三相分离器简介

三相分离器简介
三相分离器简介

9.8MPa测试用三相分离器研制

项目简介

北京化工大学机电学院

2008.4.28

一、综述

测试用三相分离器主要应用于油气田勘探开发初期的自喷井(油气井)测试过程中,为分析油藏求得地层流体的井口压力、温度、产能及物性等参数而建立的一套地面临时生产流程。根据测试方案选用不同规格的油嘴通过对流体流量、压力、温度的控制并借助分离器将流体各相(油、气、水)分离并分别精确计量,最终求得该规格油嘴状态下油、气、水的产量。该系统是石油勘探开发过程中对油藏进行综合评价的重要工具和手段,适用于陆上、海上气田、凝析油气田和油田。

二、三相分离器结构及原理

重力式分离器分立式和卧式。卧式分离器气液流动方向与液滴沉降方向垂直,分离阻力较立式小,并且气液接触面积大,利用气泡上浮,在系统分离体积下分离效果好。更适合量大、高油气比的场合。高压油气井三相测试分离器主要为卧式橇装结构, 主要由容器本体、分离机构、控制阀、液面控制器、流量计、安全阀及相应配管和附件等组成。

油井来液自流体进口进入设备后, 首先冲击入口动能吸收器, 被吸收一部分动能之后, 折流进入分离器实现气液的预分离,然后经过多级整流聚结填料进行气液重力分离,分理出的气体通过丝网捕雾器从气出

口流出,并经过计量装置计量;分离出的液体在沉降分离器中进一步沉降分离。分离出的油溢流过隔板进入储油室,从油出口流出并经过流量计计量后进入油罐;分离后处在下部的水通过水出口流出,经计量后进入污水罐。另外还设有排污口、超压时的安全保护阀等装置。

三、主要设计内容

1.所需的设计参数:

(1)设计压力;(2)操作压力;(3)设计温度;(4)操作温度;(5)最大气、液处理量;(6)液体密度;(7)气体比重(标态);(8)油水相粘度;(9)载荷波动系数;(10)液体停留时间等。

2.主要设计内容

(1)罐体部分;(2)入口分离系统;(3)沉降系统;(4)除雾系统;(5)存储系统;(6)液面控制系统;(7)其它辅助系统等。

四、主要工作内容

(1)罐体部分设计;(2)内聚结构件仿真优化;(3)总体设计和计算;(4)油液界面控制部分计算;(5)技术培训;(6)现场测绘和实验。

五、设计步骤

(1)根据设计参数确定罐体尺寸;(2)利用FLUENT优化内聚结构件;(3)现场测绘;(4)内聚结构件完善确定;(5)总体规划与设计;(6)油液界面控制部分计算;(7)仪表选型;(8)完善修改;(9)技术培训。

(完整word版)三相分离器结构及工作原理

一、三相分离器结构及工作原理 1.三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2.三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

UASB三相分离器原理及运行简介

UASB三相分离器原理及运行简介 厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。 而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。 一、UASB工作原理 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。 基本要求有: (1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能; (2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度; (3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。

油气计量分离器原理

第一节 计量站 一、计量分离器 二、量油、测气操作

图5-3 储集管量油示意图 2)测气方法主要有:节流式流量计测气和垫圈流量计测气两种: A)节流式流量计测气(图5-4):V1*A1=V2*A2 气计量公式: 在不精确考虑Fx,Fy,Fz时, 图5-4 测气流程示意图(1-出气管线;2-挡板;3、4-上下流管;5-上流阀;6-下流阀;7-平衡阀;8、9-防空阀;10-U型玻璃管) B)垫圈流量计测气 垫圈流量计由测气短节和“U”形管组成(图5-5),它的下流通大气,下流压力为大气压,上流测出的压差H即为上下流压差。 气量计算公式:

图5-5 垫圈测气原理图 油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2) 碰撞聚结型:丝网聚结、波纹板聚结分离器; 3) 旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器; 4) 旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构:如图所示

1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒:储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管:通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀:保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管:油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板:在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

三相分离器资料

高效三相分离器 1.型号释疑 JM-WS3.0×8.0-0.8 设计压力MPa 设备筒体长度m 设备筒体内径m W:卧式容器 S:三相分离器 骏马集团 2.三相分离器分离原理及结构特点 刚从地下开采出来的石油我们称为原油,它是复杂的油水乳化混合物,还含有部分气体和少量泥沙。气体的主要成分是天然气和二氧化碳。为了分别得到有利用价值的高纯度的天然气和石油,我们研制出了原油用高效三相分离器,来满足原油开发开采者的需要。 所谓的三相,就是气相、液相、固相。三相分离器的工作原理就是利用原油中所含各物质的密度不同、粘度不同以及颗粒大小等的区别来进行分离的。来自井口的原料油首先经过井口阀门、管线到一个加药装置,加药装置可连续可控制的来给原油加破乳剂。这是用来降低原料油中水、油、泥沙之间的粘连混合程度以及分化乳化混合物的颗粒,有利于三相分离器更好的进行分离。我们可根据原油的参数(粘度和温度)来看是否需要在加破乳剂之前设置水套加热炉。水套加热炉就是对原油加热,来降低原油的粘度,提高原油的运输速度。 加了破乳剂的原料油首先进入三相分离器的一级分离装置,进口是在一级分离装置中部,沿切线方向旋转式进入。通过旋风分离,根据离心力和重力的作用,将原油所含的各物质由里到外、由上到下的排列为气、油、水、泥沙。为了延长分离器的使用寿命,我们在一级分离装置的入口处沿筒壁方向增加一块垫板,这样泥沙在冲涮筒壁时,只磨损到这块垫板。等于说是把一级分离装置能接触到的高

速流体的那段筒体壁厚进行了加强。 经过旋风分离,大部分气体涌向一级分离装置的上部,在分离装置的上部我们设有一个伞状板,伞状板由三根扁钢呈120°角分布支承。下部靠一个焊接在筒体内壁上的支承圈支撑。气体冲击到伞状板之后,经过伞状板和一级分离器筒体之间的空隙到达分离器的顶部出气口,由出气口进入二级分离装置。我们设置这个伞状板的原因,就是因初步分离的气体中,含有部分雾状的小颗粒,颗粒中有水和原油以及细微的泥沙,经碰撞到伞状板上之后,由于粘度的原因,大部分都附着在伞状板的内壁上,积累到一定程度会沿伞状板的内壁边缘滴落。但还是有少部液体被气流带走,进入二级分离器装置再进行精细过滤的分离。 再谈一级分离装置中的除了气体之外的其它物质,由于旋风分离利用离心力和重力的合力原理,绝大部分液相和固相物质从分离器的底部流入三相分离器的主体分离装置,我们在一级分离装置的底部出液口处设有一个防涡流挡板,呈“十”字状,这是由于流体经过旋转,在分离装置的底部易形成涡流,若不设置挡板,就会有较多一部分气体随之涌入主体分离装置,这样会使主体分离装置中流体引起较大波动,也影响到流体中各物质的分离效果。 我们根据许多科研人员的试验结果:油在水中上升的速度,远远快于水在油中下降的速度。这就是由于油的粘度大于水的粘度的原因。这一发现使我们利用这个原理将一级分离装置底部的流体出口的接管延长至主分离装置的底部区域。从底部进入主分离装置,这样流体会慢慢的涌出,而不是直接喷洒进入,这样大大减小了流体在主分离装置中的波动,慢慢上升的流体中,油上升的速度快于水下降的速度。流体中的油就会迅速的浮上水面,为了减小这些流体在主分离装置中的振动和波浪,我们在延长管的底部附近一圈焊接一块有许多小孔的方形折边向下的挡板。这样能有效地降低流体的流速和动能。而且还能够将流体中的乳状团块细化。我们也考虑到流体直接冲击主分离装置的底部,会使底部钢板受到冲涮侵蚀,寿命会大大降低,我们在主分离装置的来液底部,也设置了一块碗状垫板。这样的形状同时使来液绝大部分都可以反弹到孔板上进行团块细化分离。 当液量达到一定高度,我们在主分离装置的中部上半部设置了一段填料装置。它的结构就是规整填料,术语称TP板,又称聚结板、消泡器、斜板填料。该板每片都呈波纹形状,就象一把挂在主分离装置内部的梳子,用于油田油水处理系

三相分离器工作原理、结构、工艺参数

三相分离器工作原理、结构、工艺参数 一、工作原理 生产汇管来原油进入三相分离器,利用油、气、水密度的不同进行油、气、水三相初步分离。 1、预分离段 从三相分离器进口来的油气由切向进入预分离器,利用离心力而不是机械的搅动来分离来液成为液体和气体,进行初步气、液两相旋流分离。 分离后的气体向上进入预分离器下伞和上伞,按折流方式先后与下伞、上伞壁碰撞,从而将气中带出的液体形成较大的液滴,重力使液滴进一步分离出来,经上、下伞碰撞分离后的气体则通过气连通管导入到三相生产分离器的分离沉降段上部。 分离后的液体通过预分离器向下导液管导入到三相分离器底部,经布液管从液面以下的水层向上喷出,进入到三相分离器预分离段进行油、水初步分离,主要分离出游离水。 布液管的作用:避免了气体对液体的扰动,保持了油水界面的稳定,有利于油水更好地分离。 2、分离沉降段 经预分离段进行初步分离后的液体,沿水平方向向右移动进入分离沉降段。这一段内有较大的沉降空间(分离沉降时间20分钟左右),其中部有两段聚结填料,有助于水中油滴和油中水滴的聚结,从而有促进油、水分离。液体在水平移动过程中,密度较小的原油逐渐上浮,而密度较大的污水(主要是游离水)则向下沉入设备底部,同时使油气逐步分离开来。 气体则在分离沉降段上部空间内,沿水平方向向右运动进入到分气包,重力作用使气体中的液体沉降到三相分离器分离沉降段液面上。 3、集液段 由于油、水密度的不同,使分离沉降段中的液体出现分层,水的密度较大在下层,油的密度较小在上层。 在下层的水则通过集液段底部的喇叭口,利用连通器原理向上溢流进入三相分离器水室,水室中的水通过出水口导出进入5000m3沉降罐。 在上层的油经集液段上部堰板溢流到导油汇管,进入到三相分离器的油室,油室中的油通过油出口导出进入热化学脱水器。 4、捕雾段

旋风除尘器的工作原理

旋风除尘器的工作原理 下面介绍具有代表性的机械除尘器—旋风除尘器的工作原理旋风除尘器的基本结构一般由进气口、筒体、锥体、排气管及集尘箱等组成。根据含尘气流人口方式的不同,又可分为切流反转式及轴流式两种。 切流反转式旋风除尘器中含尘气流的运动轨迹。流体从进气管进入旋风筒后,由直线运动变为旋转运动,并在流体压力及筒体内壁形状影响下螺旋下行,朝锥体运动。含尘气体在旋转过程中产生离心力,使重度大于气体的粉尘颗粒克服气流阻力移向边壁。颗粒一旦与器壁接触,便失去惯性力而在重力及旋转流体的带动下贴壁面向下滑落,最后从锥底排灰管排出旋风筒。旋转下降的气流到达锥体端部附近某一位置后,以同样的旋转方向在除尘器中由下折返向上,在下行气流内侧螺旋上行,最终连同一些未被分离的细小颗粒一同排出排气管。流体在旋风筒内的流线类似双螺旋线,通常将外侧螺旋下行的气流称为外旋流,将内侧螺旋上行的气流称为内旋流。 旋风分离器 工作原理:旋风除尘器的工作原理如下图所示,含尘气体从入口导入除尘器的外壳和排气管之间,形成旋转向下的外旋流。悬浮于外旋流的粉尘在离心力的作用下移向器壁,并随外旋流转到除尘器下部,由排尘孔排出。净化后的气体形成上升的内旋流并经过排气管排出。 应用范围及特点:旋风除尘器适用于净化大于5~10微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较低(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。 袋除尘器的原理介绍 作者:佚名文章来源:不详点击数:417 更新时间:2008-8-3

图片: 图片:

图片:

图片: 图片: 各种除尘器介绍 从含尘[wiki]气体[/wiki]中分离并捕集粉尘﹑炭粒﹑雾滴的装置。按分离﹑捕集的作用原理﹐可分为机械除尘器﹑洗 涤除尘器﹑袋式除尘器﹑声波除尘器﹑静电除尘器。

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

制冷系统中油分离器结构及工作原理

一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有油膜时,将使蒸发温度降低℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至~1m/s);同时改变流向,使密度较大的润

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

空气分离器结构及原理

空气分离器结构及原理 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气分离器结构及原理 目前应用最多的是卧式空气分离器和立式空气分离器。 卧式空气分离器也称四重套管式空气分离器,一般应用在大中型氨制冷系统的冷库,一座冷库只选用一台卧式空气分离器就够了。立式空气分离器一般用在中小型氨制冷系统。卧式空气分离器的分离效果好。 一、卧式空气分离 器 1、结构及原理:卧式 空气分离器如右图所示,它 是由4根直径不同的无缝钢 管组成,管1与管3相通, 管2与管4相通。混合气体 自冷凝器来,通过混合进气 阀进入管2,氨液自膨胀阀 来,进入管1后吸收管2内 的混合气体热量而气化,氨 气出口经降压管接至总回气 管道,则氨气被压缩机吸 入。管2里的混合气体被降 温,其中氨气被凝结为氨液 流入管4的底部,空气不会 被凝结为液体,仍以气态存 在,将分离出来的空气经放 空气阀放出,达到使系统内空气分离出去的目的。 2、操作方法:首先打开混合气体阀,让混合气体进入管2,再打开回气阀,使管3与回气总管相通,然后微开与管1相连接的膨胀阀,向管1供液,供液不能过快过多,以降压管自控器分离器接口向上的1.5m以内结霜为最好。放空气阀外接一根钢管,管上套一根橡皮管通入水桶内,橡皮管入水一端系一重物,防止橡皮管出口露出水面。微微开启放空气阀,水中便有气泡由下向上浮起,放空气阀不要开启过大,以水内有一定速度气泡跑出为准。管4的底部外表面逐渐开始结霜,当霜结到外管直径的1/3高度时,将管1外来供液的膨胀阀关闭,打开空气分离器本身自有的节流阀,让管4底部凝结的氨液经节流阀供入管1内,这样就实现放空气自身凝结的氨液给自己供液。一般地说,此时已进入自行放空气阶段。操作人员要经常查看降压管的霜不可结得过高;再看空气分离器外壁上的霜不可结得太少或没有,如果太少或没有,证明凝结的氨液量少,给管1供液会不足。此时应再利用管1外接的膨胀阀补充一点氨液,使管外霜结到外管直径的1/3高度的地方。水桶内气泡上升过程中,体积不缩小,水温不升高,放出的是空气。如果在上升过程中,体积逐渐缩小,甚至无气泡产生而只有水的流动,证明放空气完毕。因为氨气与水相溶,不产生气泡,甚至水呈乳白色,水温上升。 放空气完毕,应关闭混合气体阀、放空气阀,并检查外接膨胀阀是否关闭。自身节流阀仍为开启的,让氨气仍旧被压缩机抽走,空气分离器内的余氨被尽量抽走后,

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

三相分离器简介

9.8MPa测试用三相分离器研制 项目简介 北京化工大学机电学院 2008.4.28

一、综述 测试用三相分离器主要应用于油气田勘探开发初期的自喷井(油气井)测试过程中,为分析油藏求得地层流体的井口压力、温度、产能及物性等参数而建立的一套地面临时生产流程。根据测试方案选用不同规格的油嘴通过对流体流量、压力、温度的控制并借助分离器将流体各相(油、气、水)分离并分别精确计量,最终求得该规格油嘴状态下油、气、水的产量。该系统是石油勘探开发过程中对油藏进行综合评价的重要工具和手段,适用于陆上、海上气田、凝析油气田和油田。 二、三相分离器结构及原理 重力式分离器分立式和卧式。卧式分离器气液流动方向与液滴沉降方向垂直,分离阻力较立式小,并且气液接触面积大,利用气泡上浮,在系统分离体积下分离效果好。更适合量大、高油气比的场合。高压油气井三相测试分离器主要为卧式橇装结构, 主要由容器本体、分离机构、控制阀、液面控制器、流量计、安全阀及相应配管和附件等组成。 油井来液自流体进口进入设备后, 首先冲击入口动能吸收器, 被吸收一部分动能之后, 折流进入分离器实现气液的预分离,然后经过多级整流聚结填料进行气液重力分离,分理出的气体通过丝网捕雾器从气出

口流出,并经过计量装置计量;分离出的液体在沉降分离器中进一步沉降分离。分离出的油溢流过隔板进入储油室,从油出口流出并经过流量计计量后进入油罐;分离后处在下部的水通过水出口流出,经计量后进入污水罐。另外还设有排污口、超压时的安全保护阀等装置。 三、主要设计内容 1.所需的设计参数: (1)设计压力;(2)操作压力;(3)设计温度;(4)操作温度;(5)最大气、液处理量;(6)液体密度;(7)气体比重(标态);(8)油水相粘度;(9)载荷波动系数;(10)液体停留时间等。 2.主要设计内容 (1)罐体部分;(2)入口分离系统;(3)沉降系统;(4)除雾系统;(5)存储系统;(6)液面控制系统;(7)其它辅助系统等。 四、主要工作内容 (1)罐体部分设计;(2)内聚结构件仿真优化;(3)总体设计和计算;(4)油液界面控制部分计算;(5)技术培训;(6)现场测绘和实验。 五、设计步骤 (1)根据设计参数确定罐体尺寸;(2)利用FLUENT优化内聚结构件;(3)现场测绘;(4)内聚结构件完善确定;(5)总体规划与设计;(6)油液界面控制部分计算;(7)仪表选型;(8)完善修改;(9)技术培训。

蜗壳式旋风分离器的原理与设计

蜗壳式旋风分离器的原理与设计 l0余热锅炉2007.4 蜗壳式旋风分离器的原理与设计 杭州锅炉集团股份有限公司王天春徐亦芳 1前言 循环流化床锅炉的分离机构是循环流化床锅炉的关键部件之一,其主要作用是 将大量高温,高浓度固体物料从气流中分离出来,送回燃烧室,以维持燃烧室一定 的颗粒浓度,保持良好的流态化状态,保证燃料和脱硫剂在多次循环,反复燃烧和 反应后使锅炉达到理想的燃烧效率和脱硫效率.因此, 循环流化床锅炉分离机构的性能,将直接影响整个循环流化床锅炉的总体设计,系统布置及锅炉运行性能.根 据旋风分离器的入口结构类型可以分为:圆形或圆管形入口,矩形入口,"蜗壳式" 入口和轴向叶片入口结构.本文重点分析在循环流化床锅炉中常用的"蜗壳式"入 口结构. 2蜗壳式旋风分离器的工作原理 蜗壳式旋风分离器是一种利用离心力把固体颗粒从含尘气体中分离出来的静 止机械设备.入口含尘颗粒气体沿顶部切向进入蜗壳式分离器后,在离心力的作用下,在分离器的边壁沿轴向作贴壁旋转向下运动,这时气体中的大于切割直径的颗粒被分离出来, 从旋风分离器下部的排灰口排出.在分离器 锥体段,迫使净化后的气流缓慢进入分离器内部区域,在锥体中心沿轴向逆流 向上运动,由分离器顶部的排气管排出.通常将分离器的流型分为"双旋蜗",即轴 向向下外旋涡和轴向向上运动的内旋涡.这种分离器具有结构简单,无运动部件, 分离效率高和压降适中等优点,常作为燃煤发电中循环流化床锅炉气固分离部件. 图l蜗壳式旋风分离器示意图

蜗壳式旋风分离器的几何尺寸皆被视为分离器的内部尺寸,指与气流接触面的 尺寸.包括以下九个(见图1): a)旋风分离器本体直径(指分离器简体截面的直径),D; b)旋风分离器蜗壳偏心距离,; c)旋风分离器总高(从分离器顶板到排灰口),H; d)升气管直径,D; e)升气管插入深度(从分离器空间顶板算起),s; 余热锅炉2007.4 f)入口截面的高度和宽度,分别为a和 b; g)锥体段高度,H; h)排灰口直径,Dd; 2.1旋风分离器中的气体流动 图2为一种标准的切流式筒锥形逆流旋风分离器的示意图,图中显示了其内部 的流 态状况.气体切向进入分离器后在分离器内部空间产生旋流运动.在旋流的外 部(外旋升气管 涡),气体向下运动,并在中心处向上运动 (内旋涡).旋风分离器外部区域气体 的向下运动是至关重要的.因为,依靠气体的向下运动,把所分离到器壁的颗粒带 到旋风分离器底部.与此同时,气体还存在一个由外旋涡到内旋涡的径向流动,这 个径向流动在升气管下面的分离器沿高度方向的分布并不均匀. 轴向速度 切向速度 / 图2切向旋风分离器及其内部流态示意图图2的右侧给出了气流的轴向速度 和切向速度沿径向位置的分布图.轴向速度图表明气体在外部区域沿轴向向下运

旋风分离器结构原理分析

旋风分离器结构原理分析 更多专业、稀缺文档请访问——搜索此文档,访问上传用户主页~ 旋风分离器结构原理分析 旋风分离器结构原理分析 [摘要]旋风分离器在净化设备中得到广泛的应用,它是一种结构简单、操作方便、耐高温的净化设备,本文对旋风分离器的构造原理进行简单的分析。 [关键词]旋风分离器;结构;原理中图分类号:TQ051.84 文献标识码:A 文章编号:1009-914X(2014) 旋风分离器设备的主要功能是尽可能20-0134-01 1 作用 除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 2 工作原理含尘气体从圆筒上部长方形切线进入设备内旋风分离区,沿圆筒内壁作旋转流动。密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿内壁落入灰斗。气流在内层。气固得以分离。在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。在圆锥的底部附近,气流转为上升旋转运动,最后再经设备顶部出口流出。 3 适用范围旋风分离器一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 4 结构型式旋风分离器的性能不仅受含尘气的含尘浓度、物理性质、粒度分布及操作条件的影响,还与设备的结构尺寸密切相关。只有各部分结构尺寸恰当,才能获得较高的分离效率和较低的压力降。 4.1 采用细而长的器身减小器身直径可增大惯性离心力,增加器身长度可延长气体停留时间,所以,细而长的器身有利于颗粒的离心沉降,使

各类旋风分离器介绍

各类旋风分离器介绍 工作原理:首先,气体从进料口进入分离器进料布气室,经过旋风子支管的碰撞、折流,使气流均匀分布,流向旋风子进气口。均布后的气流由切向进入旋风子,气体在旋风管中形成旋风气流,强大的离心力使得气体中固体颗粒和液体颗粒甩脱出来,并聚集到旋风管内壁上,最终落入集污室中。干净的气流继续上升到排气室,由排气口流出旋风分离器。 旋风分离器的结构:主要由布气室、旋风分离组件、集气室、集污室和进出口接管及人孔等部件组成。旋风分离器的核心部件是旋风分离组件,它由多根旋风分离管呈叠加布置组装而成。 9、脱硫除尘器 含尘烟气通过不锈钢散堆填料,通过增加烟气与水溶液的接触面,来促进烟气与喷淋水的充分溶解中和,从而达到除尘器的除尘脱硫除尘效果。这种除尘器主要用于一切排放烟尘的锅炉和窑炉等行业。 7、多管除尘器 含尘气体由总进气管进入气体分布室,随后进入陶瓷旋风体和导流片之间的环形空隙。导流片使气体由直线运动变为圆周运动,旋转气流的绝大部分沿旋风体自圆筒体呈螺旋形向下,朝锥体流动,含尘气体在旋转过程中产生离心力,将密度大于气体的尘粒甩向筒壁。尘粒在与筒壁接触,便失去惯性力而靠入口速度的动量和向下的重力沿壁面向下落入排灰口进入总灰斗。旋转下降的外旋气流到达锥体下端位时,因圆锥体的收缩即以同样的旋转方向在旋风管轴线方向由下而上继续做螺旋形流动(净气),经过陶瓷旋风体排气管进入排气室,由总排气口排出。适用于各种型号和各种燃烧方式的工业锅炉及热电站锅炉的粉尘治理。 5、滤筒除尘器 设备在系统主风机的作用下,含尘气体从除尘器下部的进风口进入除尘器底部的气箱内进行含尘气体的预处理,然后从底部进入到上箱体的各除尘室内;粉尘吸附在滤筒的外表面上,过滤后的干净气体透过筒进入上箱体的净气腔并汇集至出风口排出。 随着过滤工况持续,积聚在滤筒外表面上的粉尘将越积越多,相应就会增加设备的运行阻力,为了保证系统的正常运行,除尘器阻力的上限应维持在1400~1600Pa范围内,当超

相关文档
最新文档