,下面的表格可供参考。填表时要注意: 如果小球碰撞后运动的速度与原来的方向相反,应该怎样记录?

动量定理及动量守恒定律专题复习附参考答案

动量定理及动量守恒定律专题复习 一、知识梳理 1、深刻理解动量的概念 (1)定义:物体的质量和速度的乘积叫做动量:p =mv (2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。 (4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 (5)动量的变化:0p p p t -=?.由于动量为矢量,则求解动量的 变化时,其运算遵循平行四边形定则。 A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标 量,动量改变,动能不一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念 (1)定义:力和力的作用时间的乘积叫做冲量:I =Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (4)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理 (1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp (2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 (4)现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第

动量、动量守恒定律知识点总结

龙文教育动量知识点总结 一、对冲量的理解 1、I=Ft:适用于计算恒力或平均力F的冲量,变力的冲量常用动量定理求。 2、I合的求法: A、若物体受到的各个力作用的时间相同,且都为恒力,则I合=F合.t B、若不同阶段受力不同,则I合为各个阶段冲量的矢量和。 二、对动量定理的理解:I = p = p2- p1= m v = mv2- mv1 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP的方向由v决定,与p1、p2无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:P1+ P2= P1+ P2或m1v1+m2v2= m1v1 + m2v2 1、研究对象:相互作用的物体所组成的系统 2、条件:A、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 一般的碰撞完全弹性碰撞完全非弹性碰撞 系统动量守恒系统动量守恒 系统动能守恒 系统动量守恒;碰撞后两者粘在一起,具有共同速度v,能 量损失最大 结论:等质量弹性正碰时,两者速度交换。依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 p2 动能和动量的关系:E K = p = 2mE K K 2 m K 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

第三章 动量守恒定律与能量守恒定律(1)

第三章 动量守恒定律与能量守恒定律(1) 一.选择题: 1.一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. [ ] 2.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒. (C)对地心的角动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒. [ ] 3.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和 B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA E KB . (D) L A

物理选修3-5(碰撞与动量守恒)知识点与习题

碰撞与动量守恒 -、动量和冲量 【例1】质量为m 的小球由高为 H 的、倾角为B 光滑斜面顶端无初速滑到底端过程中,重力、弹力、 合力的冲量各是多大? 【例3】一个物体同时受到两个力 图1所示,如果该物体从静止开始运动, 各是多少? 二.动量定理 1 .求动量及动量变化的方法。 【例1】以初速度v o 平抛出一个质量为 m 的物体,抛出后t 秒内物体的动量变化是多少? 【例2】一粒钢珠从静止状态开始自由下落 ,然后陷人泥潭中。若把在空中下落的过程称为过程I, 进人泥潭直到停止的过程称为过程n ,则( ) A 、 过程I 中钢珠的动量的改变量等于重力的冲量 B 、 过程n 中阻力的冲量的大小等于过程 I 中重力的冲量的大小 c 、I 、n 两个过程中合外力的总冲量等于零 D 、过程n 中钢珠的动量的改变量等于零 1 .质量为 m 的钢球自高处落下,以速率 V 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为 V 2,在 碰撞过程中,地面对钢球的冲量的方向和大小为( D ) A .向下, m (V 2 - V 1) B .向下, m (V 2 + V 1) C .向上, m (V 2 - V 1) D .向上,m (V 2 + V 1) 2 .质量为m 的小球,从沙坑上方自由下落,经过时间 t 1到达沙坑表面,又经过时间 t 2停在沙坑里。求: 'J -10 J 图1 F i 、F 2的作用,F i 、F 2与时间t 的关系如 经过t=10s 后F i 、F 2以及合力F 的冲量

⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2.用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg 的物体,在F1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s,然后推力减小为F2=5N, 方向不变,物体又运动了t2=4s 后撤去外力,物体再经过t3=6s 停下来。试求物体在水平面上所受的摩擦力。 (2 ).求解平均力问题 【例4】质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为 1.2s ,安全带伸直后长5m ,求安全带所受的平均冲量.(g= 10m /s2) ( 3 )、求解曲线运动问题 【例5】以V o = 10m /s2的初速度、与水平方向成300角抛出一个质量m = 2kg的小球.忽略空气阻力的作用,g取10m /s2.求抛出后第2s末小球速度的大小. (4 )、求解流体问题 【例6】某种气体分子束由质量m=5.4X10 -26kg速度V = 460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n o= 1.5X10 20个分子,求 被分子束撞击的平面所受到的压强. (5)、对系统应用动量定理。 系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。若将系统受到的每一个外力、系

电磁感应中动量定理和动量守恒定律的运用

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

动量守恒弹性碰撞知识点讲课稿

动量守恒弹性碰撞知 识点

精品文档 收集于网络,如有侵权请联系管理员删除 动量守恒弹性碰撞知识点 一、不同类型的碰撞 (1)非弹性碰撞:碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失. (2)完全非弹性碰撞:碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞:碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 二、弹性碰撞的实验研究和规律 质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性碰撞.根据动量守恒 和动能守恒,得m 1v 1=m 1v 1′+m 2v 2′ , 12m 1v 21=12m 1v ′21+12 m 2v ′22 碰后两球的速度分别为:v ′1=(m 1-m 2)v 1m 1+m 2, v ′2=2m 1v 1m 1+m 2 ①若m 1>m 2,v 1′和v 2′都是正值,表示v 1′和v 2′都与v 1方向相同.(若m 1?m 2,v 1′=v 1,v 2′=2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去) ②若m 1

第三章 动量守恒定律和能量守恒定律练习题及参考答案

第三章 动量守恒定律和能量守恒定律 一、填空题 1. 如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为____. 2.一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ;若物体的初速度大小为10 m/s , 方向与力F 的方向相同,则在2s 末物体速度的大小等于___. 3. 如左图所示,A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接 后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E K A /E K B 为____.

4. 质量m =1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么当x =3m 时,其速率v =_____,物体在开始运动的3 m 内,合力所作的功W =_____。 5.一质点在二恒力的作用下, 位移为j i r 83+= (SI), 在此过程中,动能增量为24J, 已知其中一恒力j 3-i 12=F 1 (SI), 则另一恒力所作的功为__. 二、计算题 6. 如图4.8,质量为M =1.5kg 的物体, 用一根长为l =1.25m 的细绳悬挂在天花板上,今有一质量为m =10g 的 子弹以v 0=500m/s 的水平速度射穿 物体,刚穿出物体时子弹的速度大小v =30m/s,设穿透时间极短,求: (1)子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量.

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力 远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A以速度v 1向质量为m 2的静止物体B 运动,B的左端连有轻弹簧。在Ⅰ位置A 、B刚好接触,弹簧开始被压缩,A开始减速,B 开始加速;到Ⅱ位置A、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A、B 开始远离,弹簧 开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21 v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B 的最终速度分别为:12 1121212112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部 分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 1121v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 21212122121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运 / /

相关文档
最新文档