一拖二恒压供水控制系统

西门子S7-200PLC+变频一拖三恒压供水全套工艺图

西门子S7-200型PLC 一拖三变频恒压供水电气图 设计:彭作珩 版权所有人:彭作珩

系统控制工艺要求 1.供水压力恒定,波动要小,尤其是在换泵时. 2.三台泵根据压力的设定采用先开先停的原则. 3.能实行自动按时轮换切换泵,防止某一台泵长时间运行而烧坏及防止某一台泵长时间不 用而锈死. 4.要保护和报警功能 5..为了检修方便,设手动功能. 6.要水池防抽空功能. 7.为防止系统给变频器反送电,造成变频器烧毁,KM1与KM2,KM3与KM4,KM5与KM6 必须进行机械互锁. 选型 1.PLC: 采用西门子S7-200型,CPU224, 2.变频器:ABB/ACS400型7.5KW, 3.PID:选具有压力显示的PID调节器. 工作原理: 1.利用变频器的两个可编程继电器输出端口,RO1和RO2进行功能设定,当变频器达到最 高频率时,RO1的常开触点RO1B-RO1C闭合, 当变频器达到最低频率时,RO2的常开触点RO2B-RO2C闭合,可以作为CPU224的输入信号,判断是否进行加泵和切泵 2.为了节省成本,不采用模拟模块EM235,而采用PID调节器,由于采用了PID调节器,而不 用变频器内部的PID,设置变频器时将FACTORY设置成0就可以了 3..变频器的运行要根据PLC输出Q1.0 (DCOMI-DI2) 是否闭合来确定,变频器的停止要根 据PLC输出Q0.7 (DCOMI-DI1) 是否闭合来确定,设置变频器时将变频器的内部继电器RO1,RO2设置成频率到达就可以了 PLC 1.201接变频器的DCOM1.202,203接变频器的DI1,DI 2.变频器的RO1的常开触点接到 PLC的I0.0,RO2 变频器的RO2的常开触点接到PLC的I0.1 2.KA为自动/手动中间继电器, 中间继电器KA的常开触点接I0. 3. 3.主程序含调节程序和电机切换程序,加机程序及减机程序, 4.子程序实际是清零程序,在PLC上电时,先将VD200,VD201,VD260赋值为零,作为中继 的M复位. 5.在主程序中T56,T57为变频器的频率上下限到达滤波时间继电器,用于稳定系 统,VB200为变频泵的泵号,VB201为工频泵运行的总台数,VD260为倒泵时间存储器. 版权所有人:彭作珩

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

ACS510恒压供水一拖三系统图及参数表

ACS510/550恒压供水一拖三接线及调试一、变频器接线图 系统图参见ACS510手册P126、P127 二、参数设置及说明 此图的给定信号来自变频器内部 9902=>7(PFC控制宏)或15(SPFC控制宏)

9905=>电机额定电压 9906=>电机额定电流(选取三电机中最大值) 9907=>电机额定频率 9908=>电机额定转速 9907=>电机额定功率(选取三电机中最大值) 1002=>6(DI6) 1003=>1(FORW ARD) 1102=>7(EXT2) 1304=>如压力表是4~20mA,应设为4 1401、1402、1403=>31(PFC) 1601=>2(DI2) 4010=>19 4011=>定义内部给值 8117=>2(辅机数量) 8718=>自动切换间隔(>0才有效) 8120=>3 8123=>2(循环软启) 8127=>3(电机数量) 8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<81097(内部) 4023=>说明:f最小<4023 4024、4026=>睡眠延时、唤醒延时 4025=>唤醒偏差 三、循环工作时序: 1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。 2、如果压力不够,准备将M2投入。于是: ●变频器暂时停机,RO1断开,K1断开; ●RO2吸合,因此K2吸合,M2投入变频; ●RO1吸合,因此K1.1吸合保持,M1投入工频。 3、如果压力还不够,准备将M3投入,于是: ●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行 ●RO3吸合,因此K3吸合,M3变频 ●RO2吸合,因此K2.1吸合并保持,M2投入工频 4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力 ●RO1断开,这时K1.1掉电,M1停止工频运行 5、如果实际压力仍高于给定压力 ●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行 6、如果此时压力又不够,这时: ●RO3断开,K3断开停止变频器运行 ●RO1闭合,K1吸合,M1变频运行 ●RO闭合,K3.1吸合并保持,M3工频运行 7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这 样变频器就找不到该位的电机。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

恒压供水PLC控制系统

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验内容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

恒压供水控制系统的设计

天津理工大学 自动化学院专业设计报告 题目:恒压供水控制系统的设计 -------------系统硬件设计 学生姓名周延学号 届 2011 班级电气07-2 指导教师杨顺峰专业电气工程及其自动化

说明 1. 专业设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成专业设计工作,合 作完成的专业设计,要在设计报告概述中明确说明分工。 3. 设计报告内容建议主要包括:设计概述、设计原理、设计方案分析、软硬件具体设计、调试分析、总结以及参考资料等内容,不同类型的设计可有所区别。 4. 设计报告字数应在3000-4000字,图纸设计应采用电子绘图、且 符合相应国标,文字规范借鉴参考毕业设计要求。 5.专业设计成绩由平时成绩(50%)、报告成绩(30%)和答辩成绩(20%) 组成。专业设计应给出适当的评语。 专业设计评语及成绩汇总表

目录 第一章绪论 (1) 绪论 (1) 变频恒压供水系统的研究现状 (3) 本课题的主要研究内容 (4) 第二章系统的理论分析及控制方案的确定 (5) 变频恒压供水系统的理论分析 (5) 变频恒压供水系统理论方案的确定 (5)

第三章系统的硬件设计 (7) 系统主要设备的选型 (7) 系统主电路分析及其设计 (9) PLC的I/O端口分配及外围接线图……………………10第四章 系统的软件设计 (13) 系统的软件设计分析 (13) PLC程序设计 (15)

第一章绪论 绪论 随着社会的发展和进步,城市建筑的供水问题日益突出,一方面要求提高供水质量,不要因为压力的波动造成供水障碍;另一方面要求供水的可靠性和安全性,在发生火灾时能够可靠供水。针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。恒压供水包括生活用水的恒压控制和消防用水的恒压控制—即双恒压系统。恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。 传统的供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下: (1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。 (2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求

采用PLC控制的变频器一拖三恒压供水技术方案

采用PLC控制的变频器一拖三恒压供水技术方案 1. 系统控制要求; 1.1 实现变频器一拖三控制并可手动/自动切换; 1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压 力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台 泵………或两台泵,直到满足设定压力为止。 1.3手动状态时,要求手动启/停每一台泵,用于检修及应急; 1.4 低液位时,停所有泵并声音及指示灯报警; 1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。 1.6 三台泵均具备软启动功能。 电气原理图: 2. 设备选型: 2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。 2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。压力范围在 10Kpa-60Mpa。 2.3 液位开关选用供液电极型液位开关。

2.4 变频器:风机水泵型变频器。 3.电气控制原理及PLC程序说明: 3.1 电气控制原理图如图。3台水泵电机为M1,M2,M3。KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。电路设计为互锁功能。每台泵均有热继电器作电机过载保护。QF1-4分别为变频器、泵主回路隔离开关。QF5为PLC及控制回路提供电源。SA为手动/自动切换旋纽,打到1位置启动PLC按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。HL3-HL8为运行状态指示。HL2为水箱位置报警指示。 3.2 PLC I/0地址及功能如图 3.3 程序文字简介: SA旋钮置于自动位置,PLC运行准备。当液位传感信号为1,如果压力信号<=2V,3号泵变频运行,1、2号泵工频运行补水;当压力信号<=2.5V, 1号泵工频、2号泵变频运行;压力信号〉=2.5V ,小于3V 时,1号泵变频运行。如果信号大于3V,将所有泵置零,即停止三台泵所有方式的运行,待压力下降重新逐一起动水泵运行。变频与工频切换时,考虑到电机中的残余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的残余电压下降到较小值,这个值保证电源电压与残余电压不同相时造成的切换电流冲击较小,故设置延时时间为700ms(可根据现场情况调节),之后接入工频。变频器设置为自由停车。 本程序关键部位功能块解读: 1. 程序开始采用TBLS功能块作为程序的启动与停止(包括急停),启动按钮定义为S置位信号。 停止按钮定义R端复位; 2 .大量采用&逻辑功能块,各条件均满足经过判断后用于输出; 3. 灵活使用反向器,例如变频器的一拖三功能和变频与旁路的切换均为反向器实现。压力传感器信号<2.5V且>2V,则由CMPR模块(模拟量比较器)引出一路至反向器1#,经过反向后控制1#变频输出为零,再经过一个反向器控制1#工频输出。所以变频器一拖三功能,变频与旁路的切换换都是通过反向器及其后接延时接通TRG模块实现。变频器的启/停控制也由三段压力信号约束(三段经比较后的压力信号接入或逻辑模块作为RS的置位信号,三路控制变频输出的反信号接入另一&逻辑模块作为RS复位端控制变频 器的启/停,由此实现变频输出的平滑切换。) 假如液位传感器信号为0,即:水满,程序置零,工频变频运行停止,输出为零,直到信号为1开始 补水。 SA置于手动位置可通过外围控制电路启动各台泵单独工频运行,便于检修与应急。 以下为编辑完成的程序界面:

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

变频器一拖三恒压供水

一拖三”变频改造方案实现厂区恒压供水 摘要 针对原供水系统存在的问题,对生产区循环加压泵供水系统进行了变频技术改造,以降低 成本,提高供水质量及工作效率。 关键字 变频器;水泵;恒压供水;改造 1概述 中铝青海分公司供水加压泵站由一、二期泵站构成,共计有加压泵 10台套,一、二期各 供水600多万t 。正常情况下,两个独立控制的泵站的水泵均为三用两备运行状态。 1.1设备现状 一期泵站1986年投产,已连续运行 20年。5台水泵型号为150S78A ,流量为144 m3/h 配用电机型号为JO2-82-2,功率为40 kW ;二期泵站1990年8月投产,已连续运行16 泵型号为6SH-6A ,流为量180 m3/h ,扬程为55 m ,配用电机型号为JO2-82-2,功率为 存在问题 1)水泵运行年限较长,设备严重老化,故障率高。由于没有相应的备品备件供应,所以维修困 难。 响平稳供水,对分公司安全生产构成威胁。 2) J02系列电机是非节能产品,是属国家明令淘汰的电机产品。 3) 由于用水量不稳定,水压忽高忽低,水压高时易使供水管网破裂,水压低时不能满足生产生活需要。 所以必须及 时调整水泵水压,但由于水泵控制分散在两个控制室,造成水泵水压调整不便。 4)由于是两个泵站,所以必须有两组人员看守、操作泵站,存在人力浪费现象。 2改造方案 在基本保持原有加压泵站的功能和出力大小的情况下,将原有的 10台套水泵对应更换为ISO 系列,流量 为150耀180 m3/h ,扬程为62 m 的新水泵,安装位置与旧水泵对应。配用电机型号为 Y 系列2极,功 率为45 kW 。废弃原有水泵的控制系统,对 10台新水泵实施集中控制。对其中 7台水泵实施工频控制; 对剩余的3台水泵实 施一拖三”的变频控制,实现水压的自动控制调节。正常情况下,要求以工频控制的 水泵运行4台,备用3台;如果厂区用水量有大幅度的变化,可多开或少开工频控制的水泵,但不管那 种情况,都同时投运已实施 一拖三”的变频控制水泵系统,并尽可能使 3台变频控制的水泵保持在一工频 运行、一变频运行、一备用的状态,以达到自动调节管网的水压,实现恒压供水的目的。 本文针对改造方案中提出的 一拖三”的变频控制方案,从电气设计的角度进行了较为全面的论证,说明了 该方案的可行性。 3恒压供水系统工作原理 恒压供水控制系统将主要由 PLC 、PID 、变频器、切换继电器、压力传感器等部分组成。为了维持供水管 网的压力不变,必须在系统的管道上安装压力变送器作为反馈组件来为控制系统提供反馈信号。由于供水 系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用 PID 调节器进行控 制,而应采用PLC 参与控制的方式来实现对控制系统的调节。变频器选择 FRN55 P11S-4CX ,可编程控制器选择日本松下 FP1-C40 型。 控制核心单元 PLC 根据手动设定压力信号与现场压力传感器的反馈信号,得到压力偏差和压力偏差的变 化率,经过 PID 运算后,PLC 将0?5V 的模拟信号输出到变频器,用以调节电机的转速以及进行电机的 软启动;PLC 通过比较模 拟量输出与压力偏差的值,驱动切换继电器组,以此来协调投入工作的水泵电 机台数,在大范围上控制供水的流量,同时完成电机的启停、变频与工频的切换。 PID 调节器控制变频 5台套,每年 ,扬程为62 m , 年。5台水 45 kW 。 1.2 已影 FRN45 P11S-4CX 或

PLC恒压供水控制系统

目录 第一章绪论1 第二章 PID调节概念及基本原理3 2.1 PID调节概述3 2.1.1自动控制系统的分类3 2.2 PID控制的原理和特点4 2.2.1 PID控制的原理和特点的概念4 2.2.2 PID控制的分类5 2.3 PID控制器的参数整定6 第三章三菱FX2N型PLC的恒压变频供水系统设计实例8 3.1系统的主要控制要求9 3.2系统的硬件选型9 3.2.1 系统的控制器------- FX2n—32MR10 3.2.2 系统的模拟量输入、输出模块10 3.2.3 变频器FR—A50010 3.2.4 压力传感器TPT50311 3.3控制系统的I/O点及地址分配11 3.3.1 PLC系统的选型13

3.4 恒压供水系统的电气控制系统13 3.4.1 主电路图13 3.4.2控制电路图14 3.4.3 PLC系统外部接线图15 第四章恒压供水系统的程序设计17 4.1 系统的程序结构说明及流程图17 4.1.1初始化子程序17 4.1.2 定时中断程序18 4.1.3 主程序19 4.2程序中使用的编程组件及其含义21 第五章总结23 参考文献24 谢辞25 附录:控制系统的梯形图程序26

第一章绪论 近年来我国中小城市发展迅速,集中用水量急剧增加。据统计,从1990年到1998年,我国人均日生活用水量<包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,与此同时我国城市家庭人均日生活用水量也在逐年提高。在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。因为每天不同时段用水对供水的水位要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。这种情况造成用水高峰期时水位达不到要求,供水压力不足,用水低峰期时供水水位超标,压力过高,不仅十分浪费能源而且存在事故隐患<例如压力过高容易造成爆管事故)。要解决这些问题,用基于PLC控制变频调速恒压供水能实现。变频调速恒压供水系统由变频器、泵组电机、供水管网、储水箱、智能PID调节器、压力变送器、PLC控制单元等部分组成,控制系统原理图如图1.1所示。 图1.1 控制系统原理图 其中变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化,同时变频器还可作为电机软启动装置,限制电机的启动电流。压力变送器的作用是检测管网水压。智能PID调节器实现管网水压的PID调节。PLC控制单元则是泵组管理的执行设备,同时还是变频器的驱动控制,根据用水量的实际变化,自动调整其它工频泵的运行台数。变频器和PLC的应用为水泵转速的平滑性连续调节提供了方便。水泵电机实现变频软启动, 消除了对电网、电气设备和机械设备的冲击,延长机电设备的使用寿命。 第二章 PID调节概念及基本原理

一个最简单的变频恒压供水实例

恒压供水 接线: 按图五所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数: 电阻满量程:400?(蓝、红) 零压力起始电阻值:≤20?(黄、红) 满量程压力上限电阻值:≤360?(黄、红) 接线端外加电压:≤6V(蓝、红) 图五 恒压供水接线图 开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5公斤)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。

参数设定: F1.01出厂值为0.0,设定为1 F1.23出厂值为0,设定为30.0 F2.05出厂值为0,设定为1 F2.19出厂值为0,设定为1 F4.00出厂值为0,设定为1 F4.06出厂值为0,设定为3.10 按电机名牌设定电机参数:F1.21、F5.00~F5.04 闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5KG。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。

plc控制的恒压供水系统(开题报告)

长春科技学院 毕业设计(论文)开题报告 题目:PLC控制的恒压供水系统学院: 专业: 班级: 学号: 姓名: 指导教师: 填表日期:

一、选题依据及意义 在我国,节电节水的潜力非常大。据有关国际组织发表的资料显示:中国的单位国民经济总产值所消耗的电是美国、德国等的4倍左右,消耗的水是他们的2倍左右。我国的大量用电设备中,风机和泵类电机的耗电量占全国发电量的50%左右,若推广新型电机调速技术,可节电40%左右,即可以节约全国发电量的1/5。由于我国人均占有水、电资源相对于别国又少很多,因此,在我国一方面水电供应紧张,而另一方面,水电的浪费又十分惊人,节电节水,不仅潜力巨大,而且意义深远。 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。可以说,变频技术已为大多数用户所接受。但是,不能不指出,我国在变频技术的应用方面,与发达国家的水平尚有很大差距。目前,我国在用的交流电动机使用变频调速运行的仅6%左右,而工业发达国家已达60% - 70%;日本在风机、水泵上变频调速的采用率已达10%,而我国还不足0.01%;在日本,空调器的70%采用了变频调速,而我国才刚刚起步。从这个现实出发,变频技术尚有很大的发展空间。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统,在实际应用中得到了很大的发展。 二、国内外发展情况(文献综述) 随着变频器的问世,变频调速技术在以工频交流电为主的用电场合得到了广泛的应用,其中变频恒压供水便是在变频调速领域中典型的应用。以前,国外生产的变频器主要用来控制频率、控制电机的启停、控制电机正反转和转速调节以及各种保护功能。在变频恒压供水系统中,变频器是通过可编程序控制器控制,作为控制机构和系统执行机构之间的中间环节,为保证水管内水压恒定,满足不同时间段供水量大小的需求,需在变频器外部提供压力传感器和压力控制器,对水压进行闭环控制。目前我们国内有很多公司也在做变频恒压供水的工程,可是大部分采用国外的变频器控制水泵的转速,有的采用单片机及相应的软件予以实现;有的采用可编程控制器(PLC)及相应的软件予以实现。但在系统的稳定性能、动态性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能

自动恒压供水的控制系统(plc)

一、绪论 (一) 课题的意义及应用背景 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。采用变频器和可编程控制器等现代控制设备和技术实现恒定水压供水,是供水领域技术革新的必然趋势,以往采用的水塔供水既不卫生又不经济,更重要的是浪费了大量的能源,本文介绍的变频调速恒压供水系统以其有效的实用性,彻底解决了上述问题,是一项颇有实用价值的调速系统,为已有的供水系统技术改造提供了切实可行的途径。 变频控制技术的进步不仅仅是异步电动机结构简单、坚固、易于维护等优点,更主要的是采用变频调速技术的异步电动机的机械特性达到了直流电动机调压调速的特性。由于计算机技术的介入,使得变频器具有丰富的功能和方便好用的特点,因此人们才有可能按照实际要求,自行构成一个适用和可靠的调速系统。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,充分利用变频器内置的各种功能对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。 变频恒压供水控制系统主要有: (1)带PID回路调节器和/或可编程序控制器(PLC)的控制系统 在该系统中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望值;压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个转速控制信号。 由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所

ABB510变频器PID内部给定控制,外部给定控制及一拖三PFC控制相关参数合集

ABB510变频器 PID内部给定控制,外部给定控制及一拖三PFC控制相 关参数合集

要将变频器置于远程状态(LOC/REM)=REM

ABB变频器一拖一一、1拖1 PID配置:1、ABB变频器一拖一接线: 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号。2、变频器参数调节:参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)16.01 0-不需要启动允许信号40.10 19(内部设定给定值)40.11 设定压力值(压力表量程的百分数,比如目标8公斤,量程16公斤,设置成50%)

二、1拖3 PID配置: ABB变频器一拖三1、ABB变频器一拖三接线 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号;4)10和16,17,18接通是三台泵的启动联锁信号;5)3个继电器分别接三台泵。2、变频器参数设置参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)14.01 31=PFC 控制14.02 31=PFC控制14.03 31=PFC控制16.01 0-不需要启动允许信号40.10 19(内部设定给定值)40.11 设定压力值(压力表量程的百分

数,比如目标8公斤,量程16公斤,设置成50%)81.17 2=辅机数量81.27 3=辅机数量 收起内容

变频器恒压供水接线教学教材

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试:

检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。

变频恒压供水系统的构成

兴崛变频恒压供水系统的构成 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、通讯接口以及报警装置等部分组成。 1、执行机构 执行机构是由一组水泵组成,他们用于将水供入管网,图3.3中的4个水泵分为三种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 快速泵:水泵运行只在工频状态,速度恒定,它们用以在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。当水泵采用循环的控制方式时,M1、M2、M3既可以做调速泵,也可以作为恒速泵,如果水泵采用固定的控制方式时,M1、M2、M3中只有一台可以调速泵,其余两台作为恒速泵。 附属小泵:它只运行于启、停两种工作状态,用以在用水量很小的情况下(例如:夜间)对管网用水量进行少量的补充。系统中使用附属小泵的原因在于变频泵暂时无法在实际使用中实现其恒压供水,尤其是夜间和管网有小流泄压现象时会出现超压或断流。 在变频调速恒压供水系统中,这样构成水泵组有下几个原因: (1)用几个小功率的水泵代替一台大功率的水泵,使水泵选型容易,同时这种结构更适合于大功率的供水系统。 (2)供水系统的增容和减容容易,不需要更换水泵,只要再增加恒速水泵即可。(3)以小功率的变频器代替大功率的变频调速器,以降低系统投入成本,增加系统运行可靠性。 (4)附属小泵的加入,使系统在用水量很低时(如:夜间)可以停止所有的主水泵,用小水泵进行补水,降低系统的运行噪音。 (5)在用水量不太大时,系统中不是所有的水泵在运行,这样可以提高水泵的运行寿命,同时降低系统的功耗,达到节能的目的。 对于多泵并联的母管制供水系统,既要保证恒压供水,又要实现经济调度,一般均采用如下的设计原则:多泵并联,大小泵结合,调速泵保证管网压力,水泵台数的增减保证流量,小泵实现小流量保压。 具体方案如下: (1)一般不用一台大泵,宁可用多台小泵,这样有利于经济调度。 (2)调速泵为主泵,流量最大,扬程要比其他水泵高出30%-50%,有利于扩大调速效果,只能在超过实际压力的富裕扬程内调节流量,大大的制约其调节范围。(3)定速泵的选择可以采用相同扬程,不同流量的泵,这样也有利于经济调度。(4)为了进行小流量的保压(例如深夜),系统中有一台小流量的泵。 (5)调速泵采用变频器调速,一备一用的固定拖动不进行切换操作。水泵检修时可采用冷切换方式暂时切换到其他泵上做调速运行。 (6)其他泵可采用一台软启动器或用PLC实现循环软启动操作。 变频器与工频电网之间的相互切换问题,使用冷切换是最简单、最安全的切换方式,但是它只能用于可以分为异步切换和同步切换两种方式。目前流行的多泵恒压供水系统变频循环软启动控制方案都采用异步切换的方式,因此就不可避免

相关文档
最新文档