【生物】生物化学简明教程第四版张丽萍杨建雄课后答案

【关键字】生物

1 绪论

1.生物化学研究的对象和内容是什么?

解答:生物化学主要研究:

(1)生物机体的化学组成、生物分子的结构、性质及功能;

(2)生物分子分解与合成及反应过程中的能量变化;

(3)生物遗传信息的储存、传递和表达;

(4)生物体新陈代谢的调节与控制。

2.你已经学过的课程中哪些内容与生物化学有关。

提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。3.说明生物分子的元素组成和分子组成有哪些相似的规侓。

解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基()、羧基(—COOH)、巯基(—SH)、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。

生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。

2 蛋白质化学

1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么?

解答:(1)N-末端测定法:常采用―二硝基氟苯法、Edman降解法、丹磺酰氯法。

①―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与―二硝基氟苯(―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。

②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。

③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。

④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。

(2)C―末端测定法:常采用肼解法、复原法、羧肽酶法。

肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C端氨基酸以游离形式存

在外,其他氨基酸都转变为相应的氨基酸酰肼化物。

②复原法:肽链C端氨基酸可用硼氢化锂复原成相应的α―氨基醇。肽链完全水解后,代表原来C―末端氨基酸的α―氨基醇,可用层析法加以鉴别。

③羧肽酶法:是一类肽链外切酶,专一的从肽链的C―末端开始逐个降解,释放出游离的氨基酸。被释放的氨基酸数目与种类随反应时间的而变化。根据释放的氨基酸量(摩尔数)与反应时间的关系,便可以知道该肽链的C―末端氨基酸序列。

2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少?

解答:

(1)血红蛋白:

(2)酶:

因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为:1.65%:2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。

3.指出下面pH条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点?

(1)胃蛋白酶(pI 1.0),在pH 5.0;

(2)血清清蛋白(pI 4.9),在pH 6.0;

(3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0;

解答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动;

(2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动;

(3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动;

α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。

4.何谓蛋白质的变性与沉淀?二者在本质上有何区别?

解答:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。

变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。

蛋白质变性后的表现:① 生物学活性消失;② 理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。

蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。

蛋白质的沉淀可以分为两类:

(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。

蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。

5.下列试剂和酶常用于蛋白质化学的研究中:CNBr,异硫氰酸苯酯,丹磺酰氯,脲,6mol/L HCl β-巯基乙醇,水合茚三酮,过甲酸,胰蛋白酶,胰凝乳蛋白酶,其中哪一个最适合完成以下各项任务?

(1)测定小肽的氨基酸序列。

(2)鉴定肽的氨基末端残基。

(3)不含二硫键的蛋白质的可逆变性。若有二硫键存在时还需加什么试剂?

(4)在芳香族氨基酸残基羧基侧水解肽键。

(5)在甲硫氨酸残基羧基侧水解肽键。

(6)在赖氨酸和精氨酸残基侧水解肽键。

-巯基乙醇还原二硫键;(4)胰凝乳解答:(1)异硫氰酸苯酯;(2)丹黄酰氯;(3)脲;

蛋白酶;(5)CNBr;(6)胰蛋白酶。

6.由下列信息求八肽的序列。

(1)酸水解得Ala,Arg,Leu,Met,Phe,Thr,2Val。

(2)Sanger试剂处理得DNP-Ala。

(3)胰蛋白酶处理得Ala,Arg,Thr 和Leu,Met,Phe,2Val。当以Sanger试剂处理时分别得到DNP-Ala和DNP-V al。

(4)溴化氰处理得Ala,Arg,高丝氨酸内酯,Thr,2Val,和Leu,Phe,当用Sanger试剂处理时,分别得DNP-Ala和DNP-Leu。

解答:由(2)推出N末端为Ala;由(3)推出Val位于N端第四,Arg为第三,而Thr为第二;溴化氰裂解,得出N端第六位是Met,由于第七位是Leu,所以Phe为第八;由(4),第五为Val。所以八肽为:Ala-Thr-Arg-Val-Val-Met-Leu-Phe。

7.一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。

解答:180/3.6=50圈,50×0.54=27nm,该片段中含有50圈螺旋,其轴长为27nm。

8.当一种四肽与FDNB反应后,用5.7mol/LHCl水解得到DNP-Val及其他3种氨基酸;当这四肽用胰蛋白酶水解时发现两种碎片段;其中一片用LiBH4(下标)还原后再进行酸水解,水解液内有氨基乙醇和一种在浓硫酸条件下能与乙醛酸反应产生紫(红)色产物的氨基酸。试问这四肽的一级结构是由哪几种氨基酸组成的?

解答:(1)四肽与FDNB反应后,用5.7mol/LHCl水解得到DNP-Val,证明N端为Val。(2)LiBH4还原后再水解,水解液中有氨基乙醇,证明肽的C端为Gly。

(3)水解液中有在浓H2SO4条件下能与乙醛酸反应产生紫红色产物的氨基酸,说明此氨基酸为Trp。说明C端为Gly-Trp…

(4)根据胰蛋白酶的专一性,得知N端片段为Val-Arg(Lys)…,以(1)、(2)、(3)结果可知道四肽的顺序:N-Val-Arg(Lys)-Trp-Gly-C。

9.概述测定蛋白质一级结构的基本步骤。

解答:(1)测定蛋白质中氨基酸组成。

(2)蛋白质的N端和C端的测定。

(3)应用两种或两种以上不同的水解方法将所要测定的蛋白质肽链断裂,各自得到一系列大小不同的肽段。

(4)分离提纯所产生的肽,并测定出它们的序列。

(5)从有重叠结构的各个肽的序列中推断出蛋白质中全部氨基酸排列顺序。

如果蛋白质含有一条以上的肽链,则需先拆开成单个肽链再按上述原则确定其一级结构。如是含二硫键的蛋白质,也必须在测定其氨基酸排列顺序前,拆开二硫键,使肽链分开,并确定二硫键的位置。拆开二硫键可用过甲酸氧化,使胱氨酸部分氧化成两个半胱氨磺酸。

3 核酸

1.①电泳分离四种核苷酸时,通常将缓冲液调到什么pH?此时它们是向哪极移动?移动

的快慢顺序如何? ②将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么pH?③如果用逐渐降低pH的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么?

解答:①电泳分离4种核苷酸时应取pH3.5 的缓冲液,在该pH时,这4种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP;②应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。虽然pH 11.4时核苷酸带有更多的负电荷,但pH过高对分离不利。③当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMP>AMP> GMP > UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP> AMP > UMP >GMP。

2.为什么DNA不易被碱水解,而RNA容易被碱水解?

解答:因为RNA的核糖上有2'-OH基,在碱作用下形成2',3'-环磷酸酯,继续水解产生2'-核苷酸和3'-核苷酸。DNA的脱氧核糖上无2'-OH基,不能形成碱水解的中间产物,故对碱有一定抗性。

3.一个双螺旋DNA分子中有一条链的成分[A] = 0.30,[G] = 0.24,①请推测这一条链上的[T]和[C]的情况。②互补链的[A],[G],[T]和[C]的情况。

解答:①[T] + [C] = 1–0.30–0.24 = 0.46;②[T] = 0.30,[C] = 0.24,[A] + [G] = 0.46。4.对双链DNA而言,①若一条链中(A + G)/(T + C)= 0.7,则互补链中和整个DNA分子中(A+G)/(T+C)分别等于多少?②若一条链中(A + T)/(G + C)= 0.7,则互补链中和整个DNA 分子中(A + T)/(G + C)分别等于多少?

解答:①设DNA的两条链分别为α和β则:Aα= Tβ,Tα= Aβ,Gα= Cβ,Cα= Gβ,因为:(Aα+ Gα)/(Tα+ Cα)= (Tβ+ Cβ)/(Aβ+ Gβ)= 0.7,所以互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43;在整个DNA分子中,因为A = T,G = C,所以,A + G = T + C,(A + G)/(T + C)= 1;②假设同(1),则Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+ Gβ,所以,(Aα+ Tα)/(Gα+ Cα)=(Aβ+ Tβ)/(Gβ+ Cβ)= 0.7 ;在整个DNA分子中,(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.7

5.T7噬菌体DNA(双链B-DNA)的相对分子质量为2.5×107,计算DNA链的长度(设核苷酸对的平均相对分子质量为640)。

解答:0.34 ×(2.5×107/640)= 1.3 × 104nm = 13μm。

6.如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。试计算人体DNA 的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。

解答:每个体细胞的DNA的总长度为:6.4 × 109 × 0.34nm = 2.176 × 109 nm = 2.176m,人体内所有体细胞的DNA的总长度为:2.176m×1014 = 2.176×1011km,这个长度与太阳―地球之间距离(2.2×109 km)相比为:2.176 × 1011/2.2 × 109 = 99倍,每个核苷酸重1 × 10-18g/1000 = 10-21g,所以,总DNA 6.4 × 1023 × 10-21 = 6.4 × 102 = 640g。

7.有一个X噬菌体突变体的DNA长度是15μm,而正常X噬菌体DNA的长度为17μm,计算突变体DNA中丢失掉多少碱基对?

解答:(17–15)× 103/0.34 = 5.88 × 103bp

8.概述超螺旋DNA的生物学意义。

解答:①超螺旋DNA比松弛型DNA更紧密,使DNA分子的体积更小,得以包装在细胞内;②超螺旋会影响双螺旋分子的解旋能力,从而影响到DNA与其他分子之间的相互作用;

③超螺旋有利于DNA的转录、复制及表达调控。

9.为什么自然界的超螺旋DNA多为负超螺旋?

解答:环状DNA自身双螺旋的过度旋转或旋转不足都会导致超螺旋,这是因为超螺旋将使分子能够释放由于自身旋转带来的应力。双螺旋过度旋转导致正超螺旋,而旋转不足将导致负超螺旋。虽然两种超螺旋都能释放应力,但是负超螺旋时,如果发生DNA解链(即氢链断开,部分双螺旋分开)就能进一步释放应力,而DNA转录和复制需要解链。因此自然界环状DNA采取负超螺旋,这可以通过拓扑异构酶的操作实现。

10.真核生物基因组和原核生物基因组各有哪些特点?

解答:不同点: ①真核生物DNA含量高,碱基对总数可达10 11,且与组蛋白稳定结合形成染色体,具有多个复制起点。原核生物DNA含量低,不含组蛋白,称为类核体,只有一个复制起点。②真核生物有多个呈线形的染色体;原核生物只有一条环形染色体。③真核生物DNA中含有大量重复序列,原核生物细胞中无重复序列。④真核生物中为蛋白质编码的大多数基因都含有内含子(有断裂基因);原核生物中不含内含子。⑤真核生物的RNA 是细胞核内合成的,它必须运输穿过核膜到细胞质才能翻译,这样严格的空间间隔在原核生物内是不存在的。⑥原核生物功能上密切相关的基因相互靠近,形成一个转录单位,称操纵子,真核生物不存在操纵子。⑦病毒基因组中普遍存在重叠基因,但近年发现这种情况在真核生物也不少见。相同点:都是由相同种类的核苷酸构成的的双螺旋结构,均是遗传信息的载体,均含有多个基因。

11.如何看待RNA功能的多样性?它的核心作用是什么?

解答:RNA的功能主要有: ①控制蛋白质合成;②作用于RNA转录后加工与修饰;③参与细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工;⑥可能是生物进化时比蛋白质和DNA更早出现的生物大分子。其核心作用是既可以作为信息分子又可以作为功能分子发挥作用。

12.什么是DNA变性?DNA变性后理化性质有何变化?

解答:DNA双链转化成单链的过程称变性。引起DNA变性的因素很多,如高温、超声波、强酸、强碱、有机溶剂和某些化学试剂(如尿素,酰胺)等都能引起变性。 DNA变性后的理化性质变化主要有:①天然DNA分子的双螺旋结构解链变成单链的无规则线团,生物学活性丧失;②天然的线型DNA分子直径与长度之比可达1∶10,其水溶液具有很大的黏度。变性后,发生了螺旋-线团转变,黏度显著降低;③在氯化铯溶液中进行密度梯度离心,变性后的DNA浮力密度大大增加,故沉降系数S增加;④DNA变性后,碱基的有序堆积被破坏,碱基被暴露出来,因此,紫外吸收值明显增加,产生所谓增色效应。⑤DNA分子具旋光性,旋光方向为右旋。由于DNA分子的高度不对称性,因此旋光性很强,其[a] = 150。当DNA分子变性时,比旋光值就大大下降。

13.哪些因素影响T m值的大小?

解答:影响T m的因素主要有:①G-C对含量。G-C对含3个氢键,A-T对含2个氢键,故G-C对相对含量愈高,T m亦越高(图3-29)。在0.15mol/L NaCl,0.015mol/L柠檬酸钠溶液(1×SSC)中,经验公式为:(G+C)% =(T m - 69.3)× 2.44。②溶液的离子强度。离子强度较低的介质中,T m较低。在纯水中,DNA在室温下即可变性。分子生物学研究工作中需核酸变性时,常采用离子强度较低的溶液。③溶液的pH。高pH下,碱基广泛去质子而丧失形成氢键的有力,pH大于11.3时,DNA完全变性。pH低于5.0时,DNA易脱嘌呤,对单链DNA进行电泳时,常在凝胶中加入NaOH以维持变性关态。④变性剂。甲酰胺、尿素、甲醛等可破坏氢键,妨碍碱堆积,使T m下降。对单链DNA进行电泳时,常使用上述变性剂。

14.哪些因素影响DNA复性的速度?

解答:影响复性速度的因素主要有:①复性的温度,复性时单链随机碰撞,不能形成碱基

配对或只形成局部碱基配对时,在较高的温度下两链重又分离,经过多次试探性碰撞才能形成正确的互补区。所以,核酸复性时温度不宜过低,T m-25℃是较合适的复性温度。②单链片段的浓度,单链片段浓度越高,随机碰撞的频率越高,复性速度越快。③单链片段的长度,单链片段越大,扩散速度越慢,链间错配的概率也越高。因面复性速度也越慢,即DNA 的核苷酸对数越多,复性的速度越慢,若以C0为单链的初始浓度,t为复性的时间,复性达一半时的C0t值称C0t1/2,该数值越小,复性的速度越快。④单链片段的复杂度,在片段大小相似的情况下,片段内重复序列的重复次数越多,或者说复杂度越小,越容易形成互补区,复性的速度就越快。真核生物DNA的重复序列就是复生动力学的研究发现的,DNA 的复杂度越小,复性速度越快。

15.概述分子杂交的概念和应用领域。

解答:在退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA-RNA杂合双链的过程称分子杂交。通常对天然或人工合成的DNA或RNA片段进行放射性同位素或荧光标记,做成探针,经杂交后,检测放射性同位素或荧光物质的位置,寻找与探针有互补关系的DNA或RNA。直接用探针与菌落或组织细胞中的核酸杂交,因未改变核酸所在的位置,称原位杂交技术。将核酸直接点在膜上,再与探针杂交称点杂交,使用狭缝点样器时,称狭缝印迹杂交。该技术主要用于分析基因拷贝数和转录水平的变化,亦可用于检测病原微生物和生物制品中的核酸污染状况。杂交技术较广泛的应用是将样品DNA切割成大小不等的片段,经凝胶电泳分离后,用杂交技术寻找与探针互补的DNA片段。由于凝胶机械强度差,不适合于杂交过程中较高温度和较长时间的处理,Southern 提出一种方法,将电泳分离的DNA片段从凝胶转移到适当的膜(如硝酸纤维素膜或尼龙膜)上,在进行杂交操作,称Southern印迹法,或Southern杂交技术。随后,Alwine等提出将电泳分离后的变性RNA吸印到适当的膜上再进行分子杂交的技术,被戏称为Northern印迹法,或Northern杂交。分子杂交广泛用于测定基因拷贝数、基因定位、确定生物的遗传进化关系等。Southern杂交和Northern杂交还可用于研究基因变异,基因重排,DNA多态性分析和疾病诊断。杂交技术和PCR技术的结合,使检出含量极少的DNA成为可能。促进了杂交技术在分子生物学和医学领域的广泛应用。DNA芯片技术也是以核酸的分子杂交为基础的。

16.概述核酸序列测定的方法和应用领域。

解答:DNA的序列测定目前多采用Sanger提出的链终止法,和Gilbert提出的化学法。其中链终止法经不断改进,使用日益广泛。链终止法测序的技术基础主要有:①用凝胶电泳分离DNA单链片段时,小片段移动,大片段移动慢,用适当的方法可分离分子大小仅差一个核苷酸的DNA片段。②用合适的聚合酶可以在试管内合成单链DNA模板的互补链。反应体系中除单链模板外,还应包括合适的引物,4种脱氧核苷三磷酸和若干种适量的无机离子。如果在4个试管中分别进行合成反应,每个试管的反应体系能在一种核苷酸处随机中断链的合成,就可以得到4套分子大小不等的片段,如新合成的片段序列为-CCATCGTTGA-,在A处随机中断链的合成,可得到-CCA和-CCA TCGTA两种片段,在G处中断合成可得到-CCATCG和-CCATCGTTG两种片段。在C和T处中断又可以得到相应的2套片段。用同位素或荧光物质标记这4套新合成的链,在凝胶中置于4个泳道中电泳,检测这4套片段的位置,即可直接读出核苷酸的序列。在特定碱基处中断新链合成最有效的办法,是在上述4个试管中按一定比例分别加入一种相应的2',3'-双脱氧核苷三磷酸(ddNTP),由于ddNTP 的3'位无-OH,不可能形成磷酸二酯键,故合成自然中断。如上述在A处中断的试管内,既有dA TP,又有少量的ddATP,新合成的-CCA链中的A如果是ddAMP,则链的合成中断,如果是dAMP,则链仍可延伸。因此,链中有几个A,就能得到几种大小不等的以A为末端的片段。如果用放射性同位素标记新合成的链,则4个试管中新合成的链在凝胶的4个泳道

电泳后,经放射自显影可检测带子的位置,由带子的位置可以直接读出核苷酸的序列。采用T7测序酶时,一次可读出400多个核苷酸的序列。近年采用4种射波长不同的荧光物质分别标记4种不同的双脱氧核苷酸,终止反应后4管反应物可在同一泳道电泳,用激光扫描收集电泳信号,经计算机处理可将序列直接打印出来。采用毛细管电泳法测序时,这种技术一次可测定700个左右核苷酸的序列,一台仪器可以有几十根毛细管同时进行测序,且电泳时间大大缩短,自动测序技术的进步加快了核酸测序的步伐,现已完成了包括人类在内的几十个物种的基因组测序。

RNA序列测定最早采用的是类似蛋白质序列测定的片段重叠法,Holley用此法测定酵母丙氨酸tRNA序列耗时达数年之久。随后发展了与DNA测序类似的直读法,但仍不如DNA 测序容易,因此,常将RNA反转录成互补DNA(cDNA),测定cDNA序列后推断RNA的序列,目前16S rRNA 1 542 b的全序列测定,23S rRNA 2 904 b的全序列测定,噬菌体MS2 RNA 3 569 b的全序列测定均已完成。

4 糖类的结构与功能

1.书写α-D-吡喃葡萄糖,L- (-)葡萄糖,β-D- (+)吡喃葡萄糖的结构式,并说明D、L;+、-;α、β各符号代表的意义。

解答:书写单糖的结构常用D、L;d 或(+)、l或(-);α、β表示。D-、L-是人为规定的单糖的构型。是以D-、L-甘油醛为参照物,以距醛基最远的不对称碳原子为准, 羟基在左面的为L构型, 羟基在右的为D构型。单糖由于具有不对称碳原子,可使平面偏振光的偏振面发生一定角度的旋转,这种性质称为旋光性。其旋转角度称为旋光度,偏振面向左旋转称为左旋,向右则称为右旋。d 或(+)表示单糖的右旋光性,l或(-)表示单糖的左旋光性。

2.写出下列糖的结构式:α-D-葡萄糖-1-磷酸,2-脱氧-β-D-呋喃核糖,α-D-呋喃果糖,D-甘油醛-3-磷酸,蔗糖,葡萄糖醛酸。

解答:略。

3.已知某双糖能使本尼地(Benedict)试剂中的Cu2+氧化成Cu2O的砖红色沉淀,用β-葡糖糖

β-D-吡喃葡糖糖,将此双糖甲基化后再水解将得到2,3,4,6-四氧甲苷酶可将其水解为两分子

基-D-吡喃葡糖糖和1,2,3,6-四氧甲基-D-吡喃葡糖糖,试写出此双糖的名称和结构式。

解答:蔗糖双糖能使本尼地(Benedict)试剂中的Cu2+氧化成Cu2O的砖红色沉淀,说明该双糖具还原性,含有半缩醛羟基。用β―葡糖苷酶可将其水解为两分子β-D-吡喃葡糖, 说明该双糖是由β-糖苷键构成的。将此双糖甲基化后再水解将得到2,3,4,6-四氧甲基-D-吡喃葡糖糖和1,2,3,6-四氧甲基-D-吡喃葡糖, 糖基上只有自由羟基才能被甲基化,说明β-葡糖(1→4)葡糖构成的为纤维二糖。

4.根据下列单糖和单糖衍生物的结构:

(A) (B) (C) (D)

(1)写出其构型(D或L)和名称;(2)指出它们能否还原本尼地试剂;(3) 指出哪些能发生成苷反应。

解答:(1) 构型是以D-,L-甘油醛为参照物,以距醛基最远的不对称碳原子为准, 羟基在左面的为L构型, 羟基在右的为D构型。A、B、C为D构型,D为L构型。

(2) B、C、D均有醛基具还原性,可还原本尼地试剂。A为酮糖,无还原性。

(3) 单糖的半缩醛上羟基与非糖物质(醇、酚等)的羟基形成的缩醛结构称为糖苷, B,C,D均能发生成苷反应。

5.透明质酸是细胞基质的主要成分,是一种黏性的多糖,分子量可达100 000,由两单糖衍生物的重复单位构成,请指出该重复单位中两组分的结构名称和糖苷键的结构类型。

解答:透明质酸的两个重复单位是由β―D―葡萄糖醛酸和N-乙酰氨基葡萄糖通过β-1,3糖苷键连接而成。

6.纤维素和淀粉都是由1→4糖苷键连接的D―葡萄糖聚合物,相对分子质量也相当,但它们在物理性质上有很大的不同,请问是什么结构特点造成它们在物理性质上的如此差别? 解释它们各自性质的生物学优点。

解答:淀粉是葡萄糖聚合物,既有α→1,4 糖苷键,也有α→1,6糖苷键,为多分支结构。直链淀粉分子的空间构象是卷曲成螺旋形的,每一回转为6个葡萄糖基,淀粉在水溶液中混悬时就形成这种螺旋圈。支链淀粉分子中除有α-(1,4)糖苷键的糖链外,还有α-(1,6)糖苷键连接的分支处,每一分支平均约含20~30个葡萄糖基,各分支也都是卷曲成螺旋。螺旋构象是碘显色反应的必要条件。碘分子进入淀粉螺旋圈内,糖游离羟基成为电子供体,碘分子成为电子受体,形成淀粉碘络合物,呈现颜色。其颜色与糖链的长度有关。当链长小于6个葡萄糖基时,不能形成一个螺旋圈,因而不能呈色。当平均长度为20个葡萄糖基时呈红色,红糊精、无色糊精也因而得名。大于60个葡萄糖基的直链淀粉呈蓝色。支链淀粉相对分子质量虽大,但分支单位的长度只有20~30个葡萄糖基,故与碘反应呈紫红色。纤维素虽然也是由D-吡喃葡萄糖基构成,但它是以β-(1,4)糖苷键连接的一种没有分支的线性分子,它不卷曲成螺旋。纤维素分子的链与链间,能以众多氢键像麻绳样拧在一起,构成坚硬的不溶于水的纤维状高分子(也称纤维素微晶束),构成植物的细胞壁。人和哺乳动物体内没有纤维素酶(cellulase),因此不能将纤维素水解成葡萄糖。虽然纤维素不能作为人类的营养物,但人类食品中必须含纤维素。因为它可以促进胃肠蠕动、促进消化和排便。

7.说明下列糖所含单糖的种类、糖苷键的类型及有无还原性?

(1)纤维二糖(2)麦芽糖

(3)龙胆二糖(4)海藻糖

(5)蔗糖(6)乳糖

解答:(1)纤维二糖含葡萄糖,β→1,4 糖苷键,有还原性。

(2)麦芽糖含葡萄糖,α→1,4 糖苷键,有还原性。

(3)龙胆二糖含葡萄糖,β→1,6 糖苷键,有还原性。

(4)海藻糖含葡萄糖,α→1,1 糖苷键,无还原性。

(5)蔗糖含葡萄糖和果糖,α→1,2糖苷键,无还原性。

(6)乳糖含葡萄糖和半乳糖,α→1,4糖苷键,有还原性。

8.人的红细胞质膜上结合着一个寡糖链,对细胞的识别起重要作用。被称为抗原决定基团。根据不同的抗原组合,人的血型主要分为A型、B型、AB型和O型4类。不同血型的血液互相混合将发生凝血,危及生命。

X

已知4种血型的差异仅在X位组成成分的不同。请指出不同血型(A型、B型、AB型、O 型)X位的糖基名称。

解答:A型X位是N-乙酰氨基-α-D-半乳糖;

B型X位是α-D-半乳糖;

AB型X位蒹有A型和B型的糖;

O型X位是空的。

9.请写出下列结构式:

(1) α―L ―岩藻糖 (2)α―D ―半乳糖

(3) N ―乙酰氨基―α―D ―葡萄糖 (4) N ―乙酰氨基―α―D ―半乳糖胺

解答:略。

10.随着分子生物学的飞速发展,生命的奥秘正在逐渐被揭示。大量的研究已表明,各种错综复杂的生命现象的产生和疾病的形成过程均与糖蛋白的糖链有关。请阅读相关资料,列举你感兴趣的糖的生物学功能。

解答:略。

5 脂类化合物和生物膜

1.简述脂质的结构特点和生物学作用。

解答:(1)脂质的结构特点:脂质是生物体内一大类不溶于水而易溶于非极性有机溶剂的有机化合物,大多数脂质的化学本质是脂肪酸和醇形成的酯及其衍生物。脂肪酸多为4碳以上的长链一元羧酸,醇成分包括甘油、鞘氨醇、高级一元醇和固醇。脂质的元素组成主要为碳、氢、氧,此外还有氮、磷、硫等。

(2)脂质的生物学作用:脂质具有许多重要的生物功能。脂肪是生物体贮存能量的主要形式,脂肪酸是生物体的重要代谢燃料,生物体表面的脂质有防止机械损伤和防止热量散发的作用。磷脂、糖脂、固醇等是构成生物膜的重要物质,它们作为细胞表面的组成成分与细胞的识别、物种的特异性以及组织免疫性等有密切的关系。有些脂质(如萜类化合物和固醇等)还具有重要生物活性,具有维生素、激素等生物功能。脂质在生物体中还常以共价键或通过次级键与其他生物分子结合形成各种复合物,如糖脂、脂蛋白等重要的生物大分子物质。

2.概述脂肪酸的结构和性质。

解答:(1)脂肪酸的结构:脂肪酸分子为一条长的烃链(“尾”)和一个末端羧基(“头”)组成的羧酸。烃链以线性为主,分枝或环状的为数甚少。根据烃链是否饱和,可将脂肪酸分为饱和脂肪酸和不饱和脂肪酸。

(2)脂肪酸的性质:

①脂肪酸的物理性质取决于脂肪酸烃链的长度和不饱和程度。烃链越长,非极性越强,溶解度也就越低。

②脂肪酸的熔点也受脂肪酸烃链的长度和不饱和程度的影响。

③脂肪酸中的双键极易被强氧化剂,如H 2O 2、超氧阴离子自由基(2O _

˙

)、羟自由基(·OH )

等所氧化,因此含不饱和脂肪酸丰富的生物膜容易发生脂质过氧化作用,从而继发引起膜蛋白氧化,严重影响膜的结构和功能。

④脂肪酸盐属于极性脂质,具有亲水基(电离的羧基)和疏水基(长的烃链),是典型的两亲性化合物,属于离子型去污剂。

⑤必需脂肪酸中的亚油酸和亚麻酸可直接从植物食物中获得,花生四烯酸则可由亚油酸在体内转变而来。它们是前列腺素、血栓噁烷和白三烯等生物活性物质的前体。

3.概述磷脂、糖脂和固醇类的结构、性质和生物学作用

解答:

Ⅰ. 磷脂包括甘油磷脂和鞘磷脂两类,它们主要参与细胞膜系统的组成,少量存在于其他部位。

(1)甘油磷脂的结构:甘油磷脂是由sn-甘油-3-磷酸衍生而来,分子中甘油的两个醇羟基与脂肪酸成酯,第三个醇羟基与磷酸成酯或磷酸再与其他含羟基的物质(如胆碱、乙醇胺、丝氨酸等醇类衍生物)结合成酯。

(2)甘油磷脂的理化性质:

①物理性质:甘油磷脂脂双分子层结构在水中处于热力学的稳定状态,构成生物膜的结构基

本特征之一

②化学性质:a. 水解作用:在弱碱溶液中,甘油磷脂水解产生脂肪酸的金属盐。如果用强碱水解,甘油磷脂水解生成脂肪酸盐、醇(X―OH)和磷酸甘油。b. 氧化作用:与三酰甘油相似,甘油磷脂中所含的不饱和脂肪酸在空气中能被氧化生成过氧化物,最终形成黑色过氧化物的聚合物。c. 酶解作用:甘油磷脂可被各种磷脂酶(PLA)专一水解。

(3)鞘磷脂即鞘氨醇磷脂,在高等动物的脑髓鞘和红细胞膜中特别丰富,也存在于许多植物种子中。鞘磷脂由鞘氨醇、脂肪酸和磷脂酰胆碱(少数磷脂酰乙醇胺)组成。

Ⅱ. 糖脂是指糖基通过其半缩醛羟基以糖苷键与脂质连接的化合物。糖脂可分为鞘糖脂、甘油糖脂以及由固醇衍生的糖脂,其中鞘糖脂和甘油糖脂是膜脂的主要成分。

(1)鞘糖脂是神经酰胺的1位羟基被糖基化形成的糖苷化合物。依据糖基是否含有唾液酸或硫酸基成分,鞘糖脂又可分为中性鞘糖脂和酸性鞘糖脂。

①中性鞘糖脂:又称脑苷脂,是由神经酰胺的C1上的羟基与一单糖分子(半乳糖、葡萄糖等)以糖苷键结合而成,不含唾液酸成分。中性鞘糖脂一般为白色粉状物,不溶于水、乙醚,溶于热乙醇、热丙酮、吡啶及苯等,性质稳定,不被皂化。它们不仅是血型抗原,而且与组织和器官的特异性,细胞之间的识别有关。

②酸性鞘糖脂:糖基部分含有唾液酸或硫酸基的鞘糖脂称为酸性鞘糖脂。糖基部分含有唾液酸的鞘糖脂常称神经节苷脂,是最复杂的一类甘油鞘脂,由神经酰胺与结构复杂的寡糖结合而成,是大脑灰质细胞膜的组分之一,也存在于脾、肾及其他器官中。

(2)甘油糖脂是糖基二酰甘油,它是二酰甘油分子sn-3位上的羟基与糖基以糖苷键连接而成。甘油糖脂主要存在于植物和微生物中。植物的叶绿体和微生物的质膜含有大量的甘油糖脂。它可能在神经髓鞘形成中起作用。

Ⅲ. 固醇类也称甾类,所有固醇类化合物都是以环戊烷多氢菲为核心结构,因羟基的构型不同,可有α及β两型。

胆固醇(也称胆甾醇)是一种重要的甾醇类物质,一种环戊烷多氢菲的衍生物。是动物组织中含量最丰富的固醇类化合物,有游离型和酯型两种形式。存在于一切动物细胞中,以脑、神经组织及肾上腺中含量特别丰富,其次为肝、肾、脾和皮肤及脂肪组织。

4.生物膜由哪些脂质化合物组成的?各有何理化性质?

解答:组成生物膜的脂质主要包括磷脂、固醇及糖脂。

(1)磷脂:

①甘油磷脂,是生物膜的主要成分。是由sn-甘油-3-磷酸分子中甘油的两个醇羟基与脂肪酸成酯,第三个醇羟基与磷酸成酯或磷酸再与其他含羟基的物质(如胆碱、乙醇胺、丝氨酸等醇类衍生物)结合成酯。

物理性质:纯的甘油磷脂是白色蜡状固体,大多溶于含少量水的非极性溶剂中。用氯仿—甲醇混合溶剂很容易将甘油磷脂从组织中提取出来。这类化合物又称为两性脂质或称极性脂质,具有极性头和非极性尾两个部分。

化学性质:a. 水解作用:在弱碱溶液中,甘油磷脂水解产生脂肪酸的金属盐。强碱水解,生成脂肪酸盐、醇(X―OH)和磷酸甘油。b. 氧化作用:甘油磷脂中所含的不饱和脂肪酸在空气中能被氧化生成过氧化物,最终形成黑色过氧化物的聚合物。c. 酶解作用:甘油磷脂可被各种磷脂酶(PLA)专一水解。

②鞘磷脂(SM):鞘磷脂由鞘氨醇、脂肪酸和磷脂酰胆碱(少数为磷脂酰乙醇胺)组成。鞘磷脂为白色晶体,性质稳定,不溶于丙酮和乙醚,而溶于热乙醇中,具两性解离性质。(2)固醇:高等植物的固醇主要为谷甾醇和豆甾醇。动物细胞膜的固醇最多的是胆固醇。胆固醇分子的一端有一极性头部基团羟基因而亲水,分子的另一端具有羟链及固醇的环状结构而疏水。因此固醇与磷脂类化合物相似也属于两性分子。

物理性质:胆固醇为白色斜方晶体,无味、无臭,熔点为148.5℃,高度真空条件下能被蒸馏。胆固醇不溶于水,易溶于乙醚、氯仿、苯、丙酮、热乙醇、醋酸乙酯及胆汁酸盐溶液中。介电常数高,不导电。

化学性质:胆固醇C3上的羟基易与高级脂肪酸(如软脂酸、硬脂酸及油酸等)结合形成胆固醇酯。胆固醇的双键可与氢、溴、碘等发生加成反应。胆固醇可被氧化成一系列衍生物。胆固醇易与毛地黄糖苷结合而沉淀,这一特性可以用于胆固醇的定量测定。胆固醇的氯仿溶液与醋酸酐和浓硫酸反应,产生蓝绿色(Liebermann―Burchard反应)。

(3)糖脂:是指糖基通过其半缩醛羟基以糖苷键与脂质连接的化合物。鞘糖脂和甘油糖脂是膜脂的主要成分。

①鞘糖脂:依据糖基是否含有唾液酸或硫酸基成分,鞘糖脂又可分为中性鞘糖脂和酸性鞘糖脂。中性鞘糖脂,是非极性的。鞘糖脂的疏水尾部伸入膜的脂双层,极性糖基露在细胞表面,它们不仅是血型抗原,而且与组织和器官的特异性,细胞之间的识别有关。中性鞘糖脂一般为白色粉状物,不溶于水、乙醚.溶于热乙醇、热丙酮、吡啶及苯等,性质稳定,不被皂化。酸性鞘糖脂,糖基部分含有唾液酸或硫酸基的鞘糖脂。糖基部分含有唾液酸的鞘糖脂常称神经节苷脂,不溶于乙醚、丙酮,微溶于乙醇,易溶于氯仿和乙醇的混合液。

②甘油糖脂:是糖基二酰甘油,它是二酰甘油分子sn-3位上的羟基与糖基以糖苷键连接而成。甘油糖脂主要存在于植物和微生物中。植物的叶绿体和微生物的质膜含有大量的甘油糖脂。在哺乳动物组织中也检测出了半乳糖基甘油酯,可能在神经髓鞘形成中起作用。

5.何为必需脂肪酸?哺乳动物体内所需的必需脂肪酸都有哪些?

解答:哺乳动物体内能够自身合成饱和及单不饱和脂肪酸,但不能合成机体必需的亚油酸、亚麻酸和花生四烯酸等多不饱和脂肪酸。我们将这些机体生长必需的而自身不能合成,必须由膳食提供的脂肪酸称为必需脂肪酸。

6.何为生物膜?主要组成是什么?各有何作用?

解答:任何细胞都以一层薄膜将其内容物与环境分开,这层薄膜称为细胞的质膜。此外大多数细胞中还有许多内膜系统,它们组成具有各种特定功能的亚细胞结构和细胞器如细胞核、线粒体、内质网、溶酶体、高尔基体、过氧化酶体等,在植物细胞中还有叶绿体。所有这些膜虽然组分和功能不同,但在电镜下却表现出大体相同的形态、厚度6~9nm的3片层结构。这样细胞的外周膜和内膜系统称为“生物膜”。

(1)膜脂:其中磷脂、糖脂、固醇等脂质物质都属于两性分子。当磷脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分子层结构的封闭囊泡,通称为脂质体。脂质体的形成将细胞内外环境分开。膜脂不但是构成生物膜的重要物质。而且与细胞识别、种的特异性、组织免疫性等有密切的关系。

(2)膜蛋白:对物质代谢(酶蛋白)、物质传送、细胞运动、信息的接受与传递、支持与保护均有重要意义。

7.一些药物必须在进入活细胞后才能发挥药效,但它们中大多是带电荷或有极性的,因此不能靠被动扩散跨膜。人们发现利用脂质体运输某些药物进入细胞是很有效的办法,试解释脂质体是如何发挥作用的。

解答:脂质体是脂双层膜组成的封闭的、内部有空间的囊泡。离子和极性水溶性分子(包括许多药物)被包裹在脂质体的水溶性的内部空间,负载有药物的脂质体可以通过血液运输,然后与细胞的质膜相融合将药物释放入细胞内部。

6 酶

1.作为生物催化剂,酶最重要的特点是什么?

解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。

2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶:

磷酸葡糖异构酶(phosphoglucose isomerase)

碱性磷酸酶(alkaline phosphatase)

●肌酸激酶(creatine kinase)

❍甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase)

⏹琥珀酰―CoA合成酶(succinyl-CoA synthetase)

☐柠檬酸合酶(citrate synthase)

☐葡萄糖氧化酶(glucose oxidase)

❑谷丙转氨酶(glutamic-pyruvic transaminase)

❒蔗糖酶(invertase)

♦ T4 RNA 连接酶(T4 RNA ligase)

解答:前两个问题参考本章第3节内容。

异构酶类;

水解酶类;

●转移酶类;

❍氧化还原酶类中的脱氢酶;

⏹合成酶类;

☐裂合酶类;

☐氧化还原酶类中的氧化酶;

❑转移酶类;

❒水解酶类;

♦合成酶类(又称连接酶类)。

3.什么是诱导契合学说,该学说如何解释酶的专一性?

解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。4.阐述酶活性部位的概念、组成与特点。

解答:参考本章第5节内容。

5.经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的添加剂。接下来,你用定点诱变的方法研究了组成该酶的某些氨基酸残基对酶活性的影响作用:(1)你将第65位的精氨酸突变为谷氨酸,发现该酶的底物专一性发生了较大的改变,试解释原因;

(2)你将第108位的丝氨酸突变为丙氨酸,发现酶活力完全失去,试解释原因;

(3)你认为第65位的精氨酸与第108位的丝氨酸在酶的空间结构中是否相互靠近,为什么?解答:(1)第65位的氨基酸残基可能位于酶活性部位中的底物结合部位,对酶的专一性有较大影响,当该氨基酸残基由精氨酸突变为谷氨酸后,其带电性质发生了改变,不再具有与原底物之间的互补性,导致酶的专一性发生改变。

(2)第108位的丝氨酸残基应位于酶活性部位的催化部位,是决定酶是否有活力的关键氨基酸,通常它通过侧链上的羟基起到共价催化的功能,当该残基突变为丙氨酸后,侧链羟基被氢取代,不能再起原有的共价催化作用,因此酶活力完全失去。

(3)第65位的精氨酸与第108位的丝氨酸在酶的空间结构中应相互靠近,因为这两个氨基

酸残基都位于酶的活性部位,根据酶活性部位的特点,参与组成酶活性部位的氨基酸残基在酶的空间结构中是相互靠近的。

6.酶具有高催化效率的分子机理是什么?

解答:酶具有高催化效率的分子机理是:酶分子的活性部位结合底物形成酶―底物复合物,在酶的帮助作用下(包括共价作用与非共价作用),底物进入特定的过渡态,由于形成此过渡态所需要的活化能远小于非酶促反应所需要的活化能,因而反应能够顺利进行,形成产物并释放出游离的酶,使其能够参与其余底物的反应。

7.利用底物形变和诱导契合的原理,解释酶催化底物反应时,酶与底物的相互作用。

解答:当酶与底物互相接近时,在底物的诱导作用下,酶的构象发生有利于底物结合的变化,与此同时,酶中某些基团或离子可以使底物分子中围绕其敏感键发生形变。酶与底物同时发生变化的结果是酶与底物形成一个互相契合的复合物,并进一步转换成过渡态形式,在过渡态形式中,酶活性部位的构象与底物过渡态构象十分吻合,从而降低活化能,增加底物的反应速率。

8.简述酶促反应酸碱催化与共价催化的分子机理。

解答:在酶促反应酸碱催化中,酶活性部位的一些功能基团可以作为广义酸给出质子(例如谷氨酸残基不带电荷的侧链羧基、赖氨酸残基带正电荷的侧链氨基等),底物结合质子,形成特定的过渡态,由于形成该过渡态所需活化能相比于非酶促反应更低,因此反应速率加快;另外一些功能基团可以作为广义碱从底物接受质子(例如谷氨酸残基带负电荷的侧链羧基、赖氨酸残基不带电荷的侧链氨基等),底物失去质子后,形成过渡态所需的活化能比非酶促反应低,因此反应速率加快。

在酶促反应共价催化中,酶活性部位的一些功能基团作为亲核试剂作用于底物的缺电子中心,或者作为亲电试剂作用于底物的负电中心,导致酶―底物共价复合物的形成,该共价复合物随后被第二种底物(在水解反应中通常是水分子)攻击,形成产物与游离酶。由于该共价复合物形成与分解的反应所需活化能均比非酶促反应低,因此反应速率被加快。

9.解释中间络合物学说和稳态理论,并推导修正后的米氏方程。

解答:参考本章第6节内容。

10.乙醇脱氢酶催化如下反应:

(1)已知反应体系中NADH在340nm有吸收峰,其他物质在该波长处的吸光度均接近于零,请设计一种测定酶活力的方法。

(2)如何确定在实验中测得的酶促反应速率是真正的初速率?

(3)在实验中使用了一种抑制剂,下表中是在分别存在与不存在抑制剂I的情况下测定的对应不同底物浓度的酶促反应速率,请利用表中的数据计算其各自对应的K m与V max值,并判断抑制剂的类型。

[S]/(mmol/L) v/ (μmol⋅L-1⋅min-1)

[I] = 0 [I] = 10 mmol/L

20 5.263 3.999

15 5.001 3.636

10 4.762 3.222

5 4.264 2.115

2.5

3.333 1.316

1.6

2.77 0.926

解答:(1)选择合适的底物浓度(NAD+与乙醇)与缓冲体系,取一定体积的底物溶液(如1ml)加入石英比色杯,加入适量酶,迅速混合后,放入紫外/可见光分光光度计的样品室内,测定反应体系在340 nm吸光度随时间的变化曲线。利用NADH的摩尔吸光系数(可从相关

文献查到,或用已知浓度的NADH溶液自行测定),计算出单位时间内NADH的增加量,用于表示酶活力。

(2)如果在选取的测量时间范围内,反应体系在340 nm吸光度随时间的变化曲线接近一条直线的形状,则表明反应速率在此时间段内保持不变,可用来代表反应初速率。

(3)用

抑制剂的类型:竞争性可逆抑制剂。

11.对于一个符合米氏方程的酶,当[S]=3K m,[I]=2K I时(I为非竞争性抑制剂),则υ/V max 的数值是多少(此处V max指[I]=0时对应的最大反应速率)?

解答:利用非竞争性抑制剂的动力学方程计算:

其中α = 1+[I]/K i = 3,则

所以,υ/V max=0.25。

12.试通过一种反竞争性抑制剂的动力学分析解释其抑制常数K I在数值上是否可能等于该抑制剂的IC50(IC50即酶的活力被抑制一半时的抑制剂浓度,假设酶浓度与底物浓度均固定不变)。

解答:令v0为不存在抑制剂时的酶促反应速率,v i是存在反竞争性抑制剂时的反应速率,则当[I]=IC50时,酶活力被抑制一半,v i=v0/2。

由于

因此

K m = (α-2)[S]

如果K I在数值上等于IC50,则α = 2,α-2 = 0,K m = 0,而实际上,K m并不为零。因此K I 在数值上不可能等于IC50。

13.在生物体内存在很多通过改变酶的结构从而调节其活性的方法,请列举这些方法并分别举例说明。

解答:(1)别构调控:寡聚酶分子与底物或非底物效应物可逆地非共价结合后发生构象的改变,进而改变酶活性状态,从而使酶活性受到调节。例如天冬氨酸转氨甲酰酶的部分催化肽链结合底物后,使酶的整体构象发生改变,提高了其他催化肽链与底物的亲和性,CTP可以与该酶的调节肽链结合,导致酶构象发生改变,降低了催化肽链与底物的亲和性,使酶活力降低,起别构抑制剂的作用。

(2)酶原的激活:在蛋白水解酶的专一作用下,没有活性的酶原通过其一级结构的改变,导致其构象发生改变,形成酶的活性部位,变成有活性的酶,这是一种使酶获得活性的不可逆调节方法。例如在小肠内,无催化活性的胰凝乳蛋白酶原在胰蛋白酶的作用下,特定肽键被断裂,由一条完整的肽链被水解为三段肽链,并发生构象的改变,形成活性部位,产生蛋白水解酶活性。

(3)可逆的共价修饰:由其他的酶(如激酶、磷酸酶等)催化共价调节酶进行共价修饰或去除修饰基团,使其结构发生改变,从而在活性形式和非活性形式之间相互转变,以调节酶的活性。例如糖原磷酸化酶可以两种形式存在,一种是Ser14被磷酸化的、高活力的糖原磷酸化酶a,一种是非磷酸化的、低活力的糖原磷酸化酶b,在磷酸化酶激酶的催化作用下,糖原磷酸化酶b的Ser14被磷酸化,形成高活力的糖原磷酸化酶a;在磷酸化酶磷酸酶的催化作用下,糖原磷酸化酶a的Ser14-PO32-被脱磷酸化,形成低活力的糖原磷酸化酶b。(4)对寡聚酶活性的调节可以通过改变其四级结构来进行,这种作用既包括使无活性的寡

聚体解离,使部分亚基获得催化活性,也包括使无活性的单体聚合形成有催化活性的寡聚体。前者的例子是蛋白激酶A,该酶由2个调节亚基与2个催化亚基组成,是没有酶活性的寡聚酶,胞内信使cAMP与调节亚基结合可导致寡聚酶解离成一个调节亚基复合体和两个催化亚基,此时自由的催化亚基可获得酶活性。后者的例子是表皮生长因子受体,其在细胞膜上通常以无活性的单体存在,当作为信使的表皮生长因子结合到受体的胞外部分之后,两个单体结合形成二聚体,从而使酶被激活。

14.以天冬氨酸转氨甲酰酶为例解释蛋白质功能的别构调控。

解答:天冬氨酸转氨甲酰酶(A TCase)的调控属于酶的别构调控。ATCase是寡聚酶,由多个催化亚基和调节亚基构成。催化亚基可结合底物,具有催化作用,调节亚基可结合非底物分子效应物。ATCase以及该酶的每个亚基、每个活性部位具有两种构象状态,一种与底物有高亲和力(T态),一种与底物有低亲和力(R态)。

当位于ATCase催化亚基的某个活性部位结合底物分子后,其构象发生改变,构象改变的信息通过各亚基内和亚基之间的相互作用传递到其他活性部位,使其构象改变,增加了它与其他底物分子的亲和力,并最终影响了酶的总活性状态。这种别构调控使A TCase的[S]对v的动力学曲线不是双曲线,而是S型曲线。

当位于ATCase调节亚基的调节部位结合非底物效应物CTP后,CTP的结合引起ATCase构象的变化,使ATCase构象向对底物有低亲和力的T态改变,降低了ATCase与底物的亲和力,导致酶活性降低,CTP是别构抑制剂(负效应物)。

当位于ATCase调节亚基的调节部位结合非底物效应物A TP后,A TP的结合引起ATCase构象的变化,使ATCase构象向对底物有低亲和力的R态改变,增加了ATCase与底物的亲和力,导致酶活性升高,CTP是别构激活剂(正效应物)。

ATP和CTP对ATCase的别构调控均具有一定的生理意义,可用于对生物的新陈代谢、基因表达等进行调节。

15.当加入较低浓度的竞争性抑制剂于别构酶的反应体系中时,往往观察到酶被激活的现象,请解释这种现象产生的原因。

解答:在有少量竞争性抑制剂存在时,抑制剂与别构酶(通常为寡聚酶)的部分活性部位结合,引起酶构象变化,此作用等同于底物的正协同同促效应,从而使酶的整体活性提高。16.酶原激活的机制是什么?该机制如何体现“蛋白质一级结构决定高级结构”的原理?解答:酶原激活的机制是在相应的蛋白水解酶的作用下,原本没有催化功能的酶原在特定肽键处断裂,一级结构发生变化,从而导致其高级结构变化,形成活性部位,具备了特定的催化功能。这种变化是一种不可逆的过程。

在酶原激活的机制中,由于高级结构的改变是由于一级结构的改变造成的,因此这说明了不同的一级结构可导致不同高级结构的产生,这是“蛋白质一级结构决定高级结构”原理的体现。

7 维生素

1.什么是维生素?列举脂溶性维生素与水溶性维生素的成员。

解答:维生素的科学定义是参与生物生长发育与代谢所必需的一类微量小分子有机化合物。脂溶性维生素主要包括维生素A、维生素D、维生素E、维生素K等,水溶性维生素主要包括维生素B族(维生素B1、维生素B2、维生素PP、维生素B6、维生素B12、叶酸、泛酸、生物素)、硫辛酸和维生素C。

2.为什么维生素D可数个星期补充一次,而维生素C必须经常补充?

解答:维生素D是脂溶性的维生素,可以贮存在肝等器官中。维生素C是水溶性的,不能贮存,所以必须经常补充。

3.维生素A主要存在于肉类食物中,为什么素食者并不缺乏维生素A?

解答:维生素A可在人体内由植物性食物中的β―胡萝卜素转化而成。

4.将下面列出的酶、辅酶与维生素以短线连接。

解答:

5.在生物体内起到传递电子作用的辅酶是什么?

解答:NAD+、NADP+、FMN、FAD。

6.试述与缺乏维生素相关的夜盲症的发病机理。

解答:视网膜上负责感受光线的视觉细胞分两种:一种是圆锥形的视锥细胞,一种是圆柱形的视杆细胞。视锥细胞感受强光线,而视杆细胞则感受弱光的刺激,使人在光线较暗的情况下也能看清物体。在视杆细胞中,11―顺视黄醛与视蛋白组成视紫红质。当杆状细胞感光时,视紫红质中的11―顺视黄醛在光的作用下转变成全反视黄醛,并与视蛋白分离,视黄醛分子构型的改变可导致视蛋白分子构型发生变化,最终诱导杆状细胞产生与视觉相关的感受器电位。全反式视黄醛通过特定的途径可重新成为11―顺视黄醛,与视蛋白组合成为视紫红质,但是在该视循环中部分全反视黄醛会分解损耗,因此需要经常补充维生素A。当食物中缺乏维生素A时,必然引起11―顺视黄醛的补充不足,视紫红质合成量减少,导致视杆细胞对弱光敏感度下降,暗适应时间延长,出现夜盲症状。

7.试述与缺乏维生素相关的脚气病的发病机理,为什么常吃粗粮的人不容易得脚气病?

解答:脚气病是一种由于体内维生素B1不足所引起的以多发性周围神经炎为主要症状的营养缺乏病,硫胺素在体内可转化成硫胺素焦磷酸,后者作为辅酶参与糖代谢中丙酮酸、α―酮戊二酸的氧化脱羧作用,所以,缺乏维生素B1时,糖代谢受阻,一方面导致神经组织的供能不足,另一方面使糖代谢过程中产生的α―酮酸、乳酸等在血、尿和组织中堆积,从而引起多发性神经炎等症状。维生素B1在谷物的外皮和胚芽中含量很丰富,谷物中的硫胺素约90%存在于该部分,而粗粮由于加工时保留了部分谷物外皮,因此维生素B1含量充足,常吃粗粮的人不容易缺乏维生素B1,因此不易得脚气病。

8.试述与缺乏维生素相关的坏血病的发病机理。

解答:坏血病是一种人体在缺乏维生素C的情况下所产生的疾病。维生素C参与体内多种羟化反应,是胶原脯氨酸羟化酶及胶原赖氨酸羟化酶维持活性所必需的辅助因子,可促进胶原蛋白的合成。当人体缺乏维生素C时,胶原蛋白合成产生障碍,胶原蛋白数量不足致使毛细血管管壁不健全,通透性和脆性增加,结缔组织形成不良,导致皮下、骨膜下、肌肉和关节腔内出血,这些均为坏血病的主要症状。

9.完整的鸡蛋可保持4到6周仍不会腐败,但是去除蛋白的蛋黄,即使放在冰箱内也很快地腐败。试解释为什么蛋白可以防止蛋黄腐败?

解答:蛋清中含有抗生物素蛋白,它能与生物素结合使其失活,抑制细菌生长,使鸡蛋不容易腐败。

10.多选题:

(1)下列哪一个辅酶不是来自维生素()

A.CoQ B.FAD C.NAD+D.pLp E.Tpp

(2)分子中具有醌式结构的是()

A.维生素A B.维生素B1C.维生素C D.维生素E E.维生素K (3)具有抗氧化作用的脂溶性维生素是()

A.维生素C B.维生素E C.维生素A D.维生素B1E.维生素D (4)下列维生素中含有噻唑环的是()

A.维生素B2B.维生素B1C.维生素PP D.叶酸E.维生素B6

(5)下列关于维生素与辅酶的描述中,哪几项是正确的()

A. 脂溶性维生素包括维生素A 、维生素C 、维生素D 和维生素E

B. 维生素B 1的辅酶形式为硫胺素焦磷酸

C. 催化转氨作用的转氨酶所含的辅基是FMN 与FAD

D. 维生素C 又名抗坏血酸,是一种强的还原剂

(6)下列关于维生素与辅酶的描述中,哪几项是错误的( )

A. 维生素A 的活性形式是全反式视黄醛,它与暗视觉有关

B. 辅酶I 是维生素PP 的辅酶形式

C. FMN 与FAD 是氧化还原酶的辅基

D. 硫胺素焦磷酸是水解酶的辅酶

(7)转氨酶的辅酶含有下列哪种维生素?( )

A .维生素

B l B .维生素B 2

C .维生素PP

D .维生素B 6

E .维生素B l2

(8)四氢叶酸不是下列哪种基团或化合物的载体?( )

A .—CHO

B .CO 2

C .

CH

— D .—CH 3

E .—CH NH

解答:(1)A ;(2)E ;(3)B ;(4)B ;(5)B 、D ;(6)A 、D ;(7)D ;(8)B 。 8 新陈代谢总论与生物氧化

1.已知NADH+H +经呼吸链传递遇O 2生成水的过程可以用下式表示:

NADH + H + + 1/2O 2

H 2O + NAD + 试计算反应的'E θ∆、'G θ∆。

解答:在呼吸链中各电子对标准氧化还原电位'E θ

的不同,实质上也就是能级的不同。自由能的变化可以由反应物与反应产物的氧化还原电位计算。氧化还原电位和自由能的关系可由以下公式计算: 'G θ∆代表反应的自由能,n 为电子转移数 ,F 为Farady 常数,值为96.49kJ/V , 'E θ∆为电位差值。'G θ

∆以kJ/mol 计。

NADH+H + + 1/2O 2 → NAD + + H 2O

G 'θ=-2×96.49×[+0.82 -(-0.32)]

=-220 kJ/mol

2.在呼吸链传递电子的系列氧化还原反应中,请指出下列反应中哪些是电子供体,哪些是电子受体,哪些是氧化剂,哪些是还原剂(E-FMN 为NADH 脱氢酶复合物含铁硫蛋白,辅基为FMN )?

(1)NADH+H ++E-FMN

NAD ++E-FMNH 2 (2)E-FMNH 2+2Fe 3+E-FMN+2Fe 2++2H + (3) 2Fe 2++2H ++Q 2Fe 3++QH 2

解答:在氧化―还原反应中,如果反应物失去电子,则该物质称为还原剂;如果反应物得到电子, 则该反应物称为氧化剂。所以得出如下结论:

3

醛–3–磷酸,而另外的一个半电池B含有1mol/L NAD+和1mol/L NADH。回答下列问题:(1)哪个半电池中发生的是氧化反应?

(2)在半电池B中,哪种物质的浓度逐渐减少?

(3)电子流动的方向如何?

(4)总反应(半电池A+半电池B)的ΔE是多少?

解答:氧化还原电位ΔE'θ的数值愈低,即供电子的倾向愈大, 本身易被氧化成为还原剂, 另一种物质则作为氧化剂易得到电子被还原。根据该理论判断:

(1)半电池A中发生的是氧化反应;

(2) 当甘油醛–3–磷酸被氧化后NAD+减少;

(3) 电子由半电池A流向半电池B;

(4) 总反应的ΔE'θ是+0.23V。

4.鱼藤酮是一种的极强的杀虫剂,它可以阻断电子从NADH脱氢酶上的FMN向CoQ的传递。

(1)为什么昆虫吃了鱼藤酮会死去?

(2)鱼藤酮对人和动物是否有潜在的威胁?

(3)鱼藤酮存在时,理论上1mol琥珀酰CoA将净生成多少ATP?

解答:电子由NADH或FADH2经电子传递呼吸链传递给氧,最终形成水的过程中伴有ADP 磷酸化为ATP,这一过程称电子传递体系磷酸化。体内95%的ATP是经电子传递体系磷酸化途径产生的。

(1) 鱼藤酮阻断了电子从NADH脱氢酶上的FMN向CoQ的传递,还原辅酶不能再氧化, 氧化放能被破坏,昆虫将不能从食物中获得足够的维持生命活动需要的ATP。

(2)所有需氧生物电子传递系统十分相似,都包含有FMN和CoQ这种共同的环节,因此鱼藤酮对人体和所有的动物都有潜在的毒性。

(3) 当鱼藤酮存在时, NADH 呼吸链的电子传递中断,但不影响FADH2呼吸链和底物水平磷酸化的进行,理论上1mol琥珀酰辅酶A还将生成5molATP。

5.2, 4―二硝基苯酚(DNP)是一种对人体毒性很大的物质。它会显著地加速代谢速率,使体温上升、出汗过多,严重时可导致虚脱和死亡。20世纪40年代曾试图用DNP作为减肥药物。

(1)为什么DNP的消耗会使体温上升,出汗过多?

(2)DNP作为减肥药物的设想为何不能实现?

解答:(1)因DNP是解偶联剂,电子传递释放的自由能不能以ATP的形式捕获而是以热的形式散失,从而使体温升高,大量出汗。

(2)因DNP可促进细胞代谢速率而增加能量的消耗起到减轻体重的作用,但是DNP有明显的副作用,使其不能作为减肥药物。

6.某女教师24h需从膳食中获得能量8 360kJ(2 000kcal),其中糖类供能占60%,假如食物转化为ATP的效率是50%,则膳食糖类可转化为多少摩尔ATP?

解答:略。

7.标准条件下,下述反应是否能按箭头反应方向进行?(假定每个反应都有各自的酶催化)(1) FADH2 + NAD+FAD + NADH + H+

(2) 琥珀酸+ FAD延胡索酸+ FADH2

(3) β-羟丁酸+ NAD+乙酰乙酸+ NADH + H+

解答:(3)可按反应方向进行。

FAD+2H++2e-→FADH2-0.18

延胡索酸+2H++2e-→琥珀酸-0.031

乙酰乙酸+2H++2e-→β-羟丁酸-0.346

NAD++2H++2e-→NADH -0.32

(1)FADH2 + NAD+FAD + NADH + H+

= -0.32-(-0.18)= -0.14 反应不能进行。

(2)琥珀酸+ FAD延胡索酸+ FADH2

= -0.18-(-0.031)= -0.15 反应不能进行。

(3)β-羟丁酸+ NAD+乙酰乙酸+ NADH + H+

= -0.32-(-0.346)= 0.026 反应能进行。

8.已知共轭氧化还原对NAD+/NADH 和丙酮酸/乳酸的E0'分别为-0.32V 和-0.19V,试问:

(1) 哪个共轭氧化还原对失去电子的能力大?

(2) 哪个共轭氧化还原对是更强的氧化剂?

(3) 如果各反应物的浓度都为lmol/L, 在pH =7.0和25℃时, 下面反应的'Gθ是多少?

丙酮酸+ NADH + H+乳酸+NAD+

解答:

(1) 氧化还原电位E0的数值愈低,即供电子的倾向愈大,愈易成为还原剂,所以NAD+/NADH氧化还原对失去电子的能力强;

(2)丙酮酸/乳酸氧化还原对的氧化还原电位E0的数值较高,得到电子的能力较强,是更强的氧化剂;

(3) 根据公式G'θ=-nFΔE'θ计算,G'θ=-26 kJ/mol。

9 糖代谢

1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C标记,那么在下列代谢产物中能否找到14C标记。

(1)CO2;(2)乳酸;(3)丙氨酸。

解答:

(1)能找到14C标记的CO2 葡萄糖→→丙酮酸(*C1) →氧化脱羧生成标记的CO2。(2)能找到14C标记的乳酸丙酮酸(*C1)加NADH+H+还原成乳酸。

(3)能找到14C标记的丙氨酸丙酮酸(*C1) 加谷氨酸在谷丙转氨酶作用下生成14C标记的丙氨酸。

2.某糖原分子生成n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O,将净生成多少mol ATP?

解答:经磷酸化酶作用于糖原的非还原末端产生n个葡萄糖-1-磷酸, 则该糖原可能有n+1个分支及n+1个α-(1—6)糖苷键。如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O, 将净生成33molATP。

3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别?

解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H+ 。NADH+H+代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。

(2) 生成ATP 的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP 。

葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP (甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖1,6--二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol A TP 。在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H +进入呼吸链将生成2×2.5mol ATP ,所以净生成7mol ATP 。

4.O 2没有直接参与三羧酸循环,但没有O 2的存在,三羧酸循环就不能进行,为什么?丙二酸对三羧酸循环有何作用?

解答:三羧酸循环所产生的3个NADH+H +和1个FADH 2需进入呼吸链,将H +和电子传递给O 2生成H 2O 。没有O 2将造成NADH+H +和FADH 2的积累,而影响三羧酸循环的进行。丙二酸是琥珀酸脱氢酶的竟争性抑制剂,加入丙二酸会使三羧酸循环受阻。

5.患脚气病病人丙酮酸与α–酮戊二酸含量比正常人高(尤其是吃富含葡萄糖的食物后),请说明其理由。

解答:因为催化丙酮酸与α–酮戊二酸氧化脱羧的酶系需要TPP 作酶的辅因子, TPP 是VB 1的衍生物,患脚气病病人缺VB 1, 丙酮酸与α–酮戊二酸氧化受阻, 因而含量比正常人高。

6.油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。

解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A 经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化, 生成草酰乙酸,再经糖异生转化为糖。

7.激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失.利用生化机制解释该现象。

解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO 2和 H 2O, 因乳酸含量减少酸痛感会消失。

8.写出UDPG 的结构式。以葡萄糖为原料合成糖原时,每增加一个糖残基将消耗多少ATP? 解答:以葡萄糖为原料合成糖原时 , 每增加一个糖残基将消耗3molATP 。过程如下: ATP

G 6P ADP +--+葡萄糖(激酶催化), G 6P G 1P ----(己糖磷酸异构酶催化),

2G 1P UTP UDPG PPi PPi H O 2Pi --+++−−→(UDPG 焦磷酸化酶催化), 再在糖原合成酶催化下,UDPG 将葡萄糖残基加到糖原引物非还原端形成α-1,4-糖苷键。

9.在一个具有全部细胞功能的哺乳动物细胞匀浆中分别加入1mol 下列不同的底物,每种底物完全被氧化为CO 2和H 2O 时,将产生多少摩尔 ATP 分子?

(1) 丙酮酸 (2)烯醇丙酮酸磷酸 (3) 乳酸 (4) 果糖-l ,6-二磷酸

(5)二羟丙酮磷酸 (6)草酰琥珀酸

解答:(1) 丙酮酸被氧化为CO 2和H 2O 时,将产生12.5mol ATP ;

(2)磷酸烯醇式丙酮酸被氧化为CO 2和H 2O 时,将产生13.5mol ATP ;

(3) 乳酸被氧化为CO 2和H 2O 时,将产生15mol ATP ;

(4) 果糖1,6--二磷酸被氧化为CO 2和H 2O 时,将产生34mol ATP ;

(5) 二羟丙酮磷酸被氧化为CO 2和H 2O 时,将产生17mol ATP ;

生物化学简明教程 第二章 蛋白质

生物化学简明教程(第四版) 第2章蛋白质 1.蛋白质:是由许多不同的α-氨基酸按一定的序列通过酰胺键(肽键)缩合而成的,具有较稳定的构象和一定生物功能的生物大分子。 2.蛋白质的生物学作用:蛋白质是生物体的重要组成成分; 蛋白质具有重要的生物学功能: 1)作为生物催化剂(酶) 2)物质的转运和储存 3)运动与支持作用 4)免疫保护作用 5)代谢调节作用 6)参与细胞间信息传递 氧化供能 3.蛋白质是生物体的重要组成成分: 分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质。 含量高:蛋白质是细胞内最丰富的有机分子,占人体干重的45%,某些组织含量更高,例如脾、肺及横纹肌等高达80%。 4.蛋白质的元素组成:C(50~55%)、H(6~8%)、O(20~23%)、N(15~18%)、S(0~4%)、…Others: P、Cu、Fe、Zn、Mn、Se、I等。 5.每1g蛋白质中的氮相当于 6.25g蛋白质。

6.凯氏(Kjeldahl)定氮法:蛋白质含量=(总氮含量-无机氮含量)×6.25。 ❤总结:从蛋白质水解物中分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨基酸在结构上的共同特点为: (1)与羧基相邻的α-碳原子上都有一个氨基,因而称为α-氨基酸 (2)除甘氨酸外,其它所有氨基酸分子中的α-碳原子都为不对称碳原子,所以: A.氨基酸都具有旋光性,[左旋(-)或右旋(+)] B.每一种氨基酸都具有D-型和L-型两种立体异构体。目前已知的天然蛋白质中氨基酸都为L-型。 2.1 蛋白质的分类 2.1.1根据分子形状分类 1)球状蛋白质:(globular protein)外形接近球形或椭圆形,溶解性较好,能形成结晶,大多数蛋白质属于这一类。颗星使多种多样的生物学功能。 2)纤维状蛋白质(fibrous protein)分子构象类似纤维或细棒。它又可分为可溶性纤维状蛋白质和不溶性纤维状蛋白质。大多数不溶于水。 3)膜蛋白质:一般折叠成近球形,插入生物膜。 2.1.2根据分子组成分类 1.简单蛋白(simple protein) :又称为单纯蛋白质;这类蛋白质只

【生物化学简明教程】第四版03章 核酸

3 核酸 1.①电泳分离四种核苷酸时,通常将缓冲液调到什么pH?此时它们是向哪极移动?移动的快慢顺序如何? ②将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么pH? ③如果用逐渐降低pH的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么? 解答:①电泳分离4种核苷酸时应取pH3.5 的缓冲液,在该pH时,这4种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP;②应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。虽然pH 11.4时核苷酸带有更多的负电荷,但pH过高对分离不利。③当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMP>AMP> GMP > UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP> AMP > UMP >GMP。 2.为什么DNA不易被碱水解,而RNA容易被碱水解? 解答:因为RNA的核糖上有2'-OH基,在碱作用下形成2',3'-环磷酸酯,继续水解产生2'-核苷酸和3'-核苷酸。DNA的脱氧核糖上无2'-OH基,不能形成碱水解的中间产物,故对碱有一定抗性。 3.一个双螺旋DNA分子中有一条链的成分[A] = 0.30,[G] = 0.24,①请推测这一条链上的[T]和[C]的情况。②互补链的[A],[G],[T]和[C]的情况。 解答:①[T] + [C] = 1–0.30–0.24 = 0.46;②[T] = 0.30,[C] = 0.24,[A] + [G] = 0.46。 4.对双链DNA而言,①若一条链中(A + G)/(T + C)= 0.7,则互补链中和整个DNA分子中(A+G)/(T+C)分别等于多少?②若一条链中(A + T)/(G + C)= 0.7,则互补链中和整个DNA分子中(A + T)/(G + C)分别等于多少? 解答:①设DNA的两条链分别为α和β则:Aα= Tβ,Tα= Aβ,Gα= Cβ,Cα= Gβ,因为:(Aα+ Gα)/(Tα+ Cα)= (Tβ+ Cβ)/(Aβ+ Gβ)= 0.7,所以互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43;在整个DNA分子中,因为A = T,G = C,所以,A + G = T + C,(A + G)/(T + C)= 1;②假设同(1),则Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+ Gβ,所以,(Aα+ Tα)/(Gα+ Cα)=(Aβ+ Tβ)/(Gβ+ Cβ)= 0.7 ;在整个DNA分子中,(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.7 5.T7噬菌体DNA(双链B-DNA)的相对分子质量为2.5×107,计算DNA链的长度(设核苷酸对的平均相对分子质量为640)。 解答:0.34 ×(2.5×107/640)= 1.3 × 104nm = 13μm。 6.如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。试计算人体DNA的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA 每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。

生物化学简明教程第4版习题、试题集

化学与生物工程学院 11食品质量与安全 肖翔 第一章蛋白质 蛋白质等电点:调节溶液的PH,使蛋白质所带的正电荷与负电荷恰好相等,总净电荷为零,在电场中既不向阳极运动,也不向阴极运动,这时溶液的PH称为该蛋白质的等电点 蛋白质变性:天然蛋白质受物理或化学因素的影响,其分子内部原有的高度规律性结构发生变化,致使蛋白质的物理性质和生物学性质都有所改变,但蛋白质的一级结构不被破坏,这种现象称变性 第二章核酸 一种DNA 分子含40%的腺嘌呤核苷酸,另一种DNA分子含30%的胞嘧啶核苷酸,请问哪一种DNA的 Tm值高为什么 解:后一种,因为G-C对含量高,A-T之间只有两个氢键,G-C之间有三个氢键 已知人类细胞基因组的大小约 30亿 bp,试计算一个二倍体细胞中 DNA 的总长度,这么长的 DNA 分子是如何装配到直径只有几微米的细胞核内的 解:*30*10^8=,1m=10^9nm;原因:DNA是高度螺旋化的,处于高度盘旋和压缩状态 第三章酶 酶的活性中心:在整个酶分子中,只有一小部分区域的氨基酸残基参与对底物的结合与催化作用,这些特异的氨基酸残基比较集中的区域称为酶的活性部位,或称为酶的活性中心 酶的必需基团有哪几种,各有什么作用 解:酶的必需基团分为活性中心内的必需基团和活性中心外的必需基团。 作用:活性中心内1、催化基团:使底物分子不稳定形成过滤态,并最终将其转化为最终产物;2、结合基团:与底物分子相结合,将其固定于酶的活性中心 活性中心外的必需基团为维持酶活性中心的空间构象所必需 说明温度对酶促反应速度的影响及其实用价值。 解:在较低的温度范围内,酶促反应速率随温度升高而增大,超过一定温度后,反应速率反而下降。 实用价值:略 举例说明竞争性抑制作用在临床上的应用。 解:具有抗菌作用的磺胺类药物作为氨基苯甲酸的类似物,可抑制细菌二氢叶酸合成酶

大学所有课程课后答案

我为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到https://www.360docs.net/doc/8d19187895.html,查找。 资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击 资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】 ?01-08数值分析清华大学出版社第四版课后答案 ?01-08微分几何第三版梅向明黄敬之主编课后答案 ?01-07高等代数与解析几何陈志杰主编第二版课后答案?01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案 ?01-07数学分析陈纪修主编第二版课后答案 ?01-07数学分析华东师大第三版课后答案 ?12-27高等数学同济大学出版社第五版课后答案 ?12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案 ?11-30微积分复旦大学出版社曹定华主编课后答案 ?11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案 ?11-09概率统计简明教程同济版课后答案 ?11-09复变函数钟玉泉课后答案 ?11-09微积分范培华章学诚刘西垣中国商业出版社课后答案 ?11-09线性代数同济大学第四版课后答案

?11-08概率论与数理统计浙大版盛骤谢式千课后答案 ?11-08复变函数西安交通大学第四版高等教育出版社课后答案 ?11-07离散数学教程肖新攀编著课后习题答案 ?11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案 ?11-04高等数学同济大学出版社第六版课后答案 ?10-27高等数学北大版课后答案 ?【通信/电子/电气/自动化】 ?01-08信号与线性系统分析吴大正第4版课后答案 ?01-08信号与系统刘泉主编课后答案 ?01-08信号与系统奥本海姆英文版课后答案 ?01-08数字信号处理吴镇扬高等教育出版社课后答案 ?01-08通信原理樊昌信第六版国防大学出版社课后答案 ?01-08通信原理北京邮电大学课后答案 ?12-10数字逻辑第四版(毛法尧著) 高等教育出版社 ?12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案 ?12-08电路第五版邱关源罗先觉高等教育出版社课后答案?12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案

生物化学简明教程考试重点

生物化学简明教程考试重点

生物化学简明教程最精简重点 一、名词解释 增色效应:核酸水解为核苷酸,紫外吸收值增加30%~40%的现象。 减色效应:复性后,核酸的紫外吸收降低 一碳单位:指具有一个碳原子的基团。 生物化学:研究生物体组成及变化规律的基础学科 Tm值:即溶解温度,即紫外线吸收的增加量达到最大增量的一半时的温度 酶活性部位:在整个酶分子中,参与对底物的结合与催化作用的一小部分区域的氨基酸残基 氧化磷酸化:伴随放能的氧化作用而进行的磷酸化作用呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的氧化分子,并与之结合生成水的全部体系 糖酵解:1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程 底物磷酸化:直接利用代谢中间物氧化释放的能量产生ATP的磷酸化类型 脂类:是一类低溶于水而高溶于非极性溶剂的生物有机分子 β-氧化:脂肪酸氧化是发生在β原子上的,逐步将碳原

子成对地从脂肪酸键上切下,即β-氧化 氨基酸代谢库:体内氨基酸的总量 从头合成途径:不经过碱基,核苷的中间阶段的途径 补救途径:利用体内游离的碱基或核苷直接合成核苷酸半保留复制:DNA的两条链彼此分开各自作为模板,按碱基配对规则合成互补链,由此产生的子代DNA的一条链来自亲代,另一条链则是以这条亲代为模板合成的新链 不对称转录:一、指双链DNA只有一股单链用作模板;二,指同一单链上可以交错出现模板链和编码链 前导链:复制时,DNA中按与复制叉移动的方向一致的方向,沿5’至3”方向连续合成的一条链 后随链:在已经形成一段单链区后,先按与复制叉移动方向相反的方向,沿5’至3”方向合成冈崎片段连在一起构成完整的链的一条链 密码子:mRNA上所含A,U.G,C决定一个氨基酸的相邻的三个碱基 反密码子:指tRNA上的一端的三个碱基排列顺序 起始密码子:特定起始点的密码子(AUG) 终止密码子:mRNA中终止蛋白质合成的密码子(UAG,UAA,UGA) 二,蛋白质

【生物化学简明教程】第四版02章 蛋白质化学

2 蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1) N-末端测定法:常采用―二硝基氟苯法、Edman 降解法、丹磺酰氯法。 ①―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与―二硝基氟苯(―DNFB )反应(Sanger 反应),生成DNP ―多肽或DNP ―蛋白质。由于DNFB 与氨基形成的键对酸水解远比肽键稳定,因此DNP ―多肽经酸水解后,只有N ―末端氨基酸为黄色DNP ―氨基酸衍生物,其余的都是游离氨基酸。 ② 丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS ―Cl )反应生成DNS ―多肽或DNS ―蛋白质。由于DNS 与氨基形成的键对酸水解远比肽键稳定,因此DNS ―多肽经酸水解后,只有N ―末端氨基酸为强烈的荧光物质DNS ―氨基酸,其余的都是游离氨基酸。 ③ 苯异硫氰酸脂(PITC 或Edman 降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC )反应(Edman 反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N ―末端的PTC ―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N ―末端氨基酸后剩下的肽链仍然是完整的。 ④ 氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N 端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N 端残基序列。 (2)C ―末端测定法:常采用肼解法、还原法、羧肽酶法。 肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C 端氨基酸以游离形式存 在外,其他氨基酸都转变为相应的氨基酸酰肼化物。 ② 还原法:肽链C 端氨基酸可用硼氢化锂还原成相应的α―氨基醇。肽链完全水解后,代表原来C ―末端氨基酸的α―氨基醇,可用层析法加以鉴别。 ③ 羧肽酶法:是一类肽链外切酶,专一的从肽链的C ―末端开始逐个降解,释放出游离的氨基酸。被释放的氨基酸数目与种类随反应时间的而变化。根据释放的氨基酸量(摩尔数)与反应时间的关系,便可以知道该肽链的C ―末端氨基酸序列。 2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少? 解答: (1)血红蛋白: (2)酶: 因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为: 1.65%: 2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。 3.指出下面pH 条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保 持原点? (1)胃蛋白酶(pI 1.0),在pH 5.0; (2)血清清蛋白(pI 4.9),在pH 6.0; (3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0; 解答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动; (2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动; (3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动; α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。 2,42,42,42,455.8 10010013100 0.426??=铁的相对原子质量 最低相对分子质量==铁的百分含量()r 2131.11100159001.65M ??= ≈最低()r 3131.1110015900 2.48M ??=≈最低

【生物化学简明教程】第四版16章 物质代谢的调节控制

16 物质代谢的调节控制 1.哪些化合物是联系糖类、脂质、蛋白质和核酸代谢的重要物质?为什么? 解答:详见本章引言和图16-1,并结合各代谢章节的内容加以总结归纳。 2.举例说明代谢途径的反馈调节。 解答:反馈调节主要是指在酶促反应系统中的最终产物对起始步骤的酶活性的调节作用。凡最终产物抑制起始步骤酶的活性的作用称为负反馈或反馈抑制;凡最终产物激活起始步骤酶的活性的作用称为正反馈。详见16.1.1.1“反馈调节”。 3.何谓酶活性的共价修饰调节。 解答:共价调节酶可通过其他酶对其肽链上某些基团进行共价修饰,使酶处于活性与无活性的互变状态,从而调节酶的活性,这种调节方式称为共价修饰调节作用。目前已知有6种类型的可逆共价修饰作用,(1)磷酸化/脱磷酸化;(2)乙酰化/脱乙酰化;(3)腺苷酰化/脱腺苷酰化;(4)尿苷酰化/脱尿苷酰化;(5)甲基化/脱甲基化;(6) S—S/SH相互转变。详见16.1.1.3 “共价修饰调节作用”。 4.何谓操纵子?根据操纵子模型说明酶合成的诱导和阻遏。 解答:所谓操纵子是原核细胞基因表达的协调单位。操纵子由一组在功能上相关的结构基因和控制位点所组成。控制位点包括启动基因和操纵基因。此控制位点可受调节基因产物的调节。详见16.1.2.1“原核生物基因表达调节乳糖操纵子和色氨酸操纵子模型”。 5.说明衰减子的作用机制和生物学意义。 解答:色氨酸合成途径中除了阻遏蛋白对操纵基因的阻遏调节外,还存在色氨酸操纵子中衰减子所引起的衰减调节。衰减调节是在转录水平调节基因表达,它可使转录终止或减弱,衰减调节比阻遏作用是更为精细的调节。阻遏作用是控制转录的起始。衰减调节控制转录不能继续进行下去。转录衰减作用是转录能正常开始,但是转录过程可因细胞内氨基酸浓度升高而使转录中止的一种调节机制。细节见16.1.2.1“原核生物基因表达调节”。 6.为什么说阻遏蛋白对乳糖操纵子起负调节作用,而在降解物阻遏中的调节蛋白CAP 起正调节作用? 解答:当无诱导物乳糖存在时,调节基因编码的阻遏蛋白处于活性状态,阻遏蛋白可与操纵基因相结合,阻止了RNA聚合酶与启动基因的结合,使结构基因(Z、Y、A)不能编码参与乳糖分解代谢的3种酶,既乳糖操纵子关闭,因此阻遏蛋白为负调控因子。但在大肠杆菌中含有一个称为代谢产物活化蛋白(CAP),又称cAMP受体蛋白(CRP),CAP及cAMP,都是lac mRNA合成所必需的,CAP能够与cAMP形成复合物,cAMP-CAP复合物结合在乳糖操纵子的启动基因上,可促进转录的进行。因此cAMP-CAP是一个不同于阻遏蛋白的正调控因子。 7.简述真核生物的基因表达调控。 解答:真核生物基因表达,在多层次并受多种因子协同调节控制,是一种多级调控方式。

【生物】生物化学简明教程第四版张丽萍杨建雄课后答案

【关键字】生物 1 绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。3.说明生物分子的元素组成和分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基()、羧基(—COOH)、巯基(—SH)、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 2 蛋白质化学 1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么? 解答:(1)N-末端测定法:常采用―二硝基氟苯法、Edman降解法、丹磺酰氯法。 ①―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与―二硝基氟苯(―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。 ②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。 ③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。 ④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。

简明生物化学试题库及答案

简明生物化学试题库及答案生物化学试题库 一、选择题 1. 下列哪个是构成脂肪酸的基本结构单元? A. 核苷酸 B. 氨基酸 C. 糖类 D. 甘油 2. 酶是一种特殊的蛋白质,它的功能是什么? A. 维持细胞结构的完整性 B. 催化化学反应 C. 储存和传递遗传信息 D. 调节免疫系统功能 3. 下列哪种物质在细胞内储存能量? A. 蛋白质 B. 脂类 C. 碳水化合物

D. 核酸 4. 下列哪一项是DNA的主要功能? A. 催化化学反应 B. 储存和传递遗传信息 C. 细胞运动 D. 细胞结构维持 5. 酶在催化化学反应中起到的作用是什么? A. 合成分子 B. 分解分子 C. 加速反应速率 D. 抑制反应速率 二、简答题 1. 请简要解释光合作用的过程。 2. 什么是蛋白质折叠?为什么蛋白质的折叠结构对其功能至关重要? 3. DNA和RNA有什么区别?它们在细胞中的作用分别是什么? 4. 简述细胞呼吸的过程及其在能量产生中的作用。 5. 请解释细胞膜的结构和功能。

三、计算题 1. 如果一种脂肪酸分子由18个碳和36个氢组成,其化学式是什么? 2. 假设一个细胞内的DNA链长度为10,000个碱基对,其中腺嘌呤(A)的含量为30%,请计算其他三种碱基对的含量分别是多少? 3. 一种反应需要酶催化才能进行,如果在催化剂存在的情况下,反 应速率为10mol/s;如果没有酶催化,反应速率为1mol/s。请计算酶催 化对反应速率的影响倍数。 答案 一、选择题 1. D 2. B 3. C 4. B 5. C 二、简答题 1. 光合作用是一种植物和一些微生物利用太阳能将二氧化碳和水转 化为有机物质(如葡萄糖)和氧气的过程。它包括光合色素吸收太阳能、光合电子传递和ATP合成以及还原二氧化碳的Calvin循环等步骤。

【生物化学简明教程】第四版11章 蛋白质分解和氨基酸代谢

11 蛋白质分解和氨基酸代谢 1.蛋白质在细胞内不断地降解又合成有何生物学意义? 解答:细胞不停地将氨基酸合成蛋白质,并又将蛋白质降解为氨基酸。这种看似浪费的过程对于生命活动是非常必要的。首先可去除那些不正常的蛋白质,它们的积累对细胞有害。其次,通过降解多余的酶和调节蛋白来调节物质在细胞中的代谢。研究表明降解最迅速的酶都位于重要的代谢调控位点上,这样细胞才能有效地应答环境变化和代谢的需求。另外细胞也可以蛋白质的形式贮存养分,在代谢需要时将其降解产生能量供机体需要。 2.何谓氨基酸代谢库? 解答:所谓氨基酸代谢库即指体内氨基酸的总量。 3.氨基酸脱氨基作用有哪几种方式?为什么说联合脱氨基作用是生物体主要的脱氨基方式? 解答:氨基酸的脱氨基作用主要有氧化脱氨基作用、转氨基作用、联合脱氨基作用和非氧化脱氨基作用。生物体内L-氨基酸氧化酶活力不高,而L-谷氨酸脱氢酶的活力却很强,转氨酶虽普遍存在,但转氨酶的作用仅仅使氨基酸的氨基发生转移并不能使氨基酸真正脱去氨基。故一般认为L-氨基酸在体内往往不是直接氧化脱去氨基,主要以联合脱氨基的方式脱氨。详见11.2.1氨基酸的脱氨基作用。 4.试述磷酸吡哆醛在转氨基过程中的作用。 解答:转氨酶的种类虽多,但其辅酶只有一种,即吡哆醛-5'-磷酸,它是维生素B6的磷酸酯。吡哆醛-5'-磷酸能接受氨基酸分子中的氨基而变成吡哆胺-5'-磷酸,同时氨基酸则变成α-酮酸。吡哆胺-5'-磷酸再将其氨基转移给另一分子α-酮酸,生成另一种氨基酸,而其本身又变成吡哆醛-5'-磷酸,吡哆醛-5'-磷酸在转氨基作用中起到转移氨基的作用。 5.假如给因氨中毒导致肝昏迷的病人注射鸟氨酸、谷氨酸和抗生素,请解释注射这几种物质的用意何在? 解答:人和哺乳类动物是在肝中依靠鸟氨酸循环将氨转变为无毒的尿素。鸟氨酸作为C 和N的载体,可以促进鸟氨酸循环。谷氨酸可以和氨生成无毒的谷氨酰胺。抗生素可以抑制肠道微生物的生长,减少氨的生成。 6.什么是鸟氨酸循环,有何实验依据? 合成lmol尿素消耗多少高能磷酸键? 解答:尿素的合成不是一步完成,而是通过鸟氨酸循环的过程形成的。此循环可分成三个阶段:第一阶段为鸟氨酸与二氧化碳和氨作用,合成瓜氨酸。第二阶段为瓜氨酸与氨作用,合成精氨酸。第三阶段精氨酸被肝中精氨酸酶水解产生尿素和重新放出鸟氨酸。反应从鸟氨酸开始,结果又重新产生鸟氨酸,形成一个循环,故称鸟氨酸循环(又称尿素循环)。合成1mol 尿素需消耗4mol高能键。 详见11.2.3“①排泄”和“(2)尿素的生成机制和鸟氨酸循环”。 7.什么是生糖氨基酸、生酮氨基酸、生酮兼生糖氨基酸?为什么说三羧酸循环是代谢

生物化学简明教程课后习题答案

1 绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构 成了生物分子碳骨架上的氨基(—NH 2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO 4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。

生物化学简明教程答案

6 酶 1.作为生物催化剂,酶最重要的特点是什么? 解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。 2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶: 磷酸葡糖异构酶(phosphoglucose isomerase) 碱性磷酸酶(alkaline phosphatase) ●肌酸激酶(creatine kinase) ?甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) ?琥珀酰―CoA合成酶(succinyl-CoA synthetase) ?柠檬酸合酶(citrate synthase) ?葡萄糖氧化酶(glucose oxidase) ?谷丙转氨酶(glutamic-pyruvic transaminase) ?蔗糖酶(invertase) ? T4 RNA 连接酶(T4 RNA ligase) 解答:前两个问题参考本章第3节内容。 异构酶类; 水解酶类;

●转移酶类; ?氧化还原酶类中的脱氢酶; ?合成酶类; ?裂合酶类; ?氧化还原酶类中的氧化酶; ?转移酶类; ?水解酶类; ?合成酶类(又称连接酶类)。 3.什么是诱导契合学说,该学说如何解释酶的专一性? 解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。 4.阐述酶活性部位的概念、组成与特点。 解答:参考本章第5节内容。 5.经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的添加剂。接下来,你用定点诱变的方法研究了组成该酶的某些氨基酸残基对酶活性的影响作用: (1)你将第65位的精氨酸突变为谷氨酸,发现该酶的底物专一性发生了较大的改变,试解释原因;

生物化学课后答案张丽萍

9 糖代谢 1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C 标记,那么在下列代谢产物中能否找到14C标记。 (1)CO2;(2)乳酸;(3)丙氨酸。 解答: (1)能找到14C标记的CO2 葡萄糖→→丙酮酸(*C1) →氧化脱羧生成标记的CO2。 (2)能找到14C标记的乳酸丙酮酸(*C1)加NADH+H+还原成乳酸。 (3)能找到14C标记的丙氨酸丙酮酸(*C1) 加谷氨酸在谷丙转氨酶作用下生成14C 标记的丙氨酸。 2.某糖原分子生成n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O,将净生成多少mol ATP? 解答:经磷酸化酶作用于糖原的非还原末端产生n个葡萄糖-1-磷酸, 则该糖原可能有n+1个分支及n+1个α-(1—6)糖苷键。如果从糖原开始计算,lmol葡萄糖彻底氧化为CO2和H2O, 将净生成33molATP。 3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别? 解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H+ 。NADH+H+代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。 (2) 生成ATP的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP。 葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP(甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡 --二磷酸分别消耗了1mol ATP, 在无氧条件下净生糖-6-磷酸,果糖-6-磷酸至果糖1,6 成2mol ATP。在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H+进入呼吸链将生成2×2.5mol ATP,所以净生成7mol ATP。 4.O2没有直接参与三羧酸循环,但没有O2的存在,三羧酸循环就不能进行,为什么?丙二酸对三羧酸循环有何作用? 解答:三羧酸循环所产生的3个NADH+H+和1个FADH2需进入呼吸链,将H+和电子传递给O2生成H2O。没有O2将造成NADH+H+和FADH2的积累,而影响三羧酸循环的进行。丙二酸是琥珀酸脱氢酶的竟争性抑制剂,加入丙二酸会使三羧酸循环受阻。 5.患脚气病病人丙酮酸与α–酮戊二酸含量比正常人高(尤其是吃富含葡萄糖的食物后),请说明其理由。 解答:因为催化丙酮酸与α–酮戊二酸氧化脱羧的酶系需要TPP作酶的辅因子, TPP 是VB1的衍生物,患脚气病病人缺VB1,丙酮酸与α–酮戊二酸氧化受阻,因而含量比正常人高。 6.油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。 解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化, 生成草酰乙酸,再经糖异生转化为糖。 7.激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失.利用生化机制解释该现象。 解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO2和H2O, 因乳酸含量减少酸痛感会消失。 8.写出UDPG的结构式。以葡萄糖为原料合成糖原时,每增加一个糖残基将消耗多少ATP? 解答:以葡萄糖为原料合成糖原时, 每增加一个糖残基将消耗3molATP。过程如下:葡萄糖 ATP G6P ADP +--+ (激酶催化),

生物化学简明教程 第四版 张丽萍 杨建雄 课后答案

2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少? 解答: (1)血红蛋白: (2)酶: 因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为: 1.65%: 2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。 4.何谓蛋白质的变性与沉淀?二者在本质上有何区别? 解答:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。 变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。 蛋白质变性后的表现:①?生物学活性消失; ②?理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。 蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。 蛋白质的沉淀可以分为两类: (1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。 (2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。 9.概述测定蛋白质一级结构的基本步骤。 解答:(1)测定蛋白质中氨基酸组成。 (2)蛋白质的N 端和C 端的测定。 (3)应用两种或两种以上不同的水解方法将所要测定的蛋白质肽链断裂,各自得到一系列大小不同的肽段。 (4)分离提纯所产生的肽,并测定出它们的序列。 (5)从有重叠结构的各个肽的序列中推断出蛋白质中全部氨基酸排列顺序。 如果蛋白质含有一条以上的肽链,则需先拆开成单个肽链再按上述原则确定其一级结构。如是含二硫键的蛋白质,也必须在测定其氨基酸排列顺序前,拆开二硫键,使肽链分开,并确定二硫键的位置。拆开二硫键可用过甲酸氧化,使胱氨酸部分氧化成两个半胱氨磺酸。 8.概述超螺旋DNA 的生物学意义。 55.8100100131000.426??=铁的相对原子质量最低相对分子质量==铁的百分含量()r 2131.11100159001.65M ??= ≈最低()r 3131.11100159002.48M ??=≈最低

生物化学简明教程

生物化学简明教程 生物化学简明教程 1. 介绍 •生物化学是研究生物体内化学物质和化学反应的科学学科。 2. 生物大分子 •生物体内主要有四种生物大分子:蛋白质、核酸、碳水化合物和脂质。 蛋白质 •蛋白质是由氨基酸组成的长链聚合物,具有多种功能。 •结构:由20种不同氨基酸组成,通过肽键连接形成多肽链。•功能:参与细胞结构的构建、酶催化、携带物质运输等。 核酸 •核酸是遗传信息的携带者。 •分类:DNA(脱氧核糖核酸)和RNA(核糖核酸)。 •结构:由核苷酸组成,核苷酸由糖、磷酸和碱基组成。 •功能:DNA储存遗传信息,RNA参与蛋白质的合成。

碳水化合物 •碳水化合物是生物体内的主要能源来源。 •分类:单糖、双糖和多糖。 •结构:由碳、氢、氧组成。 •功能:提供能量、结构支持、信号传导等。 脂质 •脂质是不溶于水的大分子有机化合物。 •分类:脂肪、磷脂、固醇等。 •结构:由甘油与脂肪酸组成。 •功能:储能、细胞膜构成、信号传导等。 3. 代谢途径 •代谢途径是生物体内针对物质进行转化和利用的过程。 糖代谢 •包括糖的降解(糖酵解和无氧呼吸)和合成(糖异生)。 脂代谢 •包括脂肪的降解(脂肪酸β氧化)和合成(脂肪酸合成)。

氨基酸代谢 •包括氨基酸的降解(蛋白质分解)和合成(蛋白质合成)。 核酸代谢 •包括核酸的降解和合成。 4. 酶和酶促反应 •酶是加速生物体内化学反应的蛋白质。 •酶促反应遵循酶底物复合物、过渡态、产物释放等步骤。 5. 重要的生物化学反应 •包括光合作用、呼吸作用、糖酵解等。 6. 分子生物学技术在生物化学中的应用 •分子生物学技术对于研究生物化学领域的进展起到了重要作用。PCR技术 •可在体外扩增DNA片段,用于基因克隆和基因组分析。 基因工程技术 •包括基因表达、基因敲除、基因突变等。 蛋白质纯化技术 •用于分离蛋白质并研究其功能。

生物化学简明教程张丽萍第四版 糖代谢

生物化学简明教程张丽萍第四版糖代谢----2ae9feba-6eb8- 11ec-bb14-7cb59b590d7d 生物化学简明教程张丽萍第四版糖代谢 9葡萄糖代谢 9.1多糖和低聚糖的酶促降解 水解键模式与产物特性 α-淀粉酶α-1,4糖苷键任何位置麦芽糖和葡萄耐热,不耐酸糖及小分子量 多糖 β-淀粉酶α-1,4糖苷键非还原性单位麦芽糖连续耐酸,不耐热单位极限糊精?淀粉的酶促水解解 α-淀粉酶:淀粉分子α-1.4糖苷键内的任何水解。(核酸内切酶) β-淀粉酶:从非还原端开始,水解α-1.4糖苷键,依次水解下一个β-麦芽糖单位(外切酶) 脱支酶(r酶):水解α-淀粉酶和β-淀粉酶作用后在极限糊精中留下的1.6-糖苷键。?淀粉的磷酸化9.1.2纤维素的酶水解 9.2糖的分解代谢 生物体内分解葡萄糖(糖原)的主要方式有三种: 1.无o2情况下,葡萄糖(g)→丙酮酸(pyr)→乳酸(lac) 2.在O2存在的情况下,G→ CO2+H2O(通过三羧酸循环)3在O2存在下,G→ CO2+H2O(通过戊糖磷酸途径) 9.2.1糖的无氧酵解 定义:在酶的作用下,葡萄糖产生丙酮酸、NADH和少量ATP。糖酵解,也称为EMP途径,纪念embden、mayerholf和Parnas。 部位:细胞质中。分三阶段:1.活化耗能:1~3步2.裂解:4~5步3.氧化放能:6~10步(一)活化耗能阶段1.磷酸化 2.异构化 3.再磷酸化

(二)裂解阶段裂解 5.异构 (三)氧化能量释放阶段6氧化脱氢 7.生成atp 8.异质性 9.脱水 10.再生ATP emp能量计算: EMP的总反应式为:C6H12O6+2nad++2adp+2pi 2ch3cocooh+2(nadh+h+)+2atp 厌氧原核(真核):1mol产生2mol ATP需氧 2atp+2nadh 原核:2nadh=5ATP,共7ATP 真核:2nadh=3atp,共5atp EMP调节:三种关键酶:己糖激酶、磷酸果糖激酶、丙酮酸激酶II、丙酮酸转化为乳酸或乙醇1乳酸生产 2.生成乙醇 NADH+H+来自第6步,用于再生NAD+。乳酸发酵:在厌氧条件下,机体将糖酵解产生的NADH转化为丙酮酸,生成乳酸,称为乳酸发酵。乙醇发酵:在厌氧条件下,如果糖酵解产生的NADH在丙酮酸脱羧后转化为乙醛,则生产乙醇的过程称为乙氧基化 无氧氧化:1molg生成2molatp。

《生物化学简明教程》附带的习题答案zq整理版

《生物化学简明教程》附带的习题答案 (一)用于测定蛋白质多肽链N端、C端的常用方法有哪些? 解答:(1)N-末端测定法:常采用2,4―二硝基氟苯法、Edman降解法、丹磺酰氯法。 (2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。 (二)何谓蛋白质的变性与沉淀?二者在本质上有何区别? 解答:蛋白质的变性:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变的作用。 变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。 蛋白质变性后的表现:①生物学活性消失②理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。 蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。 蛋白质的沉淀可以分为两类: (1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。。 (2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。 (三)一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。 解答:180/3.6=50圈,50×0.54=27nm,该片段中含有50圈螺旋,其轴长为27nm。 (五)如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。试计算人体DNA 的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。 解答:每个体细胞的DNA的总长度为:6.4 × 109 × 0.34nm = 2.176 × 109 nm = 2.176m,人体内所有体细胞的DNA的总长度为:2.176m×1014 = 2.176×1011km,这个长度与太阳―地球之间距离(2.2×109 km)相比为:2.176 × 1011/2.2 × 109 = 99倍,每个核苷酸重1 × 10-18g/1000 = 10-21g,所以,总DNA 6.4 × 1023 × 10-21 = 6.4 × 102 = 640g。 (六)如何看待RNA功能的多样性?它的核心作用是什么? 解答:RNA的功能主要有: ①控制蛋白质合成 ②作用于RNA转录后加工与修饰 ③参与细胞功能的调节 ④生物催化与其他细胞持家功能 ⑤遗传信息的加工 ⑥可能是生物进化时比蛋白质和DNA更早出现的生物大分子。 其核心作用是既可以作为信息分子又可以作为功能分子发挥作用。 (七)什么是DNA变性?DNA变性后理化性质有何变化? 解答:DNA双链转化成单链的过程称变性。 DNA变性后的理化性质变化主要有:

相关主题
相关文档
最新文档