环路补偿(TI)

环路补偿问题

电源控制模块 回顾我们在学校学习过的控制理论知识便知,所有控制系统均可以通过传输函数模块得到简化。峰值电流模式控制电源转换器中的电压控制环路也不例外。电压环路(TV(f)) 可以简化表示为不同传输模块的积(请参见图1)。首先是功率级控制输出传输函数(GCO(f)),其表示为输出电压变化(?VOUT) 与控制电压变化(?VC) 的比。请注意,该模块实际为脉宽调制(PWM) 调制器增益(K) 和电源输出滤波器增益(GF(f)) 的组合。其次通常为控制传输函数(GC(f)) 的输出有时称作补偿传输函数,可以表示为?VC与?VOUT 变化的比。如果使用了光隔离器,则也会有一个传输函数模块GOPTO(f),其位于模块K 和–GC(f) 模块之间的连线上。 图1 简化后的电源电压环路模块结构图 图 2 显示了一个峰值电流模式控制正向转换器的功能示意图,如图 1 结构图所示。控制模块由一些虚线区分。

图2 简化后的电源电压环路结构图 起初,峰值电流模式控制背后的想法是控制通过功率级电感的平均电流,从而使它看起来像是一个去除了双极的电流源,而该双极出现在输出电容(COUT) 和功率级电感(LOUT) 的交互作用之间。图 3 显示了这种模型的控制结构图。

图3将电感建模为一个电流源的峰值电流模式控制 图 2 的简化控制输出传输(GCO(f)) 函数表示如下。其中,(a) 为变压器匝数比,而RLOAD 为转换器输出负载阻抗。COUT 为转换器输出滤波器电容,而RESR 为COUT 的等效串联电阻。由该控制输出传输函数,您会看到COUT 和RESR 交互作用之间有一个零点,并在RLOAD 和COUT 交互作用之间有一个极点。 随着时间的流逝,工程师在使用峰值电流模式控制时发现了一个大约在半开关频率(fs) 出现的GCO(f) 双极(fPP)。下列方程式描述了峰值电流模式正向转换器的GCO(f),包括fPP 的影响。请注意,如果您使用网络分析仪对正向转换器进行分析时,您会发现这种传输函数并没有精确地匹配模型描述情况。由于RESR 和COUT 交互作用出现的零位(FZCO) 随负载移动。fPP 出现在略微超出半开关频率时。在没有一个精确模型的情况下,您到底会如何对电压环路进行补偿呢?您可以循规蹈矩,遵循其他工程师已使用多年的老办法。也就是使用一个网络分析仪,根据测得的GCO(f) 来补偿电压环路,并遵循一些简单原则来获得稳定性(本文将有所介绍)。 斜率补偿 人们在峰值电流模式控制转换器中发现,存在占空比突然改变引起的次谐波振荡。这是因为由于控制电压(VC) 无法足够快地校正占空比改变,因而占空比改变便会导致平均输出电流(IOUT1, IOUT2) 误差。为对这一误差进行校正,人们设计了一种的被称作斜率补偿的方法。这种方法将三角电压波形添加到电流感应信号(V2=VSLOPE+VRSENSE),该信号强制平均输出电流不随占空比改变而变化。更多详情,请参见图4。

控压型DC-DC变换器电流环路补偿设计

固定频率峰值电流模式PWM(Pulse WidthModulation)DC-DC变换器同传统的电压模式控制相比,具有瞬态响应好,输出精度高,带载能力强等优点,因而被广泛应用。作为重要的模拟单元,斜坡补偿电路和电流采样电路是电流模式PWM控制的根基,对电流模式控制中电流环路的稳定性起着重要作用。 1电路结构 图1所示是典型峰值电流模式PWM Boost DC-DC控制系统的结构框图。当电压外环的电压反馈信号经过误差放大器放大得到的误差信号VE送至PWM比较器后,将与电流内环的一个变化的、其峰值代表输出电感电流峰值的三角波或梯形尖角状合成波信号VE比较,从而得到PWM脉冲关断阈值。即: 在(1)式中:第一项为斜坡补偿部分,用于保证电流环路的稳定;第二项反映了电感电流的大小,通常由电流采样电路产生;第三项用于产生一个固定的基础电平,以为PWM比较器输入端图1典型峰值电流模式PWMBoostDC—DC控制系统框图提供一个合适的直流工作点。 因此,峰值电流模式控制不是用电压误差信号直接控制PWM脉冲宽

度,而是通过控制峰值输出端的电感电流大小,然后来间接地控制PWM 脉冲宽度。 但是,电流模式的结构决定了其应用时存在电流内环在占空比大于50%时的开环不稳定现象、亚谐波振荡、非理想的环路响应,以及容易受噪声影响等几个固有缺点。针对上述问题,在环路的补偿方式上,除了电压环路的RC串联补偿之外,还必须对电流环路进行补偿,以满足电流环路的稳定性要求。有效的解决方法是采用斜坡补偿技术,并在提高电流采样精度的同时降低采样损耗,以保证电流环路的稳定。 本文利用对振荡器充放电电容上的电压作V/I转换来得到稳定且斜率

环路相位-开关电源稳定性设计

环路相位-开关电源稳定性设计 专业技术 环路相位-开关电源稳定性设计 摘要:环路,相位,增益,负载,开关电源,稳定性,电压,相移,电源,频率, 信号接收机-基于单芯片的GPS接收机硬件设计白光调光-白光和彩色光智能照明系统解决方案设备方案-台达UPS在中小企业中的创新应用方案触摸屏电容-电容式触摸屏系统解决方案测量肺活量-利用高性能模拟器件简化便携式医疗设备设计测量温度-热敏电阻(NTC)的基本参数及其应用动能产品-动能电子企业文化活动丰富员工生活电路板镀锡-无锡华文默克发布PCB/SMT工艺方案引擎电压-采用接近传感器的火花探测器太阳能控制器-太阳能LED街灯的挑战及安森美半导体高能效解决方案众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式 有意地引入了180°相移,如果反馈 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。 1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB 时所对应的相位。增益裕度是指:相位为-180度时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相

环路计算,补偿和仿真

BUCK 电路的环路计算,补偿和仿真 Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。 一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗? 太多的未知数,这是产品开发的大忌。我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系? 有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。 一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。 很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。 那就再给大家讲解一下吧。 等式:V out=[Vin-V out*H(S)]*G(S) 公式:Vout Vin G S ()1G S ()H S ()?+ G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。 G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为: gain =‖-1‖=1 angle=tan -1(0/-1)=180° 从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。 但是,别忘了,这是负反馈系统,信号经过H(S)之后,本身就有180°的相移,所以,针对负反馈的闭环系统而言,其描述为:如果扰动信号经过系统主电路和反馈系统之后,其模不变,相位也不变,那么这个系统是不稳定的。为什么相位也不变?因为G(S)*H(S)造成的180°相移和负反馈本身造成的180°相移,两者叠加之后是360°,所以等于相位不变。 什么是穿越频率? G(S)*H(S)对应的增益为1(即幅值不变)的频率即为穿越频率。换算为dB 单位:20log1=0dB 。

开关电源环路稳定的试验方法

6.5 开关电源环路稳定的试验方法 前面频率特性分析方法是以元器件小信号参数为基础,同时在线性范围内,似乎很准确。但有时很难做到,例如电解电容ESR 不准确且随温度和频率变化;电感磁芯磁导率不是常数,还有由于分布参数或工艺限制,电路存在分布参数等等,使得分析结果不可能完全吻合,有时甚至相差甚远。分析方法只是作为实际调试的参考和指导。因此,在有条件的情况下,直接通过测量运算放大器以外的环路的频率响应,根据6.4节的理论分析,利用测得的频率特性选择Venable 误差放大器类型,对环路补偿,并通过试验检查补偿结果,应当说这是最直接和最可靠设计方法。采用这个方法,你可以在一个星期之内将你的电源闭环调好。前提条件是你应当有一台网络分析仪。 6.5.1 如何开环测试响应 桥式、半桥、推挽、正激以及Buck 变换器都有一个LC 滤波电路,输出功率电路对系统性能影响最大。为了讨论方便,以图6.31为例来说明测试方法,重画为图 6.48(a)。电路参数为:输入电压115V ,输出电压为5V ,如前所述,滤波电感和电容分别为L =15μH ,C =2600μF ,PWM 控制器采用UC1524,它的锯齿波幅值为3V ,只用两路脉冲中的一路,最大占空比为0.5。为了测量小信号频率特性,变换器必须工作在实际工作点:额定输出电压、占空比和给定的负载电流。 从前面分析知道,如果把开关电源看着放大器,放大器的输入就是参考电压。从反馈放大器电路拓扑来说,开关电源的闭环是一个以参考电压为输入的电压串联负反馈电路。输入电源的变化和/或负载变化是外界对反馈控制环路的扰动信号。取样电路是一个电阻网络的分压器,分压比就是反馈系数,一般是固定的(R2/(R1+R2))。参考电压(相应于放大器的输入电压)稳定不变,即变化量为零,输出电压也不变(5V)。 如上所述,所有三种误差放大器都有一个原点极点。在低频闭环时,由于原点极点增益随频率减少而增高(即在反馈回路电容)在很低频率,有一个最大增益,由误差放大器开环 增益决定。直流增益很高,这意味着直流电压 仅有极小误差(相对于参考电压)。例如,误差放大器在很低频率增益可能达到80dB 或更高,因为80dB 即10000倍,迫使输出检测电压接近参考电压,误差仅万分之一,即0.01%。这当然远优于一般参考电压的精度,因而通常输出电压的误差由参考电压的误差决定。 为保证电源在任何干扰下输出稳定,我们将测试除误差放大器以外的开关电源的环路频率特性,来判断闭环穿越频率、放大器需要的增益以及需要补偿的相位,以此选择误差放大器类型。 为了开环测量误差放大器以外的环路增益,你可以利用控制芯片中的误差放大器。将误差放大器接成跟随器,利用跟随器输入阻抗高的特点,在输入端将测试的扫频信号和决定直流工作点的偏置电压求和Σ。直流工作点的偏置电压是一个可调直流电源(调节工作点)和一个交流扫频交流信号叠加一起送入跟随器。调节可调直流电压,输出电压随之变化。可调电压增大输出电压也增大。调节可调直流电压,使输出电压和负载达到规定的测试条件(输入电压最大和最小,负载满载和轻载),然后测试分压器输出AC out 和扫频信号输出AC in 的交流信号的幅值和相位,就得到相似于图6.36的除放大器以外的增益特性G t (AC out /AC in )。。应当注意,我们正在研究的是电源的小信号响应,是在一定工作点附近的线性特性,所以测试应当在实际工作点(在规定的输出电压和负载以及规定的输入电源电压)进行。即输出如果是5V ,就应当将输出精确调节到5V ,而不是3V 或10V 。一定要调节可调电源精密调整到额定输出相差mV 级以内,再进行开环测试。 (a ) 图 6.48 正激变换器环路增益测试

控制环路设计原则

反激型电源中的控制环路的设计 经常主电路是根据应用要求设计的,设计时一般不会提前考虑控制环路的设计。假设主功率部分已经全部设计完成,然后来探讨环路设计。环路设计一般由下面几过程组成: 1)根据实际要求和各限制条件确定带宽频率,既增益曲线的0dB 频率。 2)画出已知部分的频响曲线。 3) 根据步骤1)确定的带宽频率决定补偿放大器的类型和各频率点。使带宽处的曲线斜率为-1,画出整个电路的频响曲线。 首先我们应该明白系统稳定的要求: 1.在截止频率Fco(开环增益为1)处,总开环相位延迟必须小于180度,一般留 有45度裕量。 2.为防止-2的增益斜率的电路相位快速变化,系统的开环增益曲线在Fco 附近 的斜率应为-1。 系统的各部分框图如下: 图1 上图包括了一下几个模块,其中: ??V V G K EA =,为误差放大器传递函数; R E OC V V A ??'=,光耦电路的增益; C VC V V G ??0=,控制电压到输出电压的传递函数

已知部分的频响曲线是指除G EA(补偿放大器)外的所有部分的乘积,在BODE图上是相加。 首先确定剪切频率F CO。环路带宽当然希望越高越好,但受到几方面的限制:a)为了保证系统稳定,根据采样定理,剪切频率F CO必须小于开关频率的1/2,但实际上,F CO必须远远小于开关频率的1/2,否则在输出中将会有很大的纹波。 b)如果电路工作在CCM模式下,则存在着右半平面零点(RHZ)。这个零点的影响,RHZ随输入电压,负载,电感量大小而变化,几乎无法补偿,我们只有把带宽设计的远离它,一般取其1/4-1/5;c)补偿放大器的带宽不是无穷大,当把环路带宽设的很高时会受到补偿放大器无法提供增益的限制,及电容零点受温度影响等。所以一般实际带宽取开关频率的1/6-1/10。 选定F CO后,在F CO处的T(总体传函)的增益为0,则G EA在F CO处的增益必须为G VC A OC在此处增益的倒数。 然后确定除G EA(补偿放大器)外的所有部分,即系统的除G EA的传递函数。如果我们采用的3845的电流型控制模式,部分电路图如下: 图2则在CCM下,系统的传函如下:

开关电源环路补偿

今天 作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手,高手,新手,几乎对控制环路的设计一筹莫展,基本上靠实验.靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎么计算,至少使大家在有问题时能从理论上分析出解决问题的思路. 示意图:

这里给出了右半平面零点的原理表示,这对用PSPICE 做仿真很有用,可以直接套用此图. 递函数自己写吧,正好锻炼一下,把输出电压除以输入电压就是传递函数. bode 图可以简单的判定电路的稳定性,甚至可以确定电路的闭环响应,就向我下面的图中表示的.零,极点说明了增益和相位的变化 二: 单极点补偿,适用于电流型控制和工作在DCM 方式并且滤波电容的ESR 零点频率较低的

电源.其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180 度以前使其增益降到0dB. 也叫主极点补偿. 双极点,单零点补偿,适用于功率部分只有一个极点的补偿.如:所有电流型控制和非连续方式电压型控制.

三极点,双零点补偿.适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。 C1 的主要作用是和R2 提升相位的.当然提高了低频增益.在保证稳定的情况下是越小越好. C2 增加了一个高频极点,降低开关躁声干扰. 串聯C1 實質是增加一個零點,零點的作用是減小峰值時間,使系統響應加快,并且閉環越接近虛軸,這种效果越好.所以理論上講,C1 是越大越好.但要考慮,超調量和調節時間,因為零點越距离虛軸越近,閉環零點修正系數Q 越大,而Q 與超調量和調節時間成正比,所以又不能大.總之,考慮閉環零點要折衷考慮. 并聯C2 實質是增加一個及點,級點的作用是增大峰值時間,使系統響應變慢.所以理論上講,C2也是越大越好.但要考慮到,當零級點彼此接近時,系統響應速度相互抵消.從這一點就可以說明,我們要及時響應的系統C1 大,至少比C2 大

boost环路分析

Boost 电流控制型环路分析 抱歉没图,图就是一般的电流控制性的环路。我尽量叙述详细。 参考《精通开关电源设计》,p196,从控制到输出(Vcont 到Vout )的传递函数: 1)() 1()1(1 22+*+-*-*Q W S W S W s D VIN V O O RHP RAMP 其中,1 211)1(1 L R Q W D L L C L W O O =*-==,,, 带入设计数据,Vin=15V ,Iout=0.5A,V out=30V , D=0.5, L=35uH 。 计算得到Wo=34K rad/s=5.4KHz , Q=12.6, 这儿出现共轭极点,在波特图上怎么处理这对共轭极点? 难道还是可以处理成一个极点在Wo/Q,一个极点在Wo*Q ? 这儿电流控制型,采样Rcs*IL ,故RAMP V =Rcs*IL 。(这个有问题没) P199,Vout 到Vcont 的传递函数: )(Z gm 2 11 S R R R H O f f f **+= 其中,OUT 211V 1= +f f f R R R ,4104gm -*=,)1(121111+*+=S C R SC S C R Z O (p213) 其中,在跨导比较器(误差放大器)输出做的环路补偿,补偿电路是一个R1串联C1接地,再并联一个C2,。Zo 就是R1,C1,C2的阻抗。 然后给出datasheet 上做的补偿:先计算出下面 主极点OUT OUT OUT OUT OUT V C V I L 2D -1f ,2I f 2RHP p ***=**=ππ)(,和右半平面零点 然后计算补偿部分R1,C1,C2. 去穿越极点在0.2RHP f 处,然后直接给出了R1的值等于 1 2p 11p RHP 1C f 21,)1(V gm f 5I Rcs f R R C R R C D OUT ESR OUT OUT *=**=-******=,π 关键是R1怎么得来的分析不出来,因为传递函数里C1是和开环增益相关的,所以书上都是先得到C1,由C1求R1.从它补偿思路看,补偿长生了一个零极点,产生一个零点1/R1*C1来抵消fp ,产生一个极点来抵消ESR 零点。产生的零极点来控制穿越频率的位置?

升压型DC-DC变换器电流环路补偿设计

针对固定频率峰值电流模式PWM升压型DC-DC变换器。给出了一种结构简单、易于集成的电流环路补偿电路的设计方法。该电路的斜坡产生电路可对片内振荡器充放电电容上的电压作V/I转换,其所得到的斜坡电流具有稳定、斜率易于调节等特点;而电流采样电路主体采用SENSEFET结合优化的缓冲级和V/I转换电路,从而在提高采样精度的同时,还减小了损耗。整个电路可采用0.6μm15V BCD工艺实现。通过Cadence Spectre进行的仿真结果表明,该电路可有效地抑制亚谐波振荡,采样精度达到77.9%,补偿斜率精度达到81.5%。关键词:斜坡补偿;电流采样;电流模式;V/I转换 O引言 固定频率峰值电流模式PWM(Pulse WidthModulation)DC-DC变换器同传统的电压模式控制相比,具有瞬态响应好,输出精度高,带载能力强等优点,因而被广泛应用。作为重要的模拟单元,斜坡补偿电路和电流采样电路是电流模式PWM控制的根基,对电流模式控制中电流环路的稳定性起着重要作用。 1电路结构 图1所示是典型峰值电流模式PWM Boost DC-DC控制系统的结构框图。当电压外环的电压反馈信号经过误差放大器放大得到的误差信号VE送至PWM比较器后,将与电流内环的一个变化的、其峰值代表输出电感电流峰值的三角波或梯形尖角状合成波信号VE比较,从而得到PWM脉冲关断阈值。即:

在(1)式中:第一项为斜坡补偿部分,用于保证电流环路的稳定;第二项反映了电感电流的大小,通常由电流采样电路产生;第三项用于产生一个固定的基础电平,以为PWM比较器输入端图1典型峰值电流模式PWMBoostDC—DC控制系统框图提供一个合适的直流工作点。 因此,峰值电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是通过控制峰值输出端的电感电流大小,然后来间接地控制PWM脉冲宽度。 但是,电流模式的结构决定了其应用时存在电流内环在占空比大于50%时的开环不稳定现象、亚谐波振荡、非理想的环路响应,以及容易受噪声影响等几个固有缺点。针对上述问题,在环路的补偿方式上,除

环路补偿与PID调节的关系-详细分析

(一) 补偿完结分析 来自自控原理书 1. D “需要指出,因为微分控制作用只对动态过程其作用,而对稳态过程没有影响,且对系统噪声非常敏感,所以单一的D控制器在任何情况下都不适宜与被控对象串连起来单独使用。” 2. I “积分控制器I,可以提高系统的稳态性能,但是积分控制使系统增加一个位于原点的开环极点,是信号滞后90度,对稳定性不利。” 3. P “比例控制,具有比例控制规律的控制器,称为P控制器,加大控制器增益Kp,可以提高系统的开环增益,减小系统的稳态误差,从而提高系统的控制精度,但是会降低系统的相对稳定性,甚至可能造成系统的不稳定。” 1)这个传递函数中最直观的的反映只有零极点,是针对频域讨论 2)PID控制是时域分析手法,所以你要得到PID的系数就需要分别了解构成P,I,D环节是由那几个的元件主导的,时域的分析方法是困难的,所以一般只作为理论依据,分析还是根据频域的零极点模型。 3)如果你能把传递函数转变成下来第二式的形式便能得到P,I,D的系数,但是显然有些困难。

我对诗句的解读 Ⅰ.“曲线震荡很频繁,比例度盘要放大”

可以看出两点:1.比例取大了,振荡频繁。2.比例改变,对稳态误差有影响。Ⅱ.“曲线漂浮绕大湾,比例度盘往小扳” Ⅲ.曲线偏离回复慢,积分时间往下降 Ⅳ.曲线波动周期长,积分时间再加长

Ⅴ.曲线振荡频率快,先把微分降下来 Ⅵ.动差大来波动忙,微分时间应加长 下面是数字PID调节

这个和模拟PID有区别吗?开关电源是病态的开关系统,能用吗?且如何看??? 频域的零极点分析来进行调整是间接的改变了时域的曲线,而时域在工程中是相对而言比较直观的,是大家比较喜欢的,可是这个间接如何体现呢????? 采用saber对一个buck电路进行仿真验证,看这个PID能否用到这里面来?

开关电源的建模和环路补偿设计 上

开关电源的建模和环路补偿设计上 如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。 电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。本文还介绍了用户易用的LTpowerCAD设计工具,以减轻设计及优化负担。 确定问题 一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。欠补偿系统可能导致运行不稳定。不稳定电源的典型症状包括:磁性组件或

陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。 不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。图 1 显示了一个不稳定降压型电源的典型输出和开关节点波形。调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如PCB 噪声。如果设计师对各种可能性没有了然于胸,那么确定引起运行噪声的潜藏原因可能耗费大量时间,令人非常沮丧。 图1:一个“不稳定” 降压型转换器的典型输出电压和 开关节点波形 对于开关模式电源转换器而言,例如图 2 所示的 LTC3851 或LTC3833 电流模式降压型电源,一种快速确

开关电源控制环路分析

开关电源控制环路分析 摘 要开关电源被誉为高效节能型电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。同时,开关电源也是反馈回路控制系统,所谓电路反馈,就是指将放大电路的输出量(电压或电流信号)的部分或全部,通过一定方式(元件或网络)返送到输入回路的过程,完成输出量向输入端回送的电路称为反馈元件或反馈网络。 关键词 零极点 幅值裕度 相位裕度 1 引言 稳定的反馈环路对开关电源来说是非常重要的,如果没有足够的相位裕度和幅值裕度,电源的动态性能就会很差或者出现输出振荡。下面先介绍三种控制方式的各种零,极点的幅频和相频特性,再对最常用的反馈调整器TL431的零、极点及特性进行分析。Topswitch是市场上广泛应用的反激式电源的智能芯片,它的控制方式是比较复杂的电压型控制,内部集成了一部分补偿功能,最后分析一个Topswitch设计的电源,对它的环路进行解剖。 2 环路补偿方式及TL431特性 2.1 单极点补偿 适用于电流型控制和工作在DCM方式并且滤波电容的ESR零点频率较低的电源。其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180度以前使其增益降到0dB。 图1 2.2 双极点,单零点补偿 适用于功率部分只有一个极点的补偿,例如所有电流型控制和非连续方式电压型控制。

图2 2.3 三极点、双零点补偿 适用于输出带LC谐振的拓扑,例如所有没有用电流型控制的电感电流连续方式拓扑。 图3 2.4 TL431输出供电时的零极点特性 TL431是开关电源次级反馈最常用的基准和误差放大器件,其供电方式不同对它的传递函数有很大的影响。 图4 其中:

反馈环路设计

反馈环路设计 稳定的反馈环路对开关电源来说是非常重要的,如果没有足够的相位裕度和幅值裕度,电源的动态性能就会很差或者出现输出振荡. 下面先介绍了控制环路分析里面必须用到的各种零,极点的幅频和相频特性;然后对最常用的反馈调整器TL431的零,极点特性进行分析;TOPSWITCH是市场上广泛应用的反激式电源的智能芯片,它的控制方式是比较复杂的电压型控制,为了方便一般使用者,部集成了一部分补偿功能,所以很多工程师不清晰它的整个环路,最后运用上面的理论分析一个TOPSWITCH设计的电源,对它的环路的每一个部分进行了解剖,可以使工程师更好地应用TOPSWITCH及解决设计中遇到的环路问题. 波特图是分析开关电源控制环路的一个有力工具,它可以使复杂的幅频和相频响应的计算变成简单的加减法,特别是使用渐近线近似以后,只需要计算渐近线改变方向点的值. 增益按-20dB/10倍频程下降, 相位近似按-45°/10倍频程下降.最大相移为-90° 增益按20dB/10倍频程上升,相位近似按45°/10倍频程上升,最大总相移为90°

右半平面零点是反激和BOOST电路里面特有的现象.增益按20dB/10倍频程上升,相位近似按-45°/10倍频程下降,总相移为-90°,右半平面零点是几乎无法补偿的,做设计时尽量把其频率提升或降低带宽 Q值是电路的品质因数,过了谐振点后,增益按-40dB/10倍频程下降, 相位依Q值的不同有不同的变化率,Q值越大,相位变化越剧烈,在谐振点相位是-90°, 最大总相移为-180°

Q值是电路的品质因数,R2是负载电阻,R1是电感的电阻,电容的ESR, 整流管阻,和代表磁心损耗和漏感损耗的合成电阻.大部分的AC/DC电源,由于损耗较高,一般Q值很难大于3. 当Q值较低时(Q<<0.5),双极点响应会退化为两个单极点响应,如上图所示. TL431用输出供电时的零,极点特性 TL431是开关电源次级反馈最常用的基准和误差放大器件,其供电方式不同对它的传递函数有很大的影响,而以前的分析资料常常忽略这一点.下面分析常见的供电和输出反馈接在一起时的传递函数.

【干货分享】开关电源环路补偿设计步骤讲解

【干货分享】开关电源环路补偿设计步骤讲解 1.对于硬件工程师来说,开关电源和运放的信号处理电路是最常遇到的,都是典型的带负反馈的闭环控制系统。因此,这两类电路设计的稳定性和控制理论密切相关。简化的闭环控制系统框图如图1所示,被控对象的传递函数为H,反馈部分的传递函数为G。 图1

以上各式中的GH一般称为系统的环路增益或者开环增益。根据式(2)可知,当1+GH=0,即GH=-1时,意味着环路增益为1,相位滞后180°,系统不稳定发生自激振荡。当然也可以从另一个角度进行理解,系统发生自激振荡时,不需要输入量Xi,即净输入量,可得GH=-1,即反馈量Xf和输出量Xo形成彼此互相维持的关系。从稳定性条件出发,我们可以知道环路增益小于1时系统可以稳定,相位滞后不到180°时系统可以稳定。这表明左半平面的极点和零点都在某一方面提升稳定性,另一方面降低稳定性。比如左半平面极点可以使增益降低,这能提升稳定性;但是极点增加了相位滞后,这降低了稳定性。比如左半平面零点使相位超前,这能提升稳定性;但是零点使增益增加,这降低了稳定性。只有右半平面零点是最特殊的,增加增益的同时相位滞后,这会加剧系统不稳定。根据控制理论的稳定性条件可知,

相位裕量至少为45°,转化为伯德图的话,就是要求在增益为0dB 时的穿越频率处,斜率应该为-20dB/decade,即负20dB每十倍频,或斜率为,两者等价。根据式(3)可知,当GH>>1时,即引入深度负反馈后,Xf=Xi。这就是为什么运放的虚短需要在引入深度负反馈时才成立的原因。由于运放本身的开环放大倍数H已经非常大,引入负反馈后一般都能满足深度负反馈的要求。 根据式(4)可知,如果想要直流稳态误差为0,则应满足。这就是为什么控制系统的低频环路增益(开环增益)要尽量大的原因,这点在开关电源环路设计中很重要。 对于一般的运放电路而言,图1即是其控制系统框图。而开关电源的系统框图则较为复杂,如图2所示,可以将PWM调制器,开关管和LC滤波器合并统称为功率级,用H表示,误差补偿器用G表示,反馈分压系数用k表示,实际设计中我们经常将k和G合并在一起称为G,则简化后的框图和图1类似,环路增益为GH。另外,实际系统中还经常存在输入扰动和负载扰动,通过线性叠加定理,总输出则可表示为下式: 通过式(5)可以比较清楚地看到输入扰动和负载扰动对输出的影响,输入扰动对应线性调整率指标,负载扰动则对应负载调整率指标。另外通过前述结论我们知道,要想稳态误差越接近于0,则GH直流环路增益应该越大越好。

开关电源环路补偿教学提纲

开关电源环路补偿

今天 作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手,高手,新手,几乎对控制环路的设计一筹莫展,基本上靠实验.靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎么计算,至少使大家在有问题时能从理论上分析出解决问题的思路. 示意图:

这里给出了右半平面零点的原理表示,这对用PSPICE 做仿真很有用,可以直接套用此图. 递函数自己写吧,正好锻炼一下,把输出电压除以输入电压就是传递函数. bode 图可以简单的判定电路的稳定性,甚至可以确定电路的闭环响应,就向我下面的图中表示的.零,极点说明了增益和相位的变化 二: 单极点补偿,适用于电流型控制和工作在DCM 方式并且滤波电容的ESR 零点频率较低的电源.其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180 度以前使其增益降到0dB. 也叫主极点补偿.

双极点,单零点补偿,适用于功率部分只有一个极点的补偿.如:所有电流型控制和非连续方式电压型控制. 三极点,双零点补偿.适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。

C1 的主要作用是和R2 提升相位的.当然提高了低频增益.在保证稳定的情况下是越小越好. C2 增加了一个高频极点,降低开关躁声干扰. 串聯C1 實質是增加一個零點,零點的作用是減小峰值時間,使系統響應加快,并且閉環越接近虛軸,這种效果越好.所以理論上講,C1 是越大越好.但要考慮,超調量和調節時間,因為零點越距离虛軸越近,閉環零點修正系數Q 越大,而Q 與超調量和調節時間成正比,所以又不能大.總之,考慮閉環零點要折衷考慮. 并聯C2 實質是增加一個及點,級點的作用是增大峰值時間,使系統響應變慢.所以理論上講,C2也是越大越好.但要考慮到,當零級點彼此接近時,系統響應速度相互抵消.從這一點就可以說明,我們要及時響應的系統C1 大,至少比C2 大 三:环路稳定的标准. 只要在增益为1 时(0dB)整个环路的相移小于360 度,环路就是稳定的.

资深工程师的环路补偿经验

作为每天接触电源的设计工程师,发现不管是电源的老手、高手、新手,几乎对控制环路的设计一筹莫展,基本上靠实验。靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ的存在),大概说一下怎么计算,至少使大家在有问题时能从理论上分析出解决问题的思路。 一:零、极点的概念 示意图:

这里给出了右半平面零点的原理表示,这对用PSPICE做仿真很有用,可以直接套用此图。 递函数自己写吧,正好锻炼一下,把输出电压除以输入电压就是传递函数. bode图可以简单的判定电路的稳定性,甚至可以确定电路的闭环响应,就向我下面的图中表示的.零,极点说明了增益和相位的变化 二:单极点补偿

适用于电流型控制和工作在DCM方式并且滤波电容的ESR零点频率较低的电源.其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180度以前使其增益降到0dB.也叫主极点补偿。 双极点,单零点补偿,适用于功率部分只有一个极点的补偿。如:所有电流型控制和非连续方式电压型控制。

三极点,双零点补偿.适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。 C1的主要作用是和R2提升相位的.当然提高了低频增益.在保证稳定的情况下是越小越好。

C2增加了一个高频极点,降低开关躁声干扰。 串联C1实质是增加一个零点,零点的作用是减小峰值时间,使系统响应加快,并且闭环越接近虚轴,这种效果越好.所以理论上讲,C1是越大越好.但要考虑,超调量和调节时间,因为零点越距离虚轴越近,闭环零点修正系数Q越大,而Q与超调量和调节时间成正比,所以又不能大.总之,考虑闭环零点要折衷考虑。 并联C2实质是增加一个及点,级点的作用是增大峰值时间,使系统响应变慢.所以理论上讲,C2也是越大越好.但要考虑到,当零级点彼此接近时,系统响应速度相互抵消.从这一点就可以说明,我们要及时响应的系统 C1大,至少比C2大。 三:环路稳定的标准 只要在增益为1时(0dB)整个环路的相移小于360度,环路就是稳定的.但如果相移接近360度,会产生两个问题:1)相移可能因为温度,负载及分布参数的变化而达到360度而产生震荡;2)接近360度,电源的阶跃响应(瞬时加减载)表现为强烈震荡,使输出达到稳定的时间加长,超调量增加.如下图所示具体关系.

相关文档
最新文档