_能量密度充电倍率测试方法_动力电池、燃料电池相关技术指标测试方法_试行_

_能量密度充电倍率测试方法_动力电池、燃料电池相关技术指标测试方法_试行_
_能量密度充电倍率测试方法_动力电池、燃料电池相关技术指标测试方法_试行_

动力电池、燃料电池相关技术指标测试方法(试行)

1、 动力电池能量密度(PED)测试方法

1.1测试对象

测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。

1.2 测试步骤

室温(25℃±2℃)环境下,按照如下步骤测试:

1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min;

2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min;

3)重复步骤1),计量放电能量E(以Wh计);

4)重复步骤2)~3)2次,取3次放电能量E的平均值E average 。

5)用衡器测量测试对象的质量M(以kg计,称重时至少包括GB/T 31467.3-2015 附录A.1规定的组成部分);

6)计算测试对象放电能量密度PED(以Wh/kg计),计算公式如下:

/average PED E M

2、动力电池(含超级电容器)最大充电倍率(CR)测试方法

2.1测试对象

测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。

2.2 测试步骤

室温(25℃±2℃)环境下,按照如下步骤测试:

1)按照企业规定的且不小于I 3(A)的电流放电至企业规定的放电终止条件,静置不小于30min;

2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min;

3)重复步骤1),计量放电容量Q 0(以Ah计);

4)按照企业规定的最快充电方式(该充电方式应不高于GB/T 31484-2015的6.1.1.3使用的充电方式)充电至80%SOC (SOC值为电池管理系统上报数值),静置30min,计量充电时间t(以s计);

5)按照步骤1)相同的电流放电至20%SOC(SOC值为电池管理系统上报数值),静置30min,计量放电容量Q 1(以Ah计),如果Q 1低于0.55 Q 0,则终止试验;

6)重复步骤4)~5)10次,如果测试过程中测试对象温度超过企业规定的最高工作温度,则终止试验;

7)取步骤6)10次充电时间t的平均值t average ,并计算测试对象最大充电倍率CR(以C计),计算公式如下:

2160/average CR t

3、燃料电池系统(发动机)额定输出功率测试方法

按照GB/T 24554-2009 第7.4条规定的方法测量燃料电池系统(发动机)额定输出功率。在测试过程中测试对象额定输出功率波动应在标称值的±5%范围以内。

燃料电池的原理及发展

燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电能的能量转换装置。燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。 近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂和质子交换膜燃料电池电厂。燃料电池的结构与普通电池基本相同,有阳极和阴极,通过电解质将这两个电极分开。与普通电池的区别是,燃料电池是开式系统。它要求连续供应化学反应物,以保证连续供电。其工作原理:燃料电池由阳极、阴极和离子导电的电解质构成,其工作原理与普通电化学电池类似,燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电流。 介绍一下熔融碳酸盐燃料电池(MCFC)一、MCFC概述 1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。总体上,燃料电池具有以下特点: (l) 不受卡诺循环限制,能量转换效率高。 (2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。

iso1183塑料.非泡沫塑料的密度测定方法

塑料 塑料.非泡沫塑料的密度测定方法. 部分1:浸渍法、液体比重瓶法和滴定法 内容: 1前言 2标准参考文献 3专业术语与定义 4测试环境 5方法 5.1 方法A--浸渍法 5.2 方法B--液体比重瓶法 5.3 方法C--滴定法 6 空气浮力的修正 7 测试报告 附录A (标准)适合方法C的液体系统

前言: ISO (国际标准组织)是国际范围内的国家联邦组织,(ISO 本身的成员)。国际标准的版本是通过ISO 技术委员会执行的。每个成员国是对各项感兴趣的专业制定相关的标准,并代表委员会。国际组织,政府组织和非政府组织,通过ISO 参与工作,ISO 与IEC紧密合作制定相关电子技术标准。 国际标准的草案是根据ISO/IEC的相关制定,第二部分进行拟定的。 技术委员会的主要任务是准备相关国际标准,国际标准的草案是否通过是通过各个成员国的投票进行决定的。出版或发行是需要至少75%的成员国投票通过。 需注意的是相关文件的组成部分可能是相关专业的专利,ISO不用对相关专利的侵权负责。 ISO1183-1是由ISO/TC 61 技术委员会准备,塑料,物理化学性能,小组委员会SC5 。 ISO 1183取消了下面几个部分,代替了ISO 1183:1987,进行了相关技术修

正。 ISO 1183包括下列几部分,塑料.非泡沫塑料的密度测定方法. --第一部分浸渍法,液体比重瓶法,滴定法。 --第二部分密度梯度管法 --第三部分气体比重瓶法 塑料.非泡沫塑料的密度测定方法. 部分1:浸渍法、液体比重瓶法和滴定法 警告—使用ISO1183 可能包括材料,操作或仪器的危险。ISO1183这部分没有试图包括所有的安全注意事项,有的话也是与使用相关的。使用者需根据ISO1183建立相关的安全与健康标准,在适用范围内优先使用。

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

燃料电池原理及习题解答

燃料电池原理及习题解答 在中学阶段,掌握燃料电池的工作原理和电极反应式的书写是十分重要的。所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为三步:第一步,先写出燃料电池的总反应方程式;第二步,再写出燃料电池的正极反应式;第三步,在电子守恒的基础上用燃料电池的总反应式减去正极反应式即得到负极反应式。下面对书写燃料电池电极反应式“三步法”具体作一下解释。 1、燃料电池总反应方程式的书写 因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H2+O2=2H2O。若燃料是含碳元素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃料电池在酸性电解质中生成CO2和H2O,即CH4+2O2=CO2+2H2O;在碱性电解质中生成CO32-离子和H2O,即CH4+2OH-+2O2=CO32-+3H2O。 2、燃料电池正极反应式的书写 因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以可先写出正极反应式,正极反应的本质都是O2得电子生成O2-离子,故正极反应式的基础都是O2+4e-=2O2-。正极产生O2-离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。 ⑴电解质为酸性电解质溶液(如稀硫酸) 在酸性环境中,O2-离子不能单独存在,可供O2-离子结合的微粒有H+离子和H2O,O2-离子优先结合H+离子生成H2O。这样,在酸性电解质溶液中,正极反应式为O2+4H++4e-=2H2O。 ⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液) 在中性或碱性环境中,O2-离子也不能单独存在,O2-离子只能结合H2O生成OH-离子,故在中性或碱性电解质溶液中,正极反应式为O2+2H2O +4e-=4OH-。 ⑶电解质为熔融的碳酸盐(如LiCO3和Na2CO3熔融盐混和物) 在熔融的碳酸盐环境中,O2-离子也不能单独存在, O2-离子可结合CO2生成CO32-离子,则其正极反应式为O2+2CO2 +4e-=2CO32-。 ⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许O2-离子在其间通过,故其正极反应式应为O2+4e-=2O2-。

堆积密度表观密度检测实施细则

堆积密度表观密度检测实施细则 一、堆积密度的测定: 膨胀珍珠岩堆积密度的测定 1、抽样规定:以100m3为一个检验批量,不足100m3者亦视为一个检验批量。 2、试样制备:从每检验批量货堆上的不同位置随机抽取5包试样,将每包试样按四分法缩分到0.008m3,放入袋中分别存放在干燥容器中。 3、试样干燥: 制备好的试样放入温度110±5的烘箱中烘干至恒重,即每隔24h的两次连续质量之差小于0.1%,随后移至干燥器中冷却至室温。 4、将烘干后的试样注入漏斗,启动活动门,将试样注入量筒。 5、用直尺刮平量筒试样表面,刮平时直尺紧贴量筒上表面边缘。 6、称量量筒及试样质量。 7、试验过程中要保持试样呈松散状态,防止任何程度的振动。 8、计算:堆积密度按下式计算: ρ= m1- m2/v 式中:ρ-试样的堆积密度, m2 -量筒的质量, m1 -量筒和试样的质量, v -量筒的容积, 9.试验结果取两次试验结果的算术平均值,保留三为有效数字。评定见附表二 二、质量含水率试验方法: 1、抽样规定:以100m3为一个检验批量,不足100m3者亦视为一个检验批量; 2、试样制备:从每检验批量货堆上的不同位置随机抽取5袋试样,从随机抽取的5袋中每袋取出10g试样,混合. 3、放在天平上称量并记录,然后放入温度为110+-5℃烘箱下烘干至恒重,即每隔24h 的两次连续质量之差小于0.1%。随后移至干燥器内冷却至室温,称量并记录. 4、计算:质量含水率按下式计算 m=m3–m4 /m4×100 式中:m -试样质量含水率,% m3-试样干燥前质量, m4 -试样干燥后质量 试验结果取三次试验结果的算术平均值,保留二位有效数字。评定见附表二 三、泡沫塑料和橡胶表观(体积)密度的测定 1、试样制备:硬质材料至少取5个试样,半硬质或软质材料至少取3个试样;对硬质材料,试样的总表面积至少100cm2,对半硬质和软质材料试样的体积至少100 cm2,试样的体积要用标准的模具切割,切割时不可使原始材料产生变形。 2、试样状态调节:试样制成后,放入干燥器中23±2℃或27±2℃进行至少16小时的状态调节。 3、将调节好的试样放在天平上称量并记录,精确到0.5%。 4、计算:由式(1)计算表观(体积)密度,取其平均值,并精确至0.1kg/m3。 P=m/v×106 (1) 式中: P----表观密度,kg/m3

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

(完整版)试简述五大类燃料电池的工作原理和各自的特点

三、试简述五大类燃料电池的工作原理和各自的特点 燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。 3.1 碱性燃料电池(AFC) 碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。 3.1.1原理 使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。 负极反应:2H2 + 4OH-→ 4H2O + 4e- 正极反应:O2 + 2H2O + 4e- → 4OH- 碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。 3.1.2 特点 低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。 3.2 磷酸燃料电池(PAFC) 磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于

GBT泡沫塑料表观密度的测定

蒲城清洁能源有限责任公司质检部 二零一三年 目录 1范围 (2) 2规范性引用文件 (2) 3术语和定义 (2) 3.1表观总密度apparedt overall density (2) 3.2表观芯密度apparedt core density (2) 4仪器 (3) 4.1天平 (3) 4.2量具 (3) 5试样 (3) 5.1尺寸 (3) 试样的形状便于体积的计算。 (3) 5.2数量 (3) 5.3状态调节 (3) 6试验步骤 (3) 7结果计算式 (4) 8精确度 (5) 9实验报告 (5)

1范围 本标准规定了测定泡沫塑料及橡胶的表观总密度和表观芯密度的实验方法。 模制与自由发泡或挤出时形成表皮的材料表观总密度、表观芯密度可用本标准测试。 术语“表观总密度”不适用于在模制时未形成表皮的材料。 对于不规则形状的产品应采用浮力法的方法测定。 2规范性引用文件 下列文件中的条款通过本标准的引用的而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版并不适用于本标准。然而,鼓励根据本标准达成协议的各种研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新标版本适用于本标准。 GB/T2918-1998 塑料试样状态调节和试验的标准环境(idt ISO 291:1997) GB/T6342-1996 泡沫塑料和橡胶线性尺寸的测定(idt ISO 1923:1981) 3术语和定义 下列术语和定义适用于本标准。 3.1表观总密度apparedt overall density 单位体积和泡沫材料的质量,包括模制时形成的全部表皮。 3.2表观芯密度apparedt core density 去除模制时形成的全部表皮后,单位体积泡沫材料的质量。

塑料密度测试方法

T/SEN 深圳市星源材质股份有限公司 企业标准 T/SEN 011-2008塑料密度测试方法 星源材质股份有限公司发布

T/SEN 011-2008 1、主题内容 本方法规定了塑料密度测试方法,本方法引用GB1033之测试方法B法——比重瓶法,本方法由于测试条件的限制,未采用真空条件,并且采取室温控制粗略控制温度。 2、原理 根据阿基米德定律,物质排出水的体积来作为物质体积计算物质密度。 3、检测仪器 3.1天平:感量0.1mg。 3.2比重瓶:其容积为50m1。 4、试样及浸渍液 4.1试样为粉状、粒状、薄膜或片材的碎片。质量约1一5 g。 4.2浸渍液选用新鲜蒸馏水或其他不与试样作用的液体,必要 时可加人几滴湿润剂,以便除去气泡。 5、测试步骤 5.1在标准环境温度下,称量干燥的空比重瓶质量。 5.2将试样装人比重瓶中,称其质量。 5.3注人浸债液浸没试样。 5.4注人浸渍液至比重瓶刻度处。 5.5取出比重瓶擦干,立即称量。 5.6将比重瓶倒空,清洗后装人浸渍液,调节液面至比重瓶刻

度处,称其质量。 6、结果表示 试样密度按下式计算: 21t m m m x -?=ρρ 式中:ρt —温度l ℃时试样的密度,g/cm 3。 m —试样的质量,g , m 1—比重瓶内浸溃液的质量,g; m 2—容纳有试样的比重瓶内浸渍液的质量,g; ρx 一浸渍液的密度,g/cm 3, 注:若使用的浸渍液不是水,则用比重瓶法测定浸演液的密度。 7、试验报告 试验报告应包括以下内容: 7.1、执行标准的标准号 7.2、试验样品的识别编号 7.3、测试结果 7.4、测试员、审核员

燃料电池测试

燃料电池测试设备数量较少,操作并不复杂,但是与普通电池测试区别还是很明显。测试要求也更多。 燃料电池本身的特点: 燃料电池是核心部件为质子交换膜的发电设备,把化学能转化为电能。 单节电芯电压很低,电流很大。电池包节数较多,密封性和一致性要求较高。 电芯内阻较大,功率损耗较大,电压电流范围较广, 电池输出准备及变化时间较长,变化速度慢,不耐负载突变。不能急开急停。 BMS控制板特点: 电池串联数量多,一般在100串以上,需要对BMS的单节监控性能进行验证。电池发热量大,需要对电池进行温度监控与控制,转换效率需要更精准。 对输出端的电压电流采集的调整输入氢气和空气量。 输入输出变化斜率控制。 因为一般是程控进行,所以最好负载也需要程控。 电压电流等参数需要进行校验和校准。 实际使用: 因为燃料电池开始,变化,结束均有一定的滞后性,一般会后接一个动力电池作为缓冲器件然后才用于动力输出。如果燃料电池直接用于冲击性消耗,会对交换膜损害很大,寿命急剧降低。 测试需要设备:除了燃料电池本身的BMS,输入氢气的流量压强传感器,空气的输入及散热,单节一致性监控之外。最重要的就是负载设备。 燃料电池测试,为什么只能使用电子负载? 作为负载,除了电子负之外,电阻和反馈式负载在新能源行业也偶有使用,为什么不能用于燃料电池测试呢? 单节燃料电池测试要求苛刻,要求很低电压达到很大的电流,电流越大,电压越低。比如要求0.6V带载到600A甚至更高。需要负载从1mΩ到1KΩ范围内都要保证足够的精确度。 电池包不允许冲击性消耗,要求全输出范围斜率可调,要求斜率,要求精确度,要求程控,要求带载状态不能阶跃等等。 反馈式负载:反馈式负载就是一台DC-AC转换的开关电源。其消耗方式是高速开关脉冲式。10%量程范围带载能力差,电流杂波大,精确度稍差。变化斜率慢,斜率控制差,完

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

密度测量方法汇总己

密度测量方法汇总己 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

密度测量方法汇总 一、天平量筒法 1、常规法 实验原理:ρ= m/v 实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、石块 实验步骤: (1)调节好的天平,测出石块的质量m ; (2)在量筒中倒入适量的水,测出水的体积V 1 (3)将石块用细线拴好,放在盛有水的量筒中,(排水法)测出总体 积V 2; 实验结论: 2、天平测石块密度 方案1(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:天平、水、空瓶、石块 实验过程: 1、用天平测石块质量m 1 2、瓶中装满水,测出质量m2 1 2v v m -= V m = ρ

3、将石块放入瓶中,溢出一部分水后,测出瓶、石块及剩余水的质量m 3 推导及表达式:m排水=m1+m2-m3 V石=V排水 =(m1+m2-m3)/ρ水 ρ石=m 1/V石=m 1ρ水/(m1+m2-m3) 方案2(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:烧杯、天平、水、细线、石块 实验过程: 1、在烧杯中装适量水,用天平测出杯和水的总质量m 1 2、用细线系住石块浸没入水中,使石块不与杯底杯壁接触,用天平测总质量 m2 3、使石块沉入水底,用天平测出总质量m 3 推导及表达式:m石=m3-m1 V石=V排=(m2-m1)/ρ水 ∴ρ石=m石/V石=(m3-m1)ρ水/(m2-m1) 3、等体积法 实验器材:天平(含砝码)、刻度尺、烧杯(无刻度)、适量的水、足量的牛奶、细线。

1.用调节好的天平,测出空烧杯的质量m 0; 2.将适量的水倒入烧杯中,用天平测出烧杯和水的总质量m 1,用刻度尺量出水面达到的高度h (或用细线标出水面的位置); 3.将水倒出,在烧杯中倒入牛奶,使其液面达到h 处(或达到细线标出的位置),用天平测出烧杯和牛奶的总质量m 2。 实验结果: ∵ 因为水和牛奶的体积相等, V 牛=V 水 ∴ 4、 等质量法 实验器材:天平、刻度尺、两个相同的烧杯(无刻度)、适量的水、足量的牛奶、滴管。 实验步骤: (1)调节天平,将两个相同的烧杯分别放在天平的左右盘上; (2)将适量的水和牛奶分别倒入两个烧杯中,直至天平再次平衡为止; (3)用刻度尺分别测量出烧杯中水面达到的高度h 水和牛奶液面达到的高度h 牛。 水 水 牛 牛 = ρρm m

燃料电池测试方案

燃料电池测试方案 燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。根据燃料和氧化剂种类的不同燃料电池分为多种类型,比如碱性燃料电池,质子交换膜燃料电池,甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池等,具有环境污染小,比能量高,噪音低,燃料范围广,可靠性高,易于建设等优点,因此其可广泛应用于电动汽车、航天飞机、潜艇、通讯系统、中小规模电站、家用电源,以及其他需要移动电源的场所。中国致力于燃料电池的相关研究数十年,当前国家也将燃料电池行业的发展写入了多个地区的战略规划。 神州技测工程师表示,对于燃料电池的测试,功率不同,测试方法也不同。总体说来,硬件仪器一般包括:气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、加湿器系统、气体加热线、温度控制监测系统、压力控制监测系统、电子负载系统、辅助输入输出系统、架构模块式系统以及第三方设备等。软件一般包括:对所有接入仪器的设定、控制、安全报警以及数据收

燃料电池的主要应用是在汽车行业中,大概可占到行业应用的70%左右。因此我们可以以汽车中燃料电池为例,简述燃料电池的测试。 燃料电池堆栈的测试中,会使用多种气体相关装置,电力相关装置,监测系统等。

神州技测提供的AMETEK SG系列直流电源可以作为辅助电源,功率范 围:4KW-150KW,电压范围5-1000V,电流范围5–6000 A;提供恒压、恒流和恒功率输出模式;提供独特的“序列”功能,易于生成变化的直流波形;可定义电压斜率;可闻噪音低。 AMETEK PLW系列水冷电子负载产品可以作为电力测试设备使用,检测燃料电池的电力特性。PLW系列产品成熟稳定,可靠性高,有众多典型案例,型号齐全:功率覆盖6kW、9kW、12kW、18kW、24kW、36kW,也可提供36kW - 250kW的其他标准型号;标准额定电压:60V、120V、400V、600V、800V和1000V;外形紧凑,功率密度高(2U,18kW)。 水冷电子负载应用在燃料电池堆栈测试中有众多的优势,比如功率密度高,体积小巧;冷水在电子负载内部流动,对系统的温度环境影响较小,适于实验人员工作,同时也减少了环境温度对测试的影响;噪声小,适于实验人员工作;无需额外建空调房,因此降低成本,减少线损对系统测试的影响;能量被消耗,无需考虑馈电对实验室的影响;故障率低;易于程控。同时,目前的权威燃料电池检测产品,Greenlight系统中,大多使用了此系列产品,有众多的成功案例。 关于升压变压器测试,动力控制单元,驱动电机单元的测试,AMETEK也可以提供相应的电源和电子负载进行测试,如SG系列产品和PLA系列产品等。

燃料电池分类及工作原理

一、燃料电池的工作原理 燃料电池是用一种特定的燃料,通过一种质子交换膜(PEMProtonExchangeMembrane)和催化层(CLCatalystLayer)而产生电流的一种装置,这种电池只要外界源源不断地供应燃料(例如氢气或甲醇),就可以提供持续电能。它的工作原理,是利用一种叫质子交换膜的技术,使氢气在覆盖有催化剂的质子交换膜作用下,在阳极将氢气催化分解成为质子,这些质子通过质子交换膜到达阴极,在氢气的分解过程中释放出电子,电子通过负载被引出到阴极,这样就产生了电能。 在阳极经过质子交换膜和催化剂的作用,在阴极质子与氧和电子相结合产生水。也就是说燃料电池内部的氢与空气中的氧进行化学反应,生成水的过程,同时产生了电流,也可以理解为是电解水的逆反应。 燃料电池在阳极除供应氢气外,同时还收集氢质子(H+),释放电子;在阴极通过负载捕获电子产生电能。质子交换膜的功能只是允许质子H+通过,并与阴极中的氧结合产生水。这种水在反应过程中的温度作用下,以水蒸气的形式散发在空气中(对汽车用的大功率燃料电池就要设置水的回收装置)。注意,用氢作燃料电池所生成的是纯净水可以饮用,而用甲醇作燃料生成的水溶液中可能产生甲醛之类有毒物质不能饮用。图1为燃料电池工作原理的示意图。

二、燃料电池的分类 由于人们是从不同角度来研究和开发燃料电池的,所以其种类也繁多,但目前主要有3种。 1 质子交换膜技术 质子交换膜技术(或者称聚合物电解液膜技术)——简称PEMFC (ProtonExchangeMembreneFuelCell)。由于它能提供比传统锂离子电池大约高出5~10倍的能量密度,比甲醇燃料电池也有更高的能量密度,所以,人们都看好质子交换膜技术的氢燃料电池,虽然它还存在着储存及安全等问题,但人们正在克服它,最终有望在3~5年实现可存储在像打火机大小的容器中,充一次氢气发电可供手机使用几天,它将是未来便携式电子产品供电系统的首选。 2 直接甲醇燃料电池 直接甲醇燃料电池——简称DMFC(DirectMethanolFuelCell)。它是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储,因为,在汽车上早已使用甲醇溶液作为挡风玻璃的刮洗液了,故不存在安全问题。但甲醇存在泄漏问题,虽然用水稀释可以解决,但是电解效率却大大降低,目前正在解决渗漏问题。 3 直接乙醇燃料电池 直接乙醇燃料电池——简称DEFC(DirectEthanolFuelCell)。为避免甲醇的渗漏问题,而采用乙醇,它也是由两个电极、燃料及电解液组成的。

石料表观密度测试方法

石料表观密度测试方法 一、实验意义和目的 在土木工程各类建筑物中,材料要受到各种物理、化学、力学因素单独及综合作用。因此,对土木工程材料性质的要求是严格和多方面的。材料基本性质的实验项目较多,如密度,表观密度,孔隙率和吸水率等,对于各种不同材料及不同用途,测试项目及测试方法视具体要求而有一定差别。 通过此项实验,使学生掌握材料的基本物理性质及其测试原理和方法。 二、实验原理 本实验以石料为例,介绍材料的几种常用物理性能试验方法。其基本性质包括密度,表观密度,孔隙率和吸水率等。石料密度是指石料矿质单位体积(不包括开口与闭口孔隙体积)的质量。表观密度是指石料在干燥状态下包括孔隙在内的单位体积固体材料的质量。形状不规则石料的毛体积密度可采用静水称量法或蜡封法测定;对于规则几何形状的试件,可采用量积法测定其体积密度。孔隙率是指材料的体积内,孔隙体积所占的比例。吸水性是指材料与水接触吸收水分的性质,当材料吸水饱和时,其含水率称为吸水率。 三、实验装置和仪器 李氏比重瓶、烘箱、干燥器、天平、恒温水槽、游标卡尺等 四、实验方法和步骤 (一)密度试验(李氏比重瓶法) 将石料试样粉碎、研磨、过筛后放入烘箱中,以100±5℃的温度烘干至恒重。烘干后的粉料储放在干燥器 中冷却至室温,以待取用。 在李氏瓶中注入煤油或其他对试样不起反应的液体至突颈下部的零刻度线以上,将李氏比重瓶放在温度为(t±1)℃的恒温水槽内(水温必须控制在李氏比重瓶标定刻度时的温度),使刻度部分浸入水中,恒温0.5小时。记下李氏瓶第一次读数V1(准确到0.05mL,下同)。 从恒温水槽中取出李氏瓶,用滤纸将李氏瓶内零点起始读数以上的没有煤油的部分仔细擦净。 取100g左右试样,用感量为0.001g的天平(下同)准确称取瓷皿和试样总质量m1。用牛角匙小心将试样通过漏斗渐渐送人李氏瓶内(不能大量倾倒,因为这样会妨碍李氏瓶中的空气排出,或在咽喉部分形成气泡,妨碍粉末的继续下落),使液面上升接至20mL刻度处(或略高于20mL刻度处),注意勿使石粉粘附于液面以上的瓶颈内壁上。摇动李氏瓶,排出其中空气,至液体不再发生气泡为止。再放入恒温水槽,在相同温度下恒温0.5小时,记下李氏瓶第二次读数V2。 准确称取瓷皿加剩下的试样总质量m2。 石料试样密度按下式计算(精确至0.01g/cm3):ρt=(g/cm3) 式中: ρt—石料密度,g/cm3; m1—试验前试样加瓷皿总质量,g; m2—试验后剩余试样加瓷皿总质量,g; V1—李氏瓶第一次读数,mL(cm3); V2—李氏瓶第二次读数,mL(cm3)。 以两次试验结果的算术平均值作为测定值,如两次试验结果相差大于0.02g/cm3时,应重新取样进行试验。

9种密度的测量方法(中考必备)

测量密度的方法(中考必备) 一、用天平和量筒直接测密度 例1、现有天平、量筒、烧杯、水和大头针,试测出一小块木块的密度。 测量步骤: ⑴用天平测出小木块的质量m1 ⑵用量筒取适量水,体积V1 ⑶用大头针使小木块浸没在水中,测出小木块和水的总体积V2 ⑷表达式:ρ木=m1 /( V2-V1) 二、弹簧秤读数差法: 若固体密度大于液体密度,可用此法测固体密度。 例2:给你一把弹簧秤、足量的水、细绳、如何测石块密度。 方法:(1)细绳系住石块,用弹簧秤称出石块在空气中重G1 (2)将石块浸没水中记下弹簧秤示数G2 (3)推导:F浮=G1-G2 V石= V排=F浮/ρ液g=(G1-G2)/ρ水g ρ石=G石/V石g=G1÷( G1-G2)/ρ水g= G1ρ水/(G1-G2) 三、比较法: 若固体密度大于水的密度,大于待测液体密度,可用此法测待测液体密度。 例3:给你弹簧秤、细绳、石块、足量的水和牛奶,如何测出牛奶的密度。 方法:(1)细绳系住石块,用弹簧秤称出石块在空气中重G1 (2)将石块浸没水中记下弹簧秤示数G2 (3)将石块浸没牛奶中下弹簧秤示数G3 (4)推导: 在水中受到的浮力:F1=G1-G2即ρ水gV石= G1-G2 在奶中受到的浮力:F2=G1-G3即ρ奶gV石= G1-G3 两式比较得:ρ奶= (G1-G3)ρ水/(G1-G2) 四、漂浮法: 若物体密度小于已知液体的密度,可用此法测量。 例4:现有蜡块、量筒、足够的水、如何测出蜡块的密度。 方法:(1)往量筒内倒入适量的水,记下体积V1 (2)将蜡块放入水中,静止后记下量筒中水的体积V2 (3)使蜡块浸入(可用手压)水中,记下体积V3 (4)推导:F浮=G 即ρ水gV排=m蜡g V排=V2-V1 V蜡=V3-V1 ∴ρ蜡=(V2-V1)ρ水/(V3-V1) 、 例5、已知水的密度为ρ1,为了测出某种液体的密度ρ2,给你一只粗细均匀的圆柱形平底试管,一些小铅粒,两个烧杯,一个烧杯内盛待测液体,如图 ⑴要测出待测液体的密度,还需要的仪器是。 ⑵写出简要的测量步骤 ⑶求出液体的密度ρ2

燃料电池的工作原理

燃料电池的工作原理 作者:佚名来源:不详录入:Admin更新时间:2008-8-18 10:07:07点击数:8 【字体:】 燃料电池的一般结构为:燃料(负极)|电解质(液态或固态)|氧化剂(正极)。在燃料电池中,负极常称为燃料电极或氢电极,正极常称为氧化剂电极、空气电极或氧电极。燃料有气态如氢气、一氧化碳、二氧化碳和碳氢化合物,液态如液氢、甲醇、高价碳氢化合物和液态金属,还有固态如碳等。按电化学强弱,燃料的活性排列次序为:肼>氢>醇>一氧化碳>烃>煤。燃料的化学结构越简单,建造燃料电池时可能出现的问题越少。氧化剂为纯氧、空气和卤素。电解质是离子导电而非电子导电的材料,液态电解质分为碱性和酸性电解液, 固态电解质有质子交换膜和氧化锆隔膜等。在液体电解质中应用微孔膜,0.2mm~0.5mm厚。固体电解质为无孔膜,薄膜厚度约为20μm。 燃料电池的反应为氧化还原反应,电极的作用一方面是传递电子、形成电流;另一方面是在电极表面发生多相催化反应,反应不涉及电极材料本身,这一点与一般化学电池中电极材料参与化学反应很不相同,电极表面起催化剂表面的作用。 在氢氧燃料电池中,氢和氧在各自的电极反应。氧电极进行氧化反应,放出电子,氢电极进行还原反应,吸收电子,总反应为: O2+2H2→2H2O 反应结果是氢和氧发生电化学燃烧,生成水和产生电能。由热力学变量可得到以下理论电动势和理论热效率公式: Eo=-(ΔG/2F)=1.23V η=ΔG/ΔH=83.0% 式中,ΔG和ΔH分别为自由能变化和热焓变化,F是法第常数。

燃料电池工作的中心问题是燃料和氧化剂在电极过程中的反应活性问题。对于气体电极过程,必需采用多孔气体扩散电极和高效电催化剂,提高比表面,增加反应活性,提高电池比功率。 氢在负极氧化是氢原子离解为氢离子和电子的过程,若用有机化合物燃料,首先需要催化裂化或重整,生成富氢气体,必要时还要除去毒化催化剂的有害杂质。这些反应可在电池内部或外部进行,需附加辅助系统。正极中的氧化反应缓慢,燃料电池的活性主要依赖正极。随着温度升高,氧的还原反应有相当的改善。高温反应有利于提高燃料电池反应活性。 对于燃料电池发电系统,核心部件是燃料电池组,它由燃料电池单体堆集而成,单体电池的串联和并联选择,依据满足负载的输出电压和电流,并使总电阻最低,尽量减小电路短路的可能性。其余部件是燃料预处理装置、热量管理装置、电压变换调整装置和自动控制装置。通过燃料预处理,实现燃料的生成和提纯。燃料电池的运行或起动,有的需要加热,工作时放出相当的热量,由热量管理装置合理地加热或除热。燃料电池工作时,在碱性电解液负极或酸性电解液正极处生成水。为了保证电解液浓度稳定,生成的水要及时排除。高温燃料电池生成水会汽化,容易排除,水量管理装置将实现合理的排水。燃料电池与化学电池一样,输出直流电压,通过电压变换成为交流电送到用户或电网。燃料电池发电系统通过自控装置使各个部件协调工作,进行统一控制和管理。

GBT泡沫塑料表观密度的测定

泡沫塑料及橡胶表观密度的测定 蒲城清洁能源有限责任公司质检部 二零一三年 目录 泡沫塑料及橡胶表观密度的测定 1范围 本标准规定了测定泡沫塑料及橡胶的表观总密度和表观芯密度的实验方法。 模制与自由发泡或挤出时形成表皮的材料表观总密度、表观芯密度可用本标准测试。 术语“表观总密度”不适用于在模制时未形成表皮的材料。

对于不规则形状的产品应采用浮力法的方法测定。 2规范性引用文件 下列文件中的条款通过本标准的引用的而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版并不适用于本标准。然而,鼓励根据本标准达成协议的各种研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新标版本适用于本标准。 GB/T2918-1998塑料试样状态调节和试验的标准环境(idtISO291:1997) GB/T6342-1996泡沫塑料和橡胶线性尺寸的测定(idtISO1923:1981) 3术语和定义 下列术语和定义适用于本标准。 3.1表观总密度apparedtoveralldensity 单位体积和泡沫材料的质量,包括模制时形成的全部表皮。 3.2表观芯密度apparedtcoredensity 去除模制时形成的全部表皮后,单位体积泡沫材料的质量。 4仪器4.1天平称量精确度0.1%。 4.2量具符合GB/T6342-1996。5试样 5.1尺寸 试样的形状便于体积的计算。切割时,应不改变原始泡孔结构。 试样总体积至少为100cm3,在仪器允许及保持原始形状不变的条件下尺寸尽可能大。 对于硬质材料用从大样品上切下的试样进行表观总密度的测定时,试样和大样品的表皮面积与体积之比应相同。

燃料电池测试方案

燃料电池测试方案 燃料电池测试设备数量较少,操作并不复杂,但是与普通电池测试区别还是很明显。测试要求也更多。 燃料电池本身的特点: ●燃料电池是核心部件为质子交换膜的发电设备,把化学能转化为电能。 ●单节电芯电压很低,电流很大。电池包节数较多,密封性和一致性要求 较高。 ●电芯内阻较大,功率损耗较大,电压电流范围较广, ●电池输出准备及变化时间较长,变化速度慢,不耐负载突变。不能急开 急停。 BMS控制板特点: ●电池串联数量多,一般在100串以上,需要对BMS的单节监控性能进 行验证。电池发热量大,需要对电池进行温度监控与控制,转换效率需 要更精准。 ●对输出端的电压电流采集的调整输入氢气和空气量。 ●输入输出变化斜率控制。 ●因为一般是程控进行,所以最好负载也需要程控。 ●电压电流等参数需要进行校验和校准。

实际使用: 因为燃料电池开始,变化,结束均有一定的滞后性,一般会后接一个动力电池作为缓冲器件然后才用于动力输出。如果燃料电池直接用于冲击性消耗,会对交换膜损害很大,寿命急剧降低。 测试需要设备:除了燃料电池本身的BMS,输入氢气的流量压强传感器,空气的输入及散热,单节一致性监控之外。最重要的就是负载设备。 燃料电池测试,为什么只能使用电子负载? 作为负载,除了电子负载之外,电阻负载和反馈式负载在新能源行业也偶有使用,为什么不能用于燃料电池测试呢? 单节燃料电池测试要求苛刻,要求很低电压达到很大的电流,电流越大,电压越低。比如要求0.6V带载到600A甚至更高。需要负载从1mΩ到1KΩ范围内都要保证足够的精确度。 电池包不允许冲击性消耗,要求全输出范围斜率可调,要求斜率,要求精确度,要求程控,要求带载状态不能阶跃等等。 反馈式负载:反馈式负载就是一台DC-AC转换的开关电源。其消耗方式是高速开关脉冲式。10%量程范围带载能力差,电流杂波大,精确度稍差。变化斜率慢,斜率控制差,完成不了标准斜率波形。带载能力范围窄,只能测试某些特定参数的输出能力范围。脉冲式消耗及杂波直接损害的是质子交换膜。无论是测试还是老化均不建议使用。 电阻负载:电阻负载可调范围一般很窄,调整方式为阶跃性改变,温飘很大,最重要的是电阻箱无法固定一个固定的测试环境和测试点。燃料电池的电流直接与消耗氢气的量成正比。同一个测试点,电压升高,电流加大;电压降低,

相关文档
最新文档