高中数学竞赛辅导讲义第十讲 直线与圆的方程

高中数学竞赛辅导讲义第十讲  直线与圆的方程
高中数学竞赛辅导讲义第十讲  直线与圆的方程

第十章 直线与圆的方程

一、基础知识

1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x 2+y 2=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式:1=+b

y

a

x

;(5)两点式:

1

21

121y y y y x x x x --=--;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:???í

ì+=+=q

q sin cos 00t y y t x x (其

中θ为该直线倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取

正,否则取负)。

5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tan θ=

21121k k k k +-,tan α=2

1121k k k

k +-.

6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。且两者不重合,则l 1//l 2的充要条件是k 1=k 2;l 1^l 2的充要条件是k 1k 2=-1。

7.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|=221221)()(y y x x -+-。 8.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2

2

00|

|B

A C By Ax d +++=

9.直线系的方程:若已知两直线的方程是l 1:A 1x+B 1y+C 1=0与l 2:A 2x+B 2y+C 2=0,则过l 1, l 2交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2=0;由l 1与l 2组成的二次曲线方程为(A 1x+B 1y+C 1)(A 2x+B 2y+C 2)=0;与l 2平行的直线方程为A 1x+B 1y+C=0(1C C 1). 10.二元一次不等式表示的平面区域,若直线l 方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l 上方的部分,Ax+By+C<0表示的区域为l 下方的部分。

11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x 和y 表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。

12.圆的标准方程:圆心是点(a, b),半径为r 的圆的标准方程为

(x-a)2+(y-b)2=r 2,其参数方程为?í

ì+=+=q

q

sin cos r b y r a x (θ为参数)。

13.圆的一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0)。其圆心为

÷?

?

?è?--2,2E D ,半径为F E D 42122-+。若点P(x 0, y 0)为圆上一点,则过点P 的切线方程为

.02

20000=+÷÷

?

?

??è

?++÷÷????è?+++F y y E x x D y y x x ① 14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x 2+y 2+D i x+E i y+F i =0, i=1, 2, 3. 则它们两两的根轴方程分别为(D 1-D 2)x+(E 1-E 2)y+(F 1-F 2)=0;

(D 2-D 3)x+(E 2-E 3)y+(F 2-F 3)=0;

(D 3-D 1)x+(E 3-E 1)y+(F 3-F 1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。 二、方法与例题

1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。

例1 在ΔABC 中,AB=AC ,∠A=900,过A 引中线BD 的垂线与BC 交于点E ,求证:∠ADB=∠CDE 。

[证明] 见图10-1,以A 为原点,AC 所在直线为x 轴,建立直角坐标系。设点B ,C 坐标分别为(0,2a ),(2a,0),则点D 坐标为(a, 0)。直线BD 方程为12=+

a

y

a

x

, ①直线BC 方程为x+y=2a , ②设直线BD 和AE 的斜率分别为k 1, k 2,则k 1=-2。因为BD ^AE ,所以k 1k 2=-1.

所以212=k ,所以直线AE 方程为x y 21

=,由???í

ì=+=a y x x y 2,21解得点E 坐标为÷?

?

?è?a a 32,34。 所以直线DE 斜率为.23

4

3

23=-=

a a a k 因为k 1+k 3=0.

所以∠BDC+∠EDC=1800,即∠BDA=∠EDC 。

例2 半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为600。

[证明] 以A 为原点,平行于正三角形ABC 的边BC 的直线为x 轴,建立直角坐标系见图10-2,设⊙D 的半径等于BC 边上的高,并且在B 能上能下滚动到某位置时与AB ,AC 的交点分别为E ,F ,设半径为r ,则直线AB ,AC 的方程分别为x y 3=,x y 3-=.设⊙D 的方程为(x-m)2+y 2=r 2.①设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2),则,311x y =223x y -=,分别代入①并消去y 得

.03).(03)(2222222121=-+-=-+-r x m x r x m x

所以x 1, x 2是方程4x 2-2mx+m 2-r 2=0的两根。

由韦达定理???

?

?íì

-==+4,22

22121&r m x x m x x ,所以 |EF|2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+3(x 1-x 2)2

=4(x 1+x 2)2-4x 1x 2=m 2-(m 2-r 2)=r 2.

所以|EF|=r 。所以∠EDF=600。 2.到角公式的使用。

例3 设双曲线xy=1的两支为C 1,C 2,正ΔPQR 三顶点在此双曲线上,求证:P ,Q ,R 不可能在双曲线的同一支上。

[证明] 假设P ,Q ,R 在同一支上,不妨设在右侧一支C 1上,并设P ,

Q ,R 三点的坐标分别为,1,,1,,1

,332211÷÷

?

???è

?÷÷????è

?÷÷????è

?x

x x

x x

x 且0

3223231111x x x x x x k -=--=,.1112

121212x x x x x x k -=--= 由到角公式.01)

(111

11tan 32213123

2

2132212

11

2<+-=++

-=

+-=

x x x x x x x x x x x x x k k k k q 所以θ为钝角,与ΔPQR 为等边三角形矛盾。所以命题成立。 3.代数形式的几何意义。

例4 求函数11363)(2424+--+--=x x x x x x f 的最大值。

[解] 因为222222)0()1()3()2()(-------=x x x x x f 表示动点P(x, x 2)到两定点A(3, 2), B(0, 1)的距离之差,见图10-3,当AB 延长线与抛物线y=x 2的交点C 与点P 重合时,f(x)取最大值|AB|=.10 4.最值问题。

例 5 已知三条直线l 1: mx-y+m=0, l 2: x+my-m(m+1)=0, l 3: (m+1)x-y+m+1=0围成ΔABC ,求m 为何值时,ΔABC 的面积有最大

值、最小值。

[解]记l 1, l 2, l 3的方程分别为①,②,③。在①,③中取x=-1, y=0,知等式成立,所以A(-1, 0)为l 1与l 3的交点;在②,③中取x=0, y=m+1,等式也成立,所以B(0, m+1)为l 2与l 3的交点。设l 1, l 2斜率分别为k 1, k 2, 若m 10,则k 1?k 2=11-=÷??

?è?-m m , S ΔABC =||||21BC AC ′,由点到直线距离

公式|AC|=

1

|

1|1|

1|2

22

2+++=

+---m m m m

m m ,|BC|=

2

2

111|1|m

m

m m +=

++--。

所以S ΔABC =÷???è?++=+++′11211

1212

22m m m m m 。因为2m ≤m 2+1,所以S ΔABC ≤43。又因为-m 2-1≤2m ,所以1

212

+£

-m m ,所以S ΔABC ≥.41

当m=1时,(S ΔABC )max =4

3

;当m=-1时,(S ΔABC )min =4

1. 5.线性规划。

例6 设x, y 满足不等式组?

íì-3+£+£.|32|2,41x y y x

(1)求点(x, y)所在的平面区域;

(2)设a>-1,在(1)区域里,求函数f(x,y)=y-ax 的最大值、最小值。

[解] (1)由已知得???íì3--3+£+£,032,322,41x x y y x 或??

?

íì<--3+£+£.032,232,

41x x y y x

解得点(x, y)所在的平面区域如图10-4所示,其中各直线方程如图所示。AB :y=2x-5;CD :y=-2x+1;AD :x+y=1;BC :x+y=4.

(2) f(x, y)是直线l: y-ax=k 在y 轴上的截距,直线l 与阴影相交,因为a>-1,所以它过顶点C 时,f(x, y)最大,C 点坐标为(-3,7),于是f(x,

y)的最大值为3a+7. 如果-12,则l 通过B (3,1)时,f(x, y)取最小值为-3a+1. 6.参数方程的应用。

例7 如图10-5所示,过原点引直线交圆x 2+(y-1)2=1于Q 点,在该直线上取P 点,使P 到直线y=2的距离等于|PQ|,求P 点的轨迹方程。 [解] 设直线OP 的参数方程为?í

ì==a

a

sin cos t y t x (t 参数)。

代入已知圆的方程得t 2-t ?2sin α=0.

所以t=0或t=2sin α。所以|OQ|=2|sin α|,而|OP|=t. 所以|PQ|=|t-2sin α|,而|PM|=|2-tsin α|.

所以|t-2sin α|=|2-tsin α|. 化简得t=2或t=-2或sin α=-1. 当t=±2时,轨迹方程为x 2+y 2=4;当sin α=1时,轨迹方程为x=0. 7.与圆有关的问题。

例8 点A ,B ,C 依次在直线l 上,且AB=ABC ,过C 作l 的垂线,M 是这条垂线上的动点,以A 为圆心,AB 为半径作圆,MT 1与MT 2是这个圆的切线,确定ΔAT 1T 2垂心 的轨迹。

[解] 见图10-6,以A 为原点,直线AB 为x 轴建立坐标系,H 为OM 与圆的交点,N 为T 1T 2与OM 的交点,记BC=1。

以A 为圆心的圆方程为x 2+y 2=16,连结OT 1,OT 2。因为OT 2^MT 2,T 1H ^MT 2,所以OT 2//HT 1,同理OT 1//HT 2,又OT 1=OT 2,所以OT 1HT 2是菱形。所以

2ON=OH 。

又因为OM ^T 1T 2,OT 1^MT 1,所以=21OT ON ?OM 。设点H 坐标为(x,y )。

点M 坐标为(5, b),则点N 坐标为÷?

??è?2,2y x ,将坐标代入21OT =ON ?OM ,再

由x

y b =5得

.5165162

2

2

÷?

??è?=+÷???è?-y x

在AB 上取点K ,使AK=5

4AB ,所求轨迹是以K 为圆心,AK 为半径的圆。

例9 已知圆x 2+y 2=1和直线y=2x+m 相交于A ,B ,且OA ,OB 与x 轴正方向所成的角是α和β,见图10-7,求证:sin(α+β)是定值。 [证明] 过D 作OD ^AB 于D 。则直线OD 的倾斜角为2

b

a +,因为OD ^AB ,所以2?12

tan

-=+b

a , 所以212tan -=+

b a 。所以.542tan 12tan

2)sin(2-=÷

?

?

?è?+++=+b a b

a b a 例10 已知⊙O 是单位圆,正方形ABCD 的一边AB 是⊙O 的弦,试确定|OD|的最大值、最小值。

[解] 以单位圆的圆心为原点,AB 的中垂线为x 轴建立直角坐标系,设点A ,B 的坐标分别为A(cos α,sin α),B(cos α,-sin α),由题设|AD|=|AB|=2sin α,这里不妨设A 在x 轴上方,则α∈(0,π).由对称性可设点D 在点A 的右侧(否则将整个图形关于y 轴作对称即可),从而点D 坐标为(cos α+2sin α,sin α),

所以|OD|=1cos sin 4sin 4sin )sin 2(cos 222++=++a a a a a a

=.42sin 2233)2cos 2(sin 2÷?

?

?-+=+-p a a a

因为2242sin 2222£÷?

?

?-£-p a ,所以.12||12+££-OD

当p a 8

3

=时,|OD|max =2+1;当p a 8

7=时,|OD|min =.12-

例11 当m 变化且m ≠0时,求证:圆(x-2m-1)2+(y-m-1)2=4m 2的圆心在一条定直线上,并求这一系列圆的公切线的方程。 [证明] 由?

í

ì+=+=1,

12m b m a 消去m 得a-2b+1=0.故这些圆的圆心在直线

x-2y+1=0上。设公切线方程为y=kx+b ,则由相切有2|m|=

2

1|

)1()12(|k

b m m k +++-+,对一切m ≠0成立。即

(-4k-3)m 2+2(2k-1)(k+b-1)m+(k+b-1)2=0对一切m ≠0成立

所以?íì=-+=--,01,034b k k 即???

??í

ì

--=.

47,43b k 当k 不存在时直线为x=1。所以公切线方程y=4

743+-x 和x=1. 三、基础训练题

1.已知两点A(-3,4)和B(3,2),过点P(2,-1)的直线与线段AB 有公共点,则该直线的倾斜角的取值范围是__________. 2.已知θ∈[0,π],则q

q

sin 2cos 3-+=

y 的取值范围是__________.

3.三条直线2x+3y-6=0, x-y=2, 3x+y+2=0围成一个三角形,当点P(x, y)在此三角形边上或内部运动时,2x+y 的取值范围是__________.

4.若三条直线4x+y=4, mx+y=0, 2x-3my=4能围成三角形,则m的范围是__________.

5.若λ∈R。直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,比较大小:d__________2

4.

6.一圆经过A(4,2), B(-1,3)两点,且在两个坐标轴上的四个截距的和为14,则此圆的方程为__________.

7.自点A(-3,3)发出的光线l射到x轴上被x轴反射,其反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切,则光线l所在的方程为__________.

8.D2=4F且E≠0是圆x2+y2+Dx+Ey+F=0与x轴相切的__________条件.

9.方程|x|-1=2)1

(

-y表示的曲线是__________.

1-

10.已知点M到点A(1,0),B(a,2)及到y轴的距离都相等,若这样的点M恰好有一个,则a可能值的个数为__________.

11.已知函数S=x+y,变量x, y满足条件y2-2x≤0和2x+y≤2,试求S 的最大值和最小值。

12.A,B是x轴正半轴上两点,OA=a,OB=b(a

(1)求∠AMB的最大值;

(2)当∠AMB取最大值时,求OM长;

(3)当∠AMB取最大值时,求过A,B,M三点的圆的半径。

四、高考水平训练题

1.已知ΔABC 的顶点A(3,4),重心G(1,1),顶点B 在第二象限,垂心在原点O ,则点B 的坐标为__________.

2.把直线0323=++-y x 绕点(-1,2)旋转300得到的直线方程为__________. 3.M 是直线l:13

4

=+

y

x 上一动点,过M 作x 轴、y 轴的垂线,垂足分别为A ,B ,则在线段AB 上满足2=的点P 的轨迹方程为__________. 4.以相交两圆C 1:x 2+y 2+4x+y+1=0及C 2:x 2+y 2+2x+2y+1=0的公共弦为直径的圆的方程为__________. 5

M={(x,y)|y=222x a -,a>0},N={(x,y)|(x-1)2+(y-3)2=a 2,a>0}.M I N

?1,a 的最大值与最小值的和是__________.

6.圆x 2+y 2+x-6y+m=0与直线x+2y-3=0交于P ,Q 两点,O 为原点,OP ^OQ ,则m=__________.

7.已知对于圆x 2+(y-1)2=1上任意一点P(x,y),使x+y+m ≥0恒成立,m 范围是__________.

8.当a 为不等于1的任何实数时,圆x 2-2ax+y 2+2(a-2)y+2=0均与直线l 相切,则直线l 的方程为__________.

9.在ΔABC 中,三个内角A ,B ,C 所对应的边分别为a,b,c ,若lgsinA,lgsinB, lgsinC 成等差数列,那么直线xsin 2A+ysinA=a 与直线xsin 2B+ysinC=c 的位置关系是__________.

10.设A={(x,y)|0≤x ≤2,0≤y ≤2},B={(x,y)|x ≤10,y ≥2,y ≤x-4}是坐标平面xOy 上的点集,C=?t

?

yü???íì??÷÷???

?è?++B y x A y x y y x x ),(,),(2,222112121所围成图形的面积是__________.

11.求圆C 1:x 2+y 2+2x+6y+9=0与圆C 2:x 2+y 2-6x+2y+1=0的公切线方程。

12.设集合L={直线l 与直线y=2x 相交,且以交点的横坐标为斜率}。 (1)点(-2,2)到L 中的哪条直线的距离最小?

(2)设a ∈R +,点P(-2, a)到L 中的直线的距离的最小值设为d min ,求d min 的表达式。

13.已知圆C :x 2+y 2-6x-8y=0和x 轴交于原点O 和定点A ,点B 是动点,且∠OBA=900,OB 交⊙C 于M ,AB 交⊙C 于N 。求MN 的中点P 的轨迹。

五、联赛一试水平训练题

1.在直角坐标系中纵横坐标都是有理数的点称为有理点。若a 为无理数,过点(a,0)的所有直线中,每条直线上至少存在两个有理点的直线有_______条。

2.等腰ΔABC 的底边BC 在直线x+y=0上,顶点A(2,3),如果它的一腰平行于直线x-4y+2=0,则另一腰AC 所在的直线方程为__________. 3.若方程2mx2+(8+m2)xy+4my2+(6-m)x+(3m-4)y-3=0表示表示条互相垂直的直线,则m=__________.

4.直线x+7y-5=0分圆x 2+y 2=1所成的两部分弧长之差的绝对值是

__________.

5.直线y=kx-1与曲线y=2)2(1---x 有交点,则k 的取值范围是__________.

6.经过点A(0,5)且与直线x-2y=0, 2x+y=0都相切的圆方程为__________.

7.在直角坐标平面上,同时满足条件:y ≤3x, y ≥3

1x, x+y ≤100的整点个数是__________.

8.平面上的整点到直线5

43

5+=x y 的距离中的最小值是__________. 9.y=lg(10-mx 2)的定义域为R ,直线y=xsin(arctanm)+10的倾斜角为__________.

10.已知f(x)=x 2-6x+5,满足?íì3-£+0)()(,

0)()(y f x f y f x f 的点(x,y)构成图形的面积

为__________.

11.已知在ΔABC 边上作匀速运动的点D ,E ,F ,在t=0时分别从A ,B ,C 出发,各以一定速度向B ,C ,A 前进,当时刻t=1时,分别到达B ,C ,A 。

(1)证明:运动过程中ΔDEF 的重心不变;

(2)当ΔDEF 面积取得最小值时,其值是ΔABC 面积的多少倍? 12.已知矩形ABCD ,点C(4,4),点A 在圆O :x 2+y 2=9(x>0,y>0)上移动,且AB ,AD 两边始终分别平行于x 轴、y 轴。求矩形ABCD 面积的最小值,以及取得最小值时点A 的坐标。

13.已知直线l: y=x+b 和圆C :x 2+y 2+2y=0相交于不同两点A ,B ,点

P 在直线l 上,且满足|PA|?|PB|=2,当b 变化时,求点P 的轨迹方程。 六、联赛二试水平训练题

1.设点P(x,y)为曲线|5x+y|+|5x-y|=20上任意一点,求x 2-xy+y 2的最大值、最小值。

2.给定矩形Ⅰ(长为b ,宽为a ),矩形Ⅱ(长为c 、宽为d ),其中a

3.在直角坐标平面内给定凸五边形ABCDE ,它的顶点都是整点,求证:见图10-8,A 1,B 1,C 1,D 1,E 1构成的凸五边形内部或边界上至少有一个整点。

4.在坐标平面上,纵横坐标都是整数的点称为整点,试证:存在一个同心圆的集合,使得:(1)每个整点都在此集合的某一圆周上;(2)此集合的每个圆周上,有且只有一个整点。

5.在坐标平面上,是否存在一个含有无穷多条直线l 1,l 2,…,l n ,…的直线族,它满足条件:(1)点(1,1)∈l n ,n=1,2,3,…;(2)k n+1≥a n -b n ,其中k n+1是l n+1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,n=1,2,3,…;(3)k n k n+1≥0, n=1,2,3,….并证明你的结论。 6.在坐标平面内,一圆交x 轴正半径于R ,S ,过原点的直线l 1,l 2都与此圆相交,l 1交圆于A ,B ,l 2交圆于D ,C ,直线AC ,BD 分别交x 轴正半轴于P ,Q ,求证:

.|

|1

||1||1||1OQ OP OS OR +=+

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

初中数学竞赛辅导讲义

初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1?化简x^4r^ +厂只+ 厂九 1 + 1— (x 2)(x 3) (x 3)(x 4)1 1,1 --- — ---------- ---- 十 x 1 x 2 x 2 1,1 1 ----- 十 ------ — ----- x 3 x 3 x 4 例2. 解:原式二 i (x 1)(x 2)

x y kz(1) 解:易知:-一-= -―z= -一z = k 贝y x z ky(2) 亠z y x =2 或x+y+z=O y z kx(3) (1)+(2) +(3) 得: (k -2)(x+y+z)=0 k 若k =2贝9原式=k 3 = 8 若x + y + z =0,则原式二 k 3 =-1 例3.设 2 1, 求 x mx 1ft x 1 4 2 2 x m x 的值。 1 解:显然2 X 0,由已知x mx 1 “ =1 , x 贝y x +丄= x m + 1 4 2 2 .x m x 1 (2) x + 1) 2-2 x -m 2 2 ???原式二 一 2m 1 =(m +1) 2-2- m 2 = 2 m -1 例4.已知多项式3x3 +ax 2 +3x +1能被x2+1整除,求a的值

解: 1- a =0 二a =1 例5:设n为正整数,求证 1111 ++ …....+v 1 3 15(2n1)( 2 n 1) 2 证:左边=1(1 - 1 1-1 + ??…? +1-1 ) 23352n 12n 1 1(1-1) 22n1 1

高中数学值得推荐的辅导书 看完都上清华北大

高中数学值得推荐的辅导书看完都上清华北大 很多同学进入高中后都会想要几本好的教辅书,下面是小编推荐的高中数学最好的辅导书,希望能对大家有所帮助。 ? ?高考数学最好的辅导书 1.《高中数学精编?代数》《高中数学精编解析 几何、立体几何》郑日锋浙江教育出版社这套书上世纪八十年代就已经风靡一时了,堪称经典。之前一直是四本,后来改成了两本,内容上也有更新,目前还是四校学生争先恐后刷掉的第一套书,可见其在高中教辅之中的地位。可作为同步教辅。2.《多功能题典?高中数学》(第三版)况亦军华东师范大学 出版社该书主编况亦军为上海中学数学教研组组长,各章编写者大多为华东师范大学第二附属中学的老师,可以保证该书品质。该书非常厚(1000页),每个题目后配有详细解析,非常适合有一定基础之后再进行阅读,否则只看解析不动笔做容易造成眼高手低的状况。3.《高中五星级题库?数学(课改版)》《高中五星级题库难题解析数学(课改版)》(红皮)沈子兴上海科技教育出版社还有一套蓝皮的五星级题库不推荐给各位,因为那本书是全国教材的编写顺序,而红皮的是上海教材的编写顺序。该书为华师大二附中学生用于提高的教辅,部分五星题目达到高中联赛难度。4.《华东师大版一课一练》华东师 范大学出版社该书为部分中学同步教辅,号称改革开放以来最具影响力的300本书之一,经常遇到学生问到该书上的问题,如果学校要求做就做,不 要求做的话建议刷《精编》。5.《龙门专题高中数学》(12本专题+1思想方法)付荣强龙门书局高中教辅精五门之一(精编,五星级题库,龙门专题),这是 高中常规体系教辅材料里面少有的分专题呈现的教辅,专题之间穿插很多,综合性强,不适合作为同步教辅,当然学习能力非常强的学生可用该书自学。

高一数学竞赛培训讲义:最大公约数和最小公倍数(学生)

第三节 最大公约数 定义1 整数a 1, a 2, , a k 的公共约数称为a 1, a 2, , a k 的公约数.不全为零的整数a 1, a 2, , a k 的公约数中最大的一个叫做a 1, a 2, , a k 的最大公约数(或最大公因数),记为(a 1, a 2, , a k ). 由于每个非零整数的约数的个数是有限的,所以最大公约数是存在的,并且是正整数. 如果(a 1, a 2, , a k ) = 1,则称a 1, a 2, , a k 是互素的(或互质的);如果 (a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j , 则称a 1, a 2, , a k 是两两互素的(或两两互质的). 显然,a 1, a 2, , a k 两两互素可以推出(a 1, a 2, , a k ) = 1,反之则不然,例如(2, 6, 15) = 1,但(2, 6) = 2. 定理1 下面的等式成立: (ⅰ) (a 1, a 2, , a k ) = (|a 1|, |a 2|, , |a k |); (ⅱ) (a , 1) = 1,(a , 0) = |a |,(a , a ) = |a |; (ⅲ) (a , b ) = (b , a ); (ⅳ) 若p 是素数,a 是整数,则(p , a ) = 1或p ∣a ; (ⅴ) 若a = bq + r ,则(a , b ) = (b , r ). 由定理1可知,在讨论(a 1, a 2, , a n )时,不妨假设a 1, a 2, , a n 是正整数,以后我们就维持这一假设. 定理2 设a 1, a 2, , a k ∈Z ,记 A = { y ;y =∑=k i i i x a 1,x i ∈Z ,1 ≤ i ≤ k }. 如果y 0是集合A 中最小的正数,则y 0 = (a 1, a 2, , a k ).

高中数学竞赛基础知识讲解

高中数学竞赛基本知识集锦 广州市育才中学数学科 邓军民 整理 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 2cos 12 sin α α -± = 2 cos 12 cos α α +± = α α ααααα cos 1sin sin cos 1cos 1cos 12 tan +=-=+-± = 积化和差 ()()[]βαβαβα-++= sin sin 21 cos sin ()()[]βαβαβα--+=sin sin 21 sin cos ()()[]βαβαβα-++=cos cos 21 cos cos ()()[]βαβαβα--+-=cos cos 2 1 sin sin 和差化积 2cos 2sin 2sin sin β αβ αβα-+=+ 2sin 2cos 2sin sin β αβαβα-+=- 2cos 2cos 2cos cos β αβαβα-+=+ 2 sin 2sin 2cos cos β αβαβα-+-=- 万能公式 α αα2 tan 1tan 22sin += α α α2 2tan 1tan 12cos +-= α α α2 tan 1tan 22tan -=

三倍角公式 ()() αααααα+-=-=οο60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-=οο60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos π ππ++ 提示:乘以7 2sin 2π ,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 2 2 来个复杂的 设n 为正整数,求证 n n n i n i 21 212sin 1 += +∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x

如何学习数学竞赛

你知道数学竞赛怎么学 点击:248次,时间:2016-11-12 14:08:55 搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。 1、学习进度方面 要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。 2、入门书单 首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。 1)《新编中学数学解题方法全书》,即基础衔接书。 2)《奥数教程》 经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。) 3、提高书单 1)《奥赛小丛书》 专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。 2)《奥赛经典》 内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。 3)《命题人讲座》 适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。 其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典! 另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。 4)《数学竞赛研究教程(套装上下册)》 本书是参加数学竞赛的教练员和选手的必备用书。国内数学竞赛研究方面的权威参考书。 5)关于几何 《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。有助于深化系统自己的几何基础。 6)关于组合 推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

高一数学竞赛辅导练习题3

高一数学竞赛辅导练习题3 环县一中高一数学竞赛辅导练习题(3) 一、选择题 ,(设则( ) SxyxyTxyxy,,,,,{(,)|0},{(,)|0,0}, A B C D STS,STT,STS,STS, 1fx(),,(若的定义域为A,的定义域为B,那么( ) gxfxfx()(1)(),,,x A B ,, , , ABR,AB,AB,,3. 区间所得的象集区间为,若区间的长度比区间[,0]:2mfxxm在映射,,[,]ab[,]ab 的长度大,,则,( ) [0,]mm , , , 10 , 2.5 , , 2-1-x4.给出下列几个函数:?y= 3x-5 , ? y=-x ,? y=-(x) ,? y= log(-x), ? y=(0.5) 2其中在区间上递减的函数个数是( ) (,0),, A. 0 B. 1 C.2 D.3 5.已知集合M={2010,3,25},则M的所有子集的个数是( ) A(5 B(6 C(7 D(8 6(函数( ) yxx,,,(2)(6) A(有最小值,没有最大值, B(有最大值,没有最小值, C(有最小值,也有最大值, D(没有最小值,夜没有最大值, 7.以a,b,c顺次表示方程 x+logx=2 , x+logx =2 , x+logx=1的根,则它们的大小关系232 是 abc,,bac,,cab,,cba,, A( B( C( D(

32x,x1,xy,log(a,0且a,1);8. 下列4个函数中:?y=3x,1,? ?y,, a1,xx,1 11y,x(,)(a,0且a,1).? 其中既不是奇函数,又不是偶函数的是( ) ,x2a,1 A(? B(?? C(?? D(?? 1a,f(log),9(函数f(x)、f(x+2)均为偶函数,且当x?[0,2]时,f(x)是减函数,设b= 82f(7.5),c= f(,5),则a、b、c的大小关系是( ) abc,,acb,,bac,,cab,, A( B( C( D( 1133,,,12222A,B,xx,xx,10. 已知,,,则的值分别为( ) AB,xx,,3 ,5,25,25,5 A(, B(, 255525 C(, D(, 二、填空题: 11. 边长为2的正三角形的面积是_________. 12.在棱长为1的正方体ABCD-ABCD中,M为对角线AD上一点,N为对角线BD 上1111111的一点,则线段MN的长度的最小值是 xy,2yx,113.若2(2),并且,则 x+y= _______________. 93, yxx,,,3的最大值是_____________ ; 14.函数 x15.函数的定义域是___________ y,2log()xx,2 1f(x),f()16. 设二次函数f(x),对x?R有=25,其图象与x轴交于两点,且这两点的横2 坐标的立方和为19,则f(x)的解析式为 2f(x),ax,2ax,117(已知二次函数在区间[,3,2]上的最大值为4,则a的值为 218(a > 0,当时,函数的最小值是,1,最大值是1. 求f(x),,x,ax, bx,[,1,1]

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

相关文档
最新文档